首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Chen  Guoxiong  Fu  Xiaoping  Herman Lips  S.  Sagi  Moshe 《Plant and Soil》2003,256(1):205-215
Grafted plants of flacca, an ABA-deficient mutant of tomato (Lycopersicon esculentum), and the wild-type variety Rheinlands Ruhm were grown with and without salinity stress to test the roles of roots and shoots in the regulation of plant growth. Fourteen days after exposure to 200 mM NaCl, shoot and root fresh weight, endogenous ABA concentrations, nitrate concentration, activities of selected enzymes related to nitrogen assimilation, and cation accumulation were determined. Rootstock genotype had little influence on the growth of the grafted plants, whereas grafted plants having wild-type shoots (Ws) produced more biomass than those having flacca shoots (Fs), irrespective of the salinity level. Growth of flacca shoots grafted onto wild-type rootstock (Fs/Wr) was superior to that of flacca shoots grafted onto flacca rootstock (Fs/Fr). The improved growth correlated with enhanced levels of ABA in the flaccashoots of Fs/Wr. In all the graft combinations, ABA content was higher in wild-type shoots than in flacca shoots, with or without salinity. There were no significant differences in root ABA concentrations among the different grafted types. Enhanced growth correlated with higher nitrate levels and higher nitrate reductase activity in the roots and shoots of plants with wild-type shoots and with higher shoot concentrations of ABA in plants with wild-type shoots. There were no significant differences in glutamine synthetase and phosphoenol pyruvate carboxylase activities in the shoots and roots of all the grafted plants, regardless of the salinity level. While shoot genotype determined the accumulation of K+ and Na+ in grafted plants regardless of salinity, it had no influence on Ca2+ concentrations. Regardless of the salinity, the total concentration of cations was the same in all the plants, while salinity decreased Mg2+ concentration in roots and shoots of all grafts, with the exception of flacca grafted shoots. The scion genotype – and its ABA level – thus played the major role in the growth of grafted plants, regardless of the rootstock genotype and the salinity of the growth medium.  相似文献   

2.
Pate  John S.  Jeschke  W. Dieter 《Plant and Soil》1993,155(1):273-276
Xylem sap of sinker (tap) root, cluster feeding roots, lateral roots and from an age series of main stem extensions of 6-year trees of Banksia prionotes was collected and analyzed for principal organic and inorganic solutes. During the phase of root uptake activity in winter and spring, cluster roots were principal xylem donors of malate, phosphate, chloride, sodium, potassium and amino acid N whereas other parts of the root served as major sources to the shoot of other cations, nitrate and sulphate. Sinker root xylem sap was at all times less concentrated in solutes than that of lateral roots into which cluster roots were voiding exported solutes. Phosphate was abstracted from xylem by stem tissue during winter and it and a range of other solutes released back to xylem immediately prior to extension growth of the shoot in summer. Phloem sap collected from mid regions of stems was unusually low in potassium and phosphate relative to chloride and sulphate in comparison with phloem sap of other species, and its low potassium: sodium ratio relative to xylem indicated poor discrimination against sodium during phloem loading. Data are discussed in relation to the asynchronous seasonal cycles of nutrient uptake and shoot growth.  相似文献   

3.
Summary Woody plants growing in cerrado and forest communities of south-east Brasil were found to have low levels of nitrate reductase activity in their leaves suggesting that nitrate ions are not an important nitrogen source in these communities. Only in the leaves of species growing in areas of disturbance, such as gaps and forest margins, were high levels of nitrate reductase present. When pot-grown plants were supplied with nitrate, leaves and roots of almost all species responded by inducing increased levels of nitrate reductase. Pioneer or colonizing species exhibited highest levels of nitrate reductase and high shoot: root nitrate reductase activities. Glutamine synthetase, glutamate synthase and glutamate dehydrogenase were present in leaves and roots of the species examined.15N-labelled nitrate and ammonium were used to compare the assimilatory characteristics of two species:Enterolobium contortisiliquum, with a high capacity to reduce nitrate, andCalophyllum brasiliense, of low capacity. The rate of nitrate assimilation in the former was five times that of the latter. Both species had similar rates of ammonium assimilation. Results for eight species of contrasting habitats showed that leaf nitrogen content increased in parallel with xylem sap nitrogen concentrations, suggesting that the ability of the root system to acquire, assimilate or export nitrate determines shoot nitrogen status. These results emphasise the importance of nitrogen transport and metabolism in roots as determinants of whole plant nitrogen status.  相似文献   

4.
Sodium chloride reduces the growth of rice seedlings, which accumulate excessive concentrations of sodium and chloride ions in their leaves. In this paper, we describe how silicon decreases transpirational bypass flow and ion concentrations in the xylem sap in rice (Oryza sativa L.) seedlings growing under NaCl stress. Salt (50 mM NaCl) reduced the growth of shoots and roots: adding silicate (3 mM) to the saline culture solution improved the growth of the shoots, but not roots. The improvement of shoot growth in the presence of silicate was correlated with reduced sodium concentration in the shoot. The net transport rate of Na from the root to shoot (expressed per unit of root mass) was also decreased by added silicate. There was, however, no effect of silicate on the net transport of potassium. Furthermore, in salt-stressed plants, silicate did not decrease the transpiration, and even increased it in seedlings pre-treated with silicate for 7 d prior to salt treatment, indicating that the reduction of sodium uptake by silicate was not simply through a reduction in volume flow from root to shoot. Experiments using trisodium-8-hydroxy-1,3,6-pyrenetrisulphonic acid (PTS), an apoplastic tracer, showed that silicate dramatically decreased transpirational bypass flow in rice (from about 4.2 to 0.8%), while the apparent sodium concentration in the xylem, which was estimated indirectly from the flux data, decreased from 6.2 to 2.8 mM. Direct measurements of the concentration of sodium in xylem sap sampled using Philaenus spumarius confirmed that the apparent reduction was not a consequence of sodium recycling. X-ray microanalysis showed that silicon was deposited in the outer part of the root and in the endodermis, being more obvious in the latter than in the former. The results suggest that silicon deposition in the exodermis and endodermis reduced sodium uptake in rice (Oryza sativa L.) seedlings under NaCl stress through a reduction in apoplastic transport across the root.  相似文献   

5.
The effect of salinity on nitrate influx, efflux, nitrate net uptake rate and net nitrogen translocation to the shoot was assessed in a 15N steady state labelling experiment in the halophyte Plantago maritima L. raised for 14 days on solution supplied with 50, 100 and 200 mol m–3 sodium chloride or without sodium chloride. Additionally, salinity induced changes in root morphology were determined. Specific root length increased upon exposure to elevated sodium chloride concentrations due to variations in biomass allocation and length growth of the tap root. Changes in root morphology, however, had a minor effect on nitrate fluxes when expressed on a root fresh weight basis. The decreased rate of nitrate net uptake in plants grown on elevated levels of sodium chloride was almost entirely due to a decrease in nitrate influx. Expressed as a proportion of influx, nitrate efflux remained unchanged and was even lower at the highest salinity level. At all sodium chloride concentrations applied the initial rate of nitrogen net translocation to the shoot decreased relative to the rate of nitrate net uptake. It is concluded that under steady state conditions the negative effect of sodium chloride on the rate of nitrate net uptake at non growth-limiting salinity levels was due to the interaction between sodium chloride and nitrate transporters in the root plasma membrane and/or processes mediating the translocation of nitrogen compounds, possibly nitrate, to the shoot.  相似文献   

6.
Summary The N-metabolism ofArthrocnemum fruticosum (L.) Moq., growing in a saline area north-east of the Dead Sea in Jordan, was studied over its vegetative growth period from March to September 1981. Plant and soil samples were taken at monthly intervals. Water content, Na+, K+, Cl, NH 4 + , NO 2 and NO 3 concentrations were determined in the soil extracts, and the same determinations plus ash weight, soluble carbohydrates, proline, proteins andin vivo nitrate reductase in the plant roots and shoots. Soil humidity decreased and salinity increased from March to August, with re-wetting occurring in late July. K+ and Cl were much lower in the soils than Na+. Plant relative dry weight increased during summer due to the absorption of Na+ in addition to increased organic dry weight. The uptake of Na+ was not balanced by a similar uptake of Cl. Ammonium and nitrate decreased in soil and plants in parallel with increasing salinity. Nitrite was only found in the roots and always in very low quantities. Proline was found only in March. The total soluble carbohydrates in the roots showed a short increase in June when the sodium in the plants also increased. It was concluded that carbohydrates may be used to balance osmotic shocks, but that another compatible compounds is necessary to maintatin long-term osmotic equilibrium. The nitrate reductase activity, measuredin vivo, and the soluble protein changed roughly in parallel with the internal nitrate from May to August, suggesting that nitrogen uptake and reduction in the plant is inhibited during summer when the soil is dry and very saline. This could be a direct effect of drought and/or salinity on the plants, or an indirect onevia an inhibition of nitrifying bacteria.  相似文献   

7.
Nitrogen assimilation and transport in carob plants   总被引:1,自引:0,他引:1  
Most of the nitrate reductase activity (80%;) in carob ( Ceratonia siliqua L. cv. Mulata) is localised in the roots. The nitrate concentration in the leaves is relatively low compared to that in the roots, suggesting that nitrate influx into the leaf may be a major factor limiting the levels of nitrate reductase in the shoot. Transport of nitrate from root to shoot appears limited by the entrance of nitrate into the xylem. In order to study this problem, we determined the nitrate concentrations and nitrate reductase activities along the roots of nitrate-grown plants, as well as the composition of the xylem sap and the nitrate levels in the leaves. Some of the the bypocotyl, in order to bypass the loading of nitrate into the xylem of the roots. The results show that the loading of nitrate into the xylem is a limiting step.
The cation and anion concentrations of nitrate- and ammonium-fed plants were similar, showing almost no production of organic anions. In both nitrate- and ammonium-fed plants, the transport of nitrogen from root to shoot was in the form of organic nitrogen compounds. The nitrate reductase activity in the roots was more than sufficient to explain all the efflux of OH into the root medium of nitrate-fed plants. In carob plants the K-shuttle may thus be operative to a limited extent only, corresponding to between 11 and 27%; of the nitrate taken up. Potassium seems to be the cation accompanying stored nitrate in the roots of carob seedlings, since they accumulate nearly stoichiometric amounts of K+ and NO3.  相似文献   

8.
Two divergent populations of T. repens cv. Haifa developed from two generations of recurrent selection for shoot chloride concentration, were grown in the greenhouse at 0 and 40 mol m–3 NaCl. Over two harvest cycles at 40 mol m–3 NaCl, the population selected for a low concentration of chloride in the shoot maintained a significantly lower chloride and sodium concentration compared with those plants selected for a high shoot chloride concentration. The distribution of chloride in the shoots was further examined in a subsample of plants from both populations. In all plants, concentrations of chloride were lower in the expanding and fully expanded leaves than in the older leaf tissue or petioles.While there were no significant differences in the photosynthetic rates between lines, shoot yields and relative leaf expansion rates were higher in the low chloride population. Plant death was greater in plants selected for high shoot chloride. These results suggest that selections based on measurements of low shoot chloride concentrations may be successful in developing a cultivar of T. repens with improved salt tolerance.  相似文献   

9.

Background and Aims

The source of nitrogen plays an important role in salt tolerance of plants. In this study, the effects of NaCl on net uptake, accumulation and transport of ions were investigated in Nerium oleander with ammonium or nitrate as the nitrogen source in order to analyse differences in uptake and cycling of ions within plants.

Methods

Plants were grown in a greenhouse in hydroponics under different salt treatments (control vs. 100 mm NaCl) with ammonium or nitrate as the nitrogen source, and changes in ion concentration in plants, xylem sap exuded from roots and stems, and phloem sap were determined.

Key Results

Plant weight, leaf area and photosynthetic rate showed a higher salt tolerance of nitrate-fed plants compared with that of ammonium-fed plants. The total amount of Na+ transported in the xylem in roots, accumulated in the shoot and retranslocated in the phloem of ammonium-fed plants under salt treatment was 1·8, 1·9 and 2·7 times more, respectively, than that of nitrate-treated plants. However, the amount of Na+ accumulated in roots in nitrate-fed plants was about 1·5 times higher than that in ammonium-fed plants. Similarly, Cl transport via the xylem to the shoot and its retranslocation via the phloem (Cl cycling) were far greater with ammonium treatment than with nitrate treatment under conditions of salinity. The uptake and accumulation of K+ in shoots decreased more due to salinity in ammonium-fed plants compared with nitrate-fed plants. In contrast, K+ cycling in shoots increased due to salinity, with higher rates in the ammonium-treated plants.

Conclusions

The faster growth of nitrate-fed plants under conditions of salinity was associated with a lower transport and accumulation of Na+ and Cl in the shoot, whereas in ammonium-fed plants accumulation and cycling of Na+ and Cl in shoots probably caused harmful effects and reduced growth of plants.Key words: Mineral cycling, Nerium oleander, nitrogen source, salinity, xylem and phloem transport  相似文献   

10.
Brassica rapa plants were exposed for a 52 h period (as pretreatment) to a differential temperature (DT) between roots (5°C) and shoots (20°C), while control plants were maintained with both shoot and roots at 20°C (warm grown = WG). Measured at 20°C, volume flow of xylem exudate from roots of DT plants was enhanced compared with that from WG plants, while transpiration flows were similar in pretreated and control plants. Both transpiration and exudation flows were dependent upon shoot/root ratio. Differences in the volume flow of exudate were principally related to increases in root hydraulic conductance. Anion fluxes (notably nitrate) into xylem exudate of DT plants were significantly greater than those into exudate of WG plants. This enhancement of nitrate flow from the pretreated roots was associated with a two-fold increase in nitrate uptake rate. The relationship of the cold-induced change in nitrate uptake capacity with shoot/root ratio is discussed in terms of control of nitrate absorption by shoot sink strength.  相似文献   

11.
Growth and Metabolism of Senna as Affected by Salt Stress   总被引:1,自引:0,他引:1  
Pot culture experiments were conducted using different NaCl concentrations to assess their impact on the growth and metabolic changes in senna (Cassia angustifolia Vahl.). Five treatments (0, 40, 80, 120, and 160 mM NaCl) were given to the plants at three phenological stages, i.e. at pre-flowering, (45 days after sowing, DAS); flowering (75 DAS) and post-flowering (90 DAS) stages. A significant reduction in the biomass and length of the roots and shoots, photosynthetic rate, stomatal conductance, the total chlorophyll content, protein content, nitrate reductase activity, and reduced nitrogen content of the leaves was observed at each phenological stage with each salt concentration applied. Contrary to this, proline and nitrate contents of the leaves increased markedly. The post-flowering stage was most sensitive to NaCl treatment.  相似文献   

12.
Using sand culture, we examined the responses of 6-month-old jack pine (Pinus banksiana Lamb.) seedlings to boron and salinity (sodium chloride and sodium sulfate) treatments. During 4 weeks of treatments, 60 mM NaCl and 60 mM Na2SO4 significantly decreased survival, new shoot length, number of new roots, shoot to root dry weight ratio and transpiration rates. When applied in absence of the salts, B had little effect on the measured variables. However, when applied together with salts, B decreased seedling survival, increased needle injury and altered tissue elemental concentrations in jack pine seedlings. In 2 mM B treatment, B concentration was higher in the shoots than in the roots. However, when 2 mM B was present in NaCl and Na2SO4 treatments, shoot boron concentration declined and greater proportion of B accumulated in the roots. This shift corresponded to a decline in transpiration rates. In plants treated with NaCl, Na accumulated primarily in the shoots, while in Na2SO4-treated plants Na accumulated mostly in the roots. Based on the electrolyte leakage and needle necrosis data, Cl appears to be the major factor contributing to seedling injury and B aggravates the injurious effects of NaCl. We suggest that Cl may contribute to Na and B toxicity in jack pine by altering cell membrane permeability leading to increased Na concentration in the shoots.  相似文献   

13.
Mung bean and tomato were in vitro selected on media containing 0, 25, 50, 100 and 150 mM NaCl. Two types of media (hormone supplemented media, CB and hormone free media, MS) were used for mung bean using cotyledon explants whereas two types of explants (cotyledons and shoot apices) were used for tomato on MS media. Total-N, protein content, nitrite reductase (NiR) activity and protein protein profiles were checked in selected plants and compared to original non selected ones. NaCl at low concentrations slightly increased total-N in shoots and roots of in vitro selected mung bean and tomato whereas higher concentrations induced significant reductions. Similar increases in protein content were detected at lower concentrations with no significant effects thereover. On the contrary, NaCl gradually inhibited NiR activity. Similar responses of total-N, protein and NiR activity, but with greater magnitudes, were detected in original plants. In addition, NaCl significantly reduced dry weights of shoots and roots of either in vitro selected or, in particular, original intact plants. Moreover, electrophoresis (SDS-PAGE) of protein from shoots of either in vitro selected or intact plants showed that NaCl induced new protein bands while some others were concomitantly disappeared. The induction of one or more of the 86.4, 79, 77.6, 77 and 71.5 kDa bands following in vitro selection and/or the disappearance of the 86 kDa band from intact plants seemed necessary for mung bean resistance. Also, the presence of 86.2 kDa band and/or the loss of the 85.8 and 57.5 kDa bands might be included in tomato resistance. Of these induced bands in mung bean selected on CB media, only two bands were detected in plants selected on MS media. In tomato, two bands lost following selection from cotyledons but only one band lost following selection from shoot apices. These changes in protein pattern therefore might serve as adaptive regulators for resistance to NaCl.  相似文献   

14.
Levels of nitrate reductase activity (N.R.A.) were measured in shoots and roots of P sufficient and P deficient rape plants and changes in N.R.A. examined in relation to the onset of H ion efflux from the roots. Rates of xylem exudation were measured and the sap analysed for nitrate, amino-N and phosphate content. The optimum concentration of phosphate in the leaves for N.R.A. was about 0.7%. Both high and low concentrations of phosphate within the leaves inhibited N.R.A in those leaves. This inhibition of N.R.A led to the accumulation of nitrate in the older parts of the shoots of P sufficient plants. Less accumulation of nitrate occurred in the P deficient plants since nitrate uptake by the plants decreased before any fall in N.R.A. Xylem exudation rates halved within 18 hours of depriving the plants of phosphate, and, since the composition of the sap remained constant, this indicated a reduced flux of nitrate into the xylem. The rate of xylem exudation continued to fall and by the end of the experiment was approximately one tenth of the rate in the P sufficient plants. The onset of H ion efflux from the terminal portions of the root preceded any effect on N.R.A by 2 days.  相似文献   

15.
The molybdenum cofactor (MoCo) is a component of aldehyde oxidase (AO EC 1.2.3.1), xanthine dehydrogenase (XDH EC 1.2.1.37) and nitrate reductase (NR, EC 1.6.6.1). The activity of AO, which catalyses the last step of the synthesis of abscisic acid (ABA), was studied in leaves and roots of barley (Hordeum vulgare L.) plants grown on nitrate or ammonia with or without salinity. The activity of AO in roots was enhanced in plants grown with ammonium while nitrate-grown plants exhibited only traces. Root AO in barley was enhanced by salinity in the presence of nitrate or ammonia in the nutrient medium while leaf AO was not significantly affected by the nitrogen source or salinity of the medium.Salinity and ammonium decreased NR activity in roots while increasing the overall MoCo content of the tissue. The highest level of AO in barley roots was observed in plants grown with ammonium and NaCl, treatments that had only a marginal effect on leaf AO. ABA concentration in leaves of plants increased with salinity and ammonium.Keywords: ABA, aldehyde oxidase, ammonium, nitrate, salinity.   相似文献   

16.
Tomato plants (Lycopersicon esculentum Mill, cv. Chibli F1) grown for 10 days on control medium were exposed to differing concentrations of NaCl (0, 25, 50, and 100mM). Increasing salinity led to a decrease of dry weight (DW) production and protein contents in the leaves and roots. Conversely, the root to shoot (R/S) DW ratio was increased by salinity. Na(+) and Cl(-) accumulation were correlated with a decline of K(+) and NO(3)(-) in the leaves and roots. Under salinity, the activities of nitrate reductase (NR, EC 1.6.6.1) and glutamine synthetase (GS, EC 6.3.1.2) were repressed in the leaves, while they were enhanced in the roots. Nitrite reductase (NiR, EC 1.7.7.1) activity was decreased in both the leaves and roots. Deaminating activity of glutamate dehydrogenase (GDH, EC 1.4.1.2) was inhibited, whereas the aminating function was significantly stimulated by salinity in the leaves and roots. At a high salt concentration, the nicotinamide adenine dinucleotide reduced (NADH)-GDH activity was stimulated concomitantly with the increasing NH(4)(+) contents and proteolysis activity in the leaves and roots. With respect to salt stress, the distinct sensitivity of the enzymes involved in nitrogen assimilation is discussed.  相似文献   

17.
Common centaury (Centaurium erythraea Rafn.) is a plant species that can inhabit saline soils. It is known as a plant with high spontaneous regeneration potential in vitro. In the present work we evaluated shoots and roots salinity tolerance of non-transformed and three AtCKX transgenic centaury lines to graded NaCl concentrations (0, 50, 100, 150, 200 mM) in vitro. Overexpression of AtCKX genes in transgenic centaury plants resulted in an altered cytokinins (CKs) profile leading to a decline of bioactive CK levels and, at the same time, increased contents of storage CK forms, inactive CK forms and/or CK nucleotides. Significant increment of fresh shoot weight was obtained in shoots of non-transformed and AtCKX1 transgenic line only on medium supplemented with 50 mM NaCl. However two analysed AtCKX2 transgenic lines reduced shoot growth at all NaCl concentrations. In general, centaury roots showed higher tolerance to salinity than shoots. Non-transformed and AtCKX1 transgenic lines tolerated up to 100 mM NaCl without change in frequency of regeneration and number of regenerated plants. Roots of two analysed AtCKX2 transgenic lines showed different regeneration potential under salt stress. Regeneration of transgenic AtCKX2-26 shoots even at 200 mM NaCl was recorded. Salinity stress response of centaury shoots and roots was also evaluated at biochemical level. Free proline, malondialdehyde and hydrogen peroxide content as well as antioxidative enzymes activities were investigated in shoots and roots after 1, 2, 4 and 8 weeks. In general, adition of NaCl in culture medium elevated all biochemical parameters in centaury shoots and in roots. Considering that all analysed AtCKX transgenic centaury lines showed altered salt tolerance to graded NaCl concentrations in vitro it can be assumed that CKs might be involved in plant defence to salt stress conditions.  相似文献   

18.
The level of endogenous sugars was inversely related to nitrate availability in young cotton (Gossypium hirsutum L.) plants, with high nitrate causing a greater decline in sugar content of roots than of shoots. High nitrate (low sugar) plants also displayed relatively more shoot growth and less root growth than low nitrate (high sugar) plants. These data are consistent with the theory that roots are poor competitors for sugar, and that sugar supply is a major factor limiting root growth in vivo.

The effects of endogenous sugar level on root growth and on nitrate reductase activity in the root were different. When root sugar level was experimentally controlled by varying nitrate concentration in the nutrient solution, root growth was less sensitive than nitrate reductase activity to sugar deficiency. Also, in sterile root tips cultured on media containing a wide range of sucrose concentrations, growth rate was considerably less sensitive to endogenous sugar deficiency than was nitrate assimilation rate. Similarly, in plants which were detopped or girdled, nitrate reductase activity in the roots declined more rapidly than did root sugars, especially glucose and fructose. These results suggest that when sugar is deficient, cotton roots preferentially use it for growth at the expense of nitrate reduction.

  相似文献   

19.
With the aims (1) to test whether the different natural occurrence of twoPlantago species in grasslands is explained by a different preference of the species for nitrate or ammonium; (2) to test whether the different occurrence is explained by differences in the flexibility of the species towards changes in the nitrogen form; (3) to find suitable parameters as a tool to study ammonium and nitrate utilization of these species at the natural sites in grasslands, plants ofPlantago lanceolata andP. major ssp.major were grown with an abundant supply of nitrate, ammonium or nitrate+ammonium as the nitrogen source (0.5 mM). The combination of ammonium and nitrate gave a slightly higher final plant weight than nitrate or ammonium alone. Ammonium lowered the shoot to root ratio inP. major. Uptake of nitrate per g root was faster than that of ammonium, but from the mixed source ammonium and nitrate were taken up at the same rate. In vivo nitrate reductase activity (NRA) was present in both shoot and roots of plants receiving nitrate. When ammonium was applied in addition to nitrate, NRA of the shoot was not affected, but in the root the activity decreased. Thus, a larger proportion of total NRA was present in the shoot than with nitrate alone. In vitro glutamate dehydrogenase activity (GDHA) was enhanced by ammonium, both in the shoot and in the roots.In vitro glutamine synthetase activity (GSA) was highest in roots of plants receiving ammonium. Both GDHA and GSA were higher inP. lanceolata than inP. major. The concentration of ammonium in the roots increased with ammonium, but it did not accumulate in the shoot. The concentration of amino acids in the roots was also enhanced by ammonium. Protein concentration was not affected by the form of nitrogen. Nitrate accumulated in both the shoot and the roots of nitrate grown plants. When nitrate in the solution was replaced by ammonium, the nitrate concentration in the roots decreased rapidly. It also decreased in the shoot, but slowly. It is concluded that the nitrogen metabolism of the twoPlantago species shows a similar response to a change in the form of the nitrogen source, and that differences in natural occurrence of these species are not related to a differential adaptation of nitrogen metabolism towards the nitrogen form. Suitable parameters for establishing the nitrogen source in the field are thein vivo NRA, nitrate concentrations in tissues and xylem exudate, and the fraction of total reduced nitrogen in the roots that is in the soluble form, and to some extent thein vitro GDHA and GSA of the roots. Grassland Species Research Group. Publ. no 118.  相似文献   

20.
Sodium chloride and sodium sulfate are commonly present in extraction tailings waters produced as a result of surface mining and affect plants on reclaimed areas. Red-osier dogwood (Cornus stolonifera Michx) seedlings were demonstrated to be relatively resistant to these high salinity oil sands tailings waters. The objectives of this study were to compare the effects of Na2SO4 and NaCl, on growth, tissue ion content, water relations and gas exchange in red-osier dogwood (Cornus stolonifera Michx) seedlings. In the present study, red-osier dogwood seedlings were grown in aerated half-strength modified Hoagland's mineral solution containing 0, 25, 50 or 100 mM of NaCl or Na2SO4. After four weeks of treatment, plant dry weights decreased and the amount of Na+ in plant tissues increased with increasing salt concentration. Na+ tissue content was higher in plants treated with NaCl than Na2SO4 and it was greater in roots than shoots. However, Cl concentration in the NaCl treated plants was higher in shoots than in roots. The decrease in stomatal conductance and photosynthetic rates observed in presence of salts is likely to contribute to the growth reduction. Our results suggest that red-osier dogwood is able to control the transport of Na+ from roots to shoots when external concentrations are 50 mM or less.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号