首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Mutations in Bacillus subtilis 168 have been isolated that confer resistance to arginine hydroxamate in the presence, but not absence, of ornithine. Seven such Ahor mutants have been studied in detail. In common with certain classes of Ahr mutant (resistant to arginine hydroxamate in the absence of arginine precursors) described previously, these Ahor mutants showed little or no inducibility of enzymes of arginine catabolism. Mutants that showed no inducibility were unable to utilize arginine or ornithine as sole nitrogen source. The only biosynthetic enzyme to show any consistent differences in activity from the parent was ornithine carbamoyltransferase, whose level was slightly elevated in cells grown in the presence of ornithine or citrulline. PBS1 transduction crosses showed that two of the ahor mutations map at the ahrA locus, while a third (unique in its resistance to arginine hydroxamate in the presence of citrulline) mapped at a hitherto undescribed locus closely linked to metC, designated ahrD.  相似文献   

2.
Arginine was inhibitory to many mycoplasmas and, at the commonly-used concentration of 10 g/l in broth, growth of 15 of the 41 species and subspecies tested was completely inhibited. The inhibitory effect of arginine was less pronounced in agar media. It is recommended that arginine broth for routine mycoplasma investigations should have a reduced arginine concentration of only 2 g/l.  相似文献   

3.
Summary Direct sequencing of the regions of the factor IX gene of likely functional significance was performed in four patients with severe hemophilia B. In two of the individuals, a transition at the dinucleotide CpG caused a nonsense mutation at arginine 333. In the other two individuals, a transition at CpG caused a nonsense mutation at arginine 29. Since these patients are all unrelated, as shown by differing alleles of the TaqI polymorphism in intron four or extensive nonoverlapping pedigrees, the mutations arose independently. In addition, the origin of one arginine 333 mutation in one family has been traced to the germline of the maternal grandfather. The frequent occurrence of mutations at arginine codons that contain the sequence CGN can be explained by the dramatic elevation of transitions at CpG. As a result, approximately one in four individuals with hemophilia B is expected to have a mutation at arginine and nonsense mutations at one of six arginine residues should be common causes of severe hemophilia.  相似文献   

4.
A large number of β‐lactamases have emerged that are capable of conferring bacterial resistance to β‐lactam antibiotics. Comparison of the structural and functional features of this family has refined understanding of the catalytic properties of these enzymes. An arginine residue present at position 244 in TEM‐1 β‐lactamase interacts with the carboxyl group common to penicillin and cephalosporin antibiotics and thereby stabilizes both the substrate and transition state complexes. A comparison of class A β‐lactamase sequences reveals that arginine at position 244 is not conserved, although a positive charge at this structural location is conserved and is provided by an arginine at positions 220 or 276 for those enzymes lacking arginine at position 244. The plasticity of the location of positive charge in the β‐lactamase active site was experimentally investigated by relocating the arginine at position 244 in TEM‐1 β‐lactamase to positions 220, 272, and 276 by site‐directed mutagenesis. Kinetic analysis of the engineered β‐lactamases revealed that removal of arginine 244 by alanine mutation reduced catalytic efficiency against all substrates tested and restoration of an arginine at positions 272 or 276 partially suppresses the catalytic defect of the Arg244Ala substitution. These results suggest an evolutionary mechanism for the observed divergence of the position of positive charge in the active site of class A β‐lactamases.  相似文献   

5.
We have measured the uptake of arginine into vacuolar membrane vesicles from Neurospora crassa. Arginine transport was found to be dependent on ATP hydrolysis, Mg2+, time, and vesicle protein with transported arginine remaining unmodified after entry into the vesicles. The Mg2+ concentration required for optimal arginine transport varied with the ATP concentration so that maximal transport occurred when the MgATP2- concentration was at a maximum and the concentrations of free ATP and Mg2+ were at a minimum. Arginine transport exhibited Michaelis-Menten kinetics when the arginine concentration was varied (Km = 0.4 mM). In contrast, arginine transport did not follow Michaelis-Menten kinetics when the MgATP2-concentration was varied (S0.5 = 0.12 mM). There was no inhibition of arginine transport when glutamine, ornithine, or lysine were included in the assay mixture. In contrast, arginine transport was inhibited 43% when D-arginine was present at a concentration 16-fold higher than that of L-arginine. Measurements of the internal vesicle volume established that arginine is concentrated 14-fold relative to the external concentration. Arginine transport was inhibited by dicyclohexylcarbodiimide, carbonyl cyanide m-chlorophenyl-hydrazone, and potassium nitrate (an inhibitor of vacuolar ATPase activity). Inhibitors of the plasma membrane or mitochondrial ATPase such as sodium vanadate or sodium azide did not affect arginine transport activity. In addition, arginine transport had a nucleoside triphosphate specificity similar to that of the vacuolar ATPase. These results suggest that arginine transport is dependent on vacuolar ATPase activity and an intact proton channel and proton gradient.  相似文献   

6.
Arginine suppresses the aggregation of proteins. However, little is known about its mechanism. Here we have used HsNDK (Halobacterium salinarum nucleoside diphosphate kinase) to examine the solvent property of arginine. After exposure to 2 M arginine, HsNDK was diluted to a low salt buffer, resulting in fully active protein. Since unfolded HsNDK cannot refold in such low salt buffer, the observed activity indicates that HsNDK was in the native state in 2 M arginine. Enzyme activity was also examined directly in the presence of arginine, showing that it was active in the presence of 1 M arginine and, to less extent, 2 M arginine. Arginine, however, could not support refolding of heat-denatured HsNDK. HsNDK was stable at 40 degrees C for 19 h incubation in the presence of 1M arginine.  相似文献   

7.
8.
The arginine repressor of Escherichia coli.   总被引:5,自引:0,他引:5       下载免费PDF全文
This review tells the story of the arginine repressor of Escherichia coli from the time of its discovery in the 1950s until the present. It describes how the research progressed through physiological, genetic, and biochemical phases and how the nature of the repressor and its interaction with its target sites were unraveled. The studies of the repression of arginine biosynthesis revealed unique features at every level of the investigations. In the early phase of the work they showed that the genes controlled by the arginine repressor were scattered over the linkage map and were not united, as in other cases, in a single operon. This led to the concept of the regulon as a physiological unit of regulation. It was also shown that different alleles of the arginine repressor could result in either inhibition of enzyme formation, as in E. coli K-12, or in stimulation of enzyme formation, as in E. coli B. Later it was shown that the arginine repressor is a hexamer, whereas other repressors of biosynthetic pathways are dimers. As a consequence the arginine repressor binds to two palindromic sites rather than to one. It was found that the arginine repressor not only acts in the repression of enzyme synthesis but also is required for the resolution of plasmid multimers to monomers, a completely unrelated function. Finally, the arginine repressor does not possess characteristic structural features seen in other prokaryotic repressors, such as a helix-turn-helix motif or an antiparallel beta-sheet motif. The unique features have sustained continuous interest in the arginine repressor and have made it a challenging subject of investigation.  相似文献   

9.
Peptidylarginine deiminase (PAD) enzymes catalyze the conversion of arginine residues in proteins to citrulline residues. Citrulline is a non-standard amino acid that is not incorporated in proteins during translation, but can be generated post-translationally by the PAD enzymes. Although the existence of citrulline residues in proteins has been known for a long time, only a few proteins have been reported to contain this amino acid under normal conditions. These include the nuclear histones, which also contain a wide variety of other post-translational modifications, as for instance methylation of arginine residues. It has been suggested that citrullination and methylation of arginine residues are competing processes and that PAD enzymes might "reverse" the methylation of arginine residues by converting monomethylated arginine into citrulline. However, conflicting data have been reported on the capacity of PADs to citrullinate monomethylated peptidylarginine. Using synthetic peptides that contain either arginine or methylated arginine residues, we show that the human PAD2, PAD3 and PAD4 enzymes and PAD enzyme present in several mouse tissues in vitro can only convert non-methylated peptidylarginine into peptidylcitrulline and that hPAD6 does not show any deiminating activity at all. A comparison of bovine histones either treated or untreated with PAD by amino acid analysis also supported the interference of deimination by arginine methylation. Taken together, these data indicate that it is unlikely that methyl groups at the guanidino position of peptidylarginine can be removed by peptidylarginine deiminases, which has important implications for the recently reported role of these enzymes in gene regulation.  相似文献   

10.
11.
12.
Arginine has been used to suppress aggregation of proteins during refolding and purification. We have further studied in this paper the aggregation-suppressive effects of arginine on two commercially important proteins, i.e., interleukine-6 (IL-6) and a monoclonal antibody (mAb). These proteins show extensive aggregation in aqueous buffers when subjected to thermal unfolding. Arginine suppresses aggregation concentration-dependently during thermal unfolding. However, this effect was not specific to arginine, as guanidine hydrochloride (GdnHCl) at identical concentrations also was effective. While equally effective in aggregation suppression during thermal unfolding, arginine and GdnHCl differed in their effects on the structure of the native proteins. Arginine showed no apparent adverse effects on the native protein, while GdnHCl induced conformational changes at room temperature, i.e., below the melting temperature. These additives affected the melting temperature of IL-6 as well; arginine increased it concentration-dependently, while GdnHCl increased it at low concentration but decreased at higher concentration. These results clearly demonstrate that arginine suppresses aggregation via different mechanism from that conferred by GdnHCl.  相似文献   

13.
Arginine has been effectively used in various column chromatographies for improving recovery and resolution, and suppressing aggregation. Here, we have tested the effectiveness of arginine as an eluent in dye-affinity column chromatography using Blue-Sepharose, which binds enzymes requiring adenyl-containing cofactors (e.g., NAD). A common eluent, NaCl, showed a broad elution peak with low recovery of lactate dehydrogenase, at most approximately 60% using 2M salt. The recovery decreased as the NaCl concentration was either decreased or increased; i.e., the recovery was maximum at 2M. On the contrary, addition of arginine to the eluent resulted in more than 80% recovery above 0.5M and the recovery was nearly independent of the arginine concentration. The elution peak was much sharper with arginine, leading to elution of more concentrated protein solution. Successful elution of proteins bound to the ATP-agarose resins by arginine was also described.  相似文献   

14.
We have studied in mice the effect of treatment with exogenous arginine and/or LPS by monitoring serum nitrite/nitrate levels and by investigating the response of cerebellar and liver nitric oxide synthase (NOS). We measured NOS activity in cerebellar extracts while changes in iNOS mRNA were followed in the liver since direct assay of NOS activity proved unreliable with this tissue. In fact, liver and cerebellum extracts were both very active in converting arginine into a citrulline-like metabolite, but only cerebellum conversion was dependent on addition of NADPH and inhibitable by N(G)-methyl-l-arginine. Treatment with LPS, on its own, increased serum nitrite/nitrate levels at 5 and 20 h after injection, while treatment with LPS and arginine produced nitrite/nitrate levels in the serum even greater at 5 h, but significantly lower at 20 h. Liver iNOS mRNA levels were markedly increased by LPS, and this effect was significantly decreased when mice were also given exogenous arginine. A stimulatory effect of LPS was also found on NOS activity in the cerebellum, where a very small stimulation may have also been caused by arginine feeding. These findings indicate that LPS stimulates NOS expression/activity both in the cerebellum and in the liver and suggest a complex pattern of modulation of iNOS by arginine, with NO being first produced in excess and then downregulating iNOS expression.  相似文献   

15.
16.
The filamentous cyanobacterium Anabaena fixes nitrogen in specialized cells called heterocysts. The immediate product of fixation, ammonia, is known to be assimilated by addition to glutamate to make glutamine. How fixed nitrogen is transported along the filament to the 10 to 20 vegetative cells that separate heterocysts is unknown. N-fixing heterocysts accumulate an insoluble polymer containing aspartate and arginine at the cell poles. Lockau''s group has proposed that the polymer is degraded at the poles to provide a mobile carrier, arginine, to the vegetative cells (R. Richter, M. Hejazi, R. Kraft, K. Ziegler, and W. Lockau, Eur. J. Biochem. 263:163–169, 1999). We wished to use the Sakaguchi reaction for arginine to determine the relative cellular concentration of arginine along the filament. At present, the methods for measuring absorption of the Sakaguchi reaction product at 520 nm are insufficiently sensitive for that purpose. However, that product quenches the fluorescence of phycobiliproteins, which we have adapted to a determination of arginine. Our results are consistent with the proposal that arginine is a principal nitrogen carrier from heterocysts to vegetative cells in Anabaena.  相似文献   

17.
Mutational analysis of the arginine repressor of Escherichia coli   总被引:1,自引:0,他引:1  
Arginine biosynthesis in Escherichia coli is negatively regulated by a hexameric repressor protein, encoded by the gene argR and the corepressor arginine. By hydroxylamine mutagenesis two types of argR mutants were isolated and mapped. The first type is transdominant. In heterodiploids, these mutant polypeptides reduce the activity of the wild-type repressor, presumably by forming heteropolymers. Four mutant repressor proteins were purified. Two of these map in the N-terminal half of the protein. Gel retardation experiments showed that they bind poorly to DNA, but they could be precipitated by l -arginine at the same concentration as the wild-type repressor. The other two mutant repressors map in the C-terminal half of the protein. They are poorly precipitated by L-arginine and they bind poorly to DNA. In addition, one of these mutants appears to exist as a dimer. The second type of argR mutant repressor consists of super-repressors. Such mutants behave as arginine auxotrophs as a result of hyper-repression of arginine biosynthetic enzymes. They map at many locations throughout the argR gene. Three arginine super-repressor proteins were purified, in comparison with the wild-type repressor, two of them were shown to have a higher DNA-binding affinity in the absence of bound arginine, while the third was shown to have a higher DNA-binding affinity when bound to arginine.  相似文献   

18.
In most invertebrates, creatine kinase is replaced by arginine kinase, which catalyzes reversibly the transfer of a phosphate group between adenosine triphosphate and arginine. In sea-urchin larvae, arginine kinase only is expressed whereas in adult sea-urchins both arginine kinase and creatine kinase can be found in the same tissue. In order to study their developmental regulation and properties, we have purified arginine kinase to homogeneity from the eggs of the sea-urchin Paracentrotus lividus. The purification involves ethanol and ammonium sulfate precipitations, followed by an anion-exchange chromatography, an affinity chromatography and a gel filtration. A 500-fold increase in specific activity leads to a specific activity of 360 IU/mg protein at 25 degrees C. Arginine kinase (pI = 5.7) is rapidly and irreversibly inactivated at 45 degrees C. Amino acid composition and Km values (2.08 mM for phospho-L-arginine and 1.25 mM for ADP) are also given. Determination of molecular mass by gel filtration and separation by SDS/polyacrylamide gel electrophoresis indicate that the enzyme is an 81-kDa dimer of two subunits of 42 kDa.  相似文献   

19.
The arginine deiminase system was found to function in protecting bacterial cells against the damaging effects of acid environments. For example, as little as 2.9 mM arginine added to acidified suspensions of Streptococcus sanguis at a pH of 4.0 resulted in ammonia production and protection against killing. The arginine deiminase system was found to have unusual acid tolerance in a variety of lactic acid bacteria. For example, for Streptococcus rattus FA-1, the pH at which arginolysis was reduced to 10% of the maximum was between 2.1 and 2.6, or more than 1 full pH unit below the minimum for glycolysis (pH 3.7), and more than 2 units below the minimum for growth in complex medium (pH 4.7). The acid tolerance of the arginine deiminase system appeared to be primarily molecular and to depend on the tolerance of individual enzymes rather than on the membrane physiology of the bacteria; pH profiles for the activities of arginine deiminase, ornithine carbamoyltransferase, and carbamate kinase in permeabilized cells showed that the enzymes were active at pHs of 3.1 or somewhat lower. Overall, it appeared that ammonia could be produced from arginine at low pH values, even by cells with damaged membranes, and that the ammonia could then protect the cells against acid damage until the environmental pH value rose sufficiently to allow for the reestablishment of a difference in pH (delta pH) across the cell membrane.  相似文献   

20.
本文介绍了一种以二氯苯磺酸为沉淀剂从毛发水解液中分步沉淀亮氨酸和精氨酸的方法。利用两种沉淀形成速度的不同,通过控制反应条件,实现了亮氨酸和精氨酸的分步沉淀,确定了沉淀条件对目标氨基酸沉淀效率的影响,得到合适的工艺条件:200g人发,水解得400mL水解液;加50g二氯苯磺酸沉淀剂,在5℃加晶种,间歇搅拌12h,过滤得亮氨酸复合物沉淀;在沉淀亮氨酸之后的母液中再加50g二氯苯磺酸沉淀剂,于相同的温度条件下加晶种,连续搅拌至生成稠厚的沉淀,再静置沉淀12h,过滤得精氨酸复合物沉淀。亮氨酸的沉淀率为71.0%,母液中残留亮氨酸浓度为7.6g/L;精氨酸的沉淀率为76.6%,母液中残留精氨酸浓度为8.9g/L。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号