首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 8 毫秒
1.
In order to assess the role of different classes of K(+) channels in recirculation of K(+) across the basolateral membrane of rabbit distal colon epithelium, the effects of various K(+) channel inhibitors were tested on the activity of single K(+) channels from the basolateral membrane, on macroscopic basolateral K(+) conductance, and on the rate of Na(+) absorption and Cl(-) secretion. In single-channel measurements using the lipid bilayer reconstitution system, high-conductance (236 pS), Ca(2+)-activated K(+) (BK(Ca)) channels were most frequently detected; the second most abundant channel was a low-conductance K(+) channel (31 pS) that exhibited channel rundown. In addition to Ba(2+) and charybdotoxin (ChTX), the BK(Ca) channels were inhibited by quinidine, verapamil and tetraethylammonium (TEA), the latter only when present on the side of the channel from which K(+) flow originates. Macroscopic basolateral K(+) conductance, determined in amphotericin-permeabilised epithelia, was also markedly reduced by quinidine and verapamil, TEA inhibited only from the lumen side, and serosal ChTX was without effect. The chromanol 293B and the sulphonylurea tolbutamide did not affect BK(Ca) channels and had no or only a small inhibitory effect on macroscopic basolateral K(+) conductance. Transepithelial Na(+) absorption was partly inhibited by Ba(2+), quinidine and verapamil, suggesting that BK(Ca) channels are involved in basolateral recirculation of K(+) during Na(+) absorption in rabbit colon. The BK(Ca) channel inhibitors TEA and ChTX did not reduce Na(+) absorption, probably because TEA does not enter intact cells and ChTX is 'knocked off' its extracellular binding site by K(+) outflow from the cell interior. Transepithelial Cl(-) secretion was inhibited completely by Ba(2+) and 293B, partly by quinidine but not by the other K(+) channel blockers, indicating that the small (<3 pS) K(V)LQT1 channels are responsible for basolateral K(+) exit during Cl(-) secretion. Hence different types of K(+) channels mediate basolateral K(+) exit during transepithelial Na(+) and Cl(-) transport.  相似文献   

2.
The influence of Ca on the aging processes of bean stem (Phaseolus vulgaris) slices and on the absorption of K and Na by fresh and aged slices was investigated. In the presence of Ca, fresh tissue showed a preferential Na uptake. The preference for Na over K resulted from a differential depressive effect of Ca on absorption of these two ions. In aged tissue Na uptake was also depressed, but K absorption was accelerated, with a net result of a much greater absorption of K than Na.  相似文献   

3.
Summary Growth chamber experiments were conducted with French prune (Prunus domestica L.) scions grafted on Myrobalan 29C (P. cerasifera Ehrh.) rootstocks grown in nutrient solution to characterize K and NH4 uptake before, during, and after anaerobiosis. Conditions of oxygen stress were imposed by removing the source of aeration and bubbling solutions with nitrogen gas.At solution oxygen concentrations less than 1%, K leaked from plant roots. After 18 h of anaerobic conditions, aeration was restored and K depletion from solution occurred within 2 h. Uptake of K the following day was similar to that before oxygen stress was imposed.Under similar conditions with solution oxygen concentrations less than 1%, both K and NH4 uptake were inhibited. Potassium leakage from roots was significantly greater than that of NH4. The presence of NH4 had no significant effect on K leakage from roots. Signs of wilting during oxygen stress appeared first on those trees that received NH4. Potassium uptake by rootstocks in the presence of NH4 was inhibited prior to and following anaerobiosis. However, the extent of NH4-induced inhibition of K uptake before anaerobiosis was similar to the K uptake inhibition after anaerobiosis.  相似文献   

4.
Channels selective for potassium or chloride ions are present in inner mitochondrial membranes. They probably play an important role in mitochondrial events such as the formation of delta pH and regulation of mitochondrial volume changes. Mitochondrial potassium and chloride channels could also be the targets for pharmacologically active compounds such as potassium channel openers and antidiabetic sulfonylureas. This review describes the properties, pharmacology, and current observations concerning the functional role of mitochondrial potassium and chloride channels.  相似文献   

5.
Two methods of intestinal perfusion are described and used to study the effecs of alcohol on zinc absorption in the rat small intestine. The first method used perfusion of the lumen of the rat small intestinein situ without interruption of the vascular supply. During perfusion with a zinc-containing medium (with and without alcohol), alcohol was found to have no effect on net zinc uptake from the lumen of the intestine. However, there were significantly higher serum zinc concentrations recorded in the rats perfused wih the zinc and alcohol, 28.8 μmol/L, when compared with a group perfused without alcohol, 19.1 μmol/L (P < 0.01). The second method used simultaneous perfusion of the lumen of the rat small intestine, with constant-rate perfusion of the vascular bed with an artificial blood supply. In this experiment with a zinc-containing medium, with and without alcohol, there was no difference noted in zinc absorption from the lumen of the intestine, or release into the artificial blood supply. Therefore, in conclusion, alcohol does not appear to directly influence zinc absorption by the mucosal cells of the small intestine.  相似文献   

6.
7.
Net uptakes of K+ and NO3 were monitored simultaneously and continuously for two barley (Hordeum vulgare) cultivars, Prato and Olli. The cultivars had similar rates of net K+ and NO3 uptake in the absence of NH4+ or Cl. Long-term exposure (over 6 hours) to media which contained equimolar mixtures of NH4+, K+, Cl, or NO3 affected the cultivars very differently: (a) the presence of NH4+ as NH4Cl stimulated net NO3 uptake in Prato barley but inhibited net NO3 uptake in Olli barley; (b) Cl inhibited net NO3 uptake in Prato but had little effect in Olli; and (c) NH4+ as (NH4)2SO4 inhibited net K+ uptake in Prato but had little effect in Olli. Moreover, the immediate response to the addition of an ion often varied significantly from the long-term response; for example, the addition of Cl initially inhibited net K+ uptake in Olli barley but, after a 4 hour exposure, it was stimulatory. For both cultivars, net NH4+ and Cl uptake did not change significantly with time after these ions were added to the nutrient medium. These data indicate that, even within one species, there is a high degree of genotypic variation in the control of nutrient absorption.  相似文献   

8.
9.
10.
In voltage clamp studies of cardiac Purkinje fibers, a large early outward current is consistently observed during depolarizations to voltages more positive than -20 mV. After the outward peak of the current, the total membrane current declines slowly. Dudel et al. (1967. Pfluegers Arch. Eur. J. Physiol. 294:197--212) reduced the extracellular chloride concentration and found that the outward peak and the decline of the current were abolished. They concluded that the total membrane current at these voltages was largely determined by a time- and voltage-dependent change in the membrane chloride conductance. We reinvestigated the chloride sensitivity of this current, taking care to minimize possible sources of error. When the extracellular chloride concentration was reduced to 8.6% of control, the principal effect was a 20% decrease in the peak amplitude of the outward current. This implies that the membrane chloride conductance is not the major determinant of the total current at these voltages. The reversal potential of current tails obtained after a short conditioning depolarization was not changed by alterations in the extracellular chloride or potassium concentrations. We suspect that the tail currents contain both inward and outward components, and that the apparent reversal potential of the net tail current largely reflects the kinetics of the outward component, so that this experiment does not rule out potassium as a possible charge carrier. The possibility that potassium carries much of the early outward current was further investigated using tetraethylammonium, which blocks potassium currents in nerve and skeletal muscle. This drug substantially reduced the early outward current, which suggests that much of the early outward current is carried by potassium ions.  相似文献   

11.
12.
13.
14.
15.
16.
Active potassium absorption in the rat distal colon is electroneutral, Na(+)-independent, partially chloride-dependent, and energized by an apical membrane H,K-ATPase. Both dietary sodium and dietary potassium depletion substantially increase active potassium absorption. We have recently reported that sodium depletion up-regulates H,K-ATPase alpha-subunit mRNA and protein expression, whereas potassium depletion up-regulates H,K-ATPase beta-subunit mRNA and protein expression. Because overall potassium absorption is non-conductive, K-Cl cotransport (KCC) at the basolateral membrane may also be involved in potassium absorption. Although KCC1 has not been cloned from the colon, we established, in Northern blot analysis with mRNA from the rat distal colon using rabbit kidney KCC1 cDNA as a probe, the presence of an expected size mRNA in the rat colon. This KCC1 mRNA is substantially increased by potassium depletion but only minimally by sodium depletion. KCC1-specific antibody identified a 155-kDa protein in rat colonic basolateral membrane. Potassium depletion but not sodium depletion resulted in an increase in KCC1 protein expression in basolateral membrane. The increase of colonic KCC1 mRNA abundance and KCC1 protein expression in potassium depletion of the rat colonic basolateral membrane suggests that K-Cl cotransporter: 1) is involved in transepithelial potassium absorption and 2) regulates the increase in potassium absorption induced by dietary potassium depletion. We conclude that active potassium absorption in the rat distal colon involves the coordinated regulation of both apical membrane H,K-ATPase and basolateral membrane KCC1 protein.  相似文献   

17.
The diffusion of lysozyme chloride in aqueous solution has been studied at 25 degrees C using the Goüy interferometric technique. The concentration dependence of the diffusion coefficient in water has been measured over the concentration range 1.1599-9.1556 gcm-3 and the results suggest a value of D 25, w at infinite dilution of 5.838 x 10(-6) cm2s-1. The variation in diffusion coefficient with ionic strength has also been considered by following the diffusion of 0.45% lysozyme chloride in a series of potassium chloride solutions. The value of D in 0.15 M KCl has been found to be approximately one quarter of that in water alone an the diffusion coefficient has been shown to increase markedly as the KCl concentration is reduced below 0.05 M. Interpretation of these observations involves consideration of solution electrostatic effects.  相似文献   

18.
In this study, nanofiltration with NF200 membrane was employed to remove KCl from ion-exchanged solutions containing potassium clavulanate. The pore radius of NF200 membrane was estimated to be around 0.39 nm. The effects of operating pressure on separation performance were investigated in a range of 100–400 psig. The influences of cross-flow velocity (0.14–0.70 cm/s), temperature (4–25 °C), and feed composition were also investigated. In all experiments, clavulanate rejection showed high levels from 0.91 to 0.99, while chloride rejection ranged from 0.06 to 0.54. In a case at an operating pressure of 50 psig and 25 °C, as much as 94% of clavulanate was retained while 94% of chloride was removed, indicating that NF200 membrane was a suitable choice for selectively removing KCl. NF200 membrane also showed a stable performance in the operational stability test with an ion-exchanged solution obtained by treating actual fermentation broth.  相似文献   

19.
Increasing concentrations of K (20, 200, 2000 mum) in the nutrient solution depressed Ca content and concentration in barley plants growing in nutrient solutions of low Ca concentrations (250 and 2500 mum). Increasing K from 20 to 200 mum depressed Ca absorption more than increasing K from 200 to 2000 mum K.The strong depression of Ca absorption by low concentrations of K must involve a different process from that studied by other workers at high concentrations of K. Since the depression in net absorption of Ca was as great at 250 as at 2500 mum Ca the results fail to support previous suggestions that a specific mechanism for Ca absorption operates at low Ca concentrations. It is suggested that, at the low concentrations of K and Ca likely to be found at the root surface in many soil solutions, the above mentioned effect of K in inhibiting Ca absorption may be important in the Ca nutrition of plants.  相似文献   

20.
Donald L. Levene 《CMAJ》1973,108(7):853-855
The absorption of potassium chloride in liquid form has been studied, using urinary excretion as an index of absorption. The excretion of potassium chloride was observed after inducing a water diuresis and administering a single dose in liquid form. There is evidence that potassium chloride in liquid form is absorbed rapidly, probably from the stomach, and hence there is a good rationale for its use where rapid absorption is needed, as in digitalis intoxication.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号