首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
《Seminars in Virology》1994,5(2):103-111
Influenza A viruses continue to emerge from the aquatic avian reservoir and cause pandemics. There are periodic exchanges of influenza virus genes or whole viruses between avians and other species giving rise to pandemics of diseases in humans, lower animals and birds. It is hypothesized that pigs are an intermediate host and that China is an epicenter for the evolution of human pandemic strains. However, the transmission of avian influenza viruses to pigs in Europe in 1979 and detection of reassortants with human influenza genes in pigs raises the question of whether the next pandemic of influenza will emerge in Europe!  相似文献   

2.

Context

The goal of influenza vaccination programs is to reduce influenza-associated disease outcomes. Therefore, estimating the reduced burden of influenza as a result of vaccination over time and by age group would allow for a clear understanding of the value of influenza vaccines in the US, and of areas where improvements could lead to greatest benefits.

Objective

To estimate the direct effect of influenza vaccination in the US in terms of averted number of cases, medically-attended cases, and hospitalizations over six recent influenza seasons.

Design

Using existing surveillance data, we present a method for assessing the impact of influenza vaccination where impact is defined as either the number of averted outcomes or as the prevented disease fraction (the number of cases estimated to have been averted relative to the number of cases that would have occurred in the absence of vaccination).

Results

We estimated that during our 6-year study period, the number of influenza illnesses averted by vaccination ranged from a low of approximately 1.1 million (95% confidence interval (CI) 0.6–1.7 million) during the 2006–2007 season to a high of 5 million (CI 2.9–8.6 million) during the 2010–2011 season while the number of averted hospitalizations ranged from a low of 7,700 (CI 3,700–14,100) in 2009–2010 to a high of 40,400 (CI 20,800–73,000) in 2010–2011. Prevented fractions varied across age groups and over time. The highest prevented fraction in the study period was observed in 2010–2011, reflecting the post-pandemic expansion of vaccination coverage.

Conclusions

Influenza vaccination programs in the US produce a substantial health benefit in terms of averted cases, clinic visits and hospitalizations. Our results underscore the potential for additional disease prevention through increased vaccination coverage, particularly among nonelderly adults, and increased vaccine effectiveness, particularly among the elderly.  相似文献   

3.
Recent epidemiological developments demonstrated that gene segments of swine influenza A viruses can account for antigenic changes as well as reduced drug susceptibility of pandemic influenza A viruses. This raises questions about the efficacy of preventive measures against swine influenza A viruses. Here, the protective effect of vaccination was compared with that of prophylactic Tamiflu® treatment against two Eurasian swine influenza A viruses. 11-week-old pigs were infected by aerosol nebulisation with high doses of influenza virus A/swine/Potsdam/15/1981 (H1N1/1981, heterologous challenge to H1N1 vaccine strain) and A/swine/Bakum/1832/2000 (H1N2/2000, homologous challenge to H1N2 vaccine strain) in two independent trials. In each trial (i) 10 pigs were vaccinated twice with a trivalent vaccine (RESPIPORC® FLU3; 28 and 7 days before infection), (ii) another 10 pigs received 150 mg/day of Tamiflu® for 5 days starting 12 h before infection, and (iii) 12 virus-infected pigs were left unvaccinated and untreated and served as controls. Both viruses replicated efficiently in porcine respiratory organs causing influenza with fever, dyspnoea, and pneumonia. Tamiflu® treatment as well as vaccination prevented clinical signs and significantly reduced virus shedding. Whereas after homologous challenge with H1N2/2000 no infectious virus in lung and hardly any lung inflammation were detected, the virus titre was not and the lung pathology was only partially reduced in H1N1/1981, heterologous challenged pigs. Tamiflu® application did not affect these study parameters.In conclusion, all tested preventive measures provided protection against disease. Vaccination additionally prevented virus replication and histopathological changes in the lung of homologous challenged pigs.  相似文献   

4.

Background

There is some evidence that annual vaccination of trivalent inactivated influenza vaccine (TIV) may lead to reduced vaccine immunogenicity but evidence is lacking on whether vaccine efficacy is affected by prior vaccination history. The efficacy of one dose of TIV in children 6–8 y of age against influenza B is uncertain. We examined whether immunogenicity and efficacy of influenza vaccination in school-age children varied by age and past vaccination history.

Methods and Findings

We conducted a randomized controlled trial of 2009–10 TIV. Influenza vaccination history in the two preceding years was recorded. Immunogenicity was assessed by comparison of HI titers before and one month after receipt of TIV/placebo. Subjects were followed up for 11 months with symptom diaries, and respiratory specimens were collected during acute respiratory illnesses to permit confirmation of influenza virus infections. We found that previous vaccination was associated with reduced antibody responses to TIV against seasonal A(H1N1) and A(H3N2) particularly in children 9–17 y of age, but increased antibody responses to the same lineage of influenza B virus in children 6–8 y of age. Serological responses to the influenza A vaccine viruses were high regardless of vaccination history. One dose of TIV appeared to be efficacious against confirmed influenza B in children 6–8 y of age regardless of vaccination history.

Conclusions

Prior vaccination was associated with lower antibody titer rises following vaccination against seasonal influenza A vaccine viruses, but higher responses to influenza B among individuals primed with viruses from the same lineage in preceding years. In a year in which influenza B virus predominated, no impact of prior vaccination history was observed on vaccine efficacy against influenza B. The strains that circulated in the year of study did not allow us to study the effect of prior vaccination on vaccine efficacy against influenza A.  相似文献   

5.
Dang UJ  Bauch CT 《PloS one》2011,6(8):e23580
Vaccination can delay the peak of a pandemic influenza wave by reducing the number of individuals initially susceptible to influenza infection. Emerging evidence indicates that susceptibility to severe secondary bacterial infections following a primary influenza infection may vary seasonally, with peak susceptibility occurring in winter. Taken together, these two observations suggest that vaccinating to prevent a fall pandemic wave might delay it long enough to inadvertently increase influenza infections in winter, when primary influenza infection is more likely to cause severe outcomes. This could potentially cause a net increase in severe outcomes. Most pandemic models implicitly assume that the probability of severe outcomes does not vary seasonally and hence cannot capture this effect. Here we show that the probability of intensive care unit (ICU) admission per influenza infection in the 2009 H1N1 pandemic followed a seasonal pattern. We combine this with an influenza transmission model to investigate conditions under which a vaccination program could inadvertently shift influenza susceptibility to months where the risk of ICU admission due to influenza is higher. We find that vaccination in advance of a fall pandemic wave can actually increase the number of ICU admissions in situations where antigenic drift is sufficiently rapid or where importation of a cross-reactive strain is possible. Moreover, this effect is stronger for vaccination programs that prevent more primary influenza infections. Sensitivity analysis indicates several mechanisms that may cause this effect. We also find that the predicted number of ICU admissions changes dramatically depending on whether the probability of ICU admission varies seasonally, or whether it is held constant. These results suggest that pandemic planning should explore the potential interactions between seasonally varying susceptibility to severe influenza outcomes and the timing of vaccine-altered pandemic influenza waves.  相似文献   

6.

Background

It is widely accepted that the shift in case-fatality rate between waves during the 1918 influenza pandemic was due to a genetic change in the virus. In animal models, the infectious dose of influenza A virus was associated to the severity of disease which lead us to propose a new hypothesis. We propose that the increase in the case-fatality rate can be explained by the dynamics of disease and by a dose-dependent response mediated by the number of simultaneous contacts a susceptible person has with infectious ones.

Methods

We used a compartment model with seasonality, waning of immunity and a Holling type II function, to model simultaneous contacts between a susceptible person and infectious ones. In the model, infected persons having mild or severe illness depend both on the proportion of infectious persons in the population and on the level of simultaneous contacts between a susceptible and infectious persons. We further allowed for a high or low rate of waning immunity and volunteer isolation at different times of the epidemic.

Results

In all scenarios, case-fatality rate was low during the first wave (Spring) due to a decrease in the effective reproduction number. The case-fatality rate in the second wave (Autumn) depended on the ratio between the number of severe cases to the number of mild cases since, for each 1000 mild infections only 4 deaths occurred whereas for 1000 severe infections there were 20 deaths. A third wave (late Winter) was dependent on the rate for waning immunity or on the introduction of new susceptible persons in the community. If a group of persons became voluntarily isolated and returned to the community some days latter, new waves occurred. For a fixed number of infected persons the overall case-fatality rate decreased as the number of waves increased. This is explained by the lower proportion of infectious individuals in each wave that prevented an increase in the number of severe infections and thus of the case-fatality rate.

Conclusion

The increase on the proportion of infectious persons as a proxy for the increase of the infectious dose a susceptible person is exposed, as the epidemic develops, can explain the shift in case-fatality rate between waves during the 1918 influenza pandemic.  相似文献   

7.
Vaccination and antiviral treatment are two important prevention and control measures for the spread of influenza. However, the benefit of antiviral use can be compromised if drug-resistant strains arise. In this paper, we develop a mathematical model to explore the impact of vaccination and antiviral treatment on the transmission dynamics of influenza. The model includes both drug-sensitive and resistant strains. Analytical results of the model show that the quantities ℛ SC and ℛ RC , which represent the control reproduction numbers of the sensitive and resistant strains, respectively, provide threshold conditions that determine the competitive outcomes of the two strains. These threshold conditions can be used to gain important insights into the effect of vaccination and treatment on the prevention and control of influenza. Numerical simulations are also conducted to confirm and extend the analytic results. The findings imply that higher levels of treatment may lead to an increase of epidemic size, and the extent to which this occurs depends on other factors such as the rates of vaccination and resistance development. This suggests that antiviral treatment should be implemented appropriately.  相似文献   

8.

Introduction

The 2011−12 trivalent influenza vaccine contains a strain of influenza B/Victoria-lineage viruses. Despite free provision of influenza vaccine among target populations, an epidemic predominated by influenza B/Yamagata-lineage viruses occurred during the 2011−12 season in Taiwan. We characterized this vaccine-mismatched epidemic and estimated influenza vaccine effectiveness (VE).

Methods

Influenza activity was monitored through sentinel viral surveillance, emergency department (ED) and outpatient influenza-like illness (ILI) syndromic surveillance, and case-based surveillance of influenza with complications and deaths. VE against laboratory-confirmed influenza was evaluated through a case-control study on ILI patients enrolled into sentinel viral surveillance. Logistic regression was used to estimate VE adjusted for confounding factors.

Results

During July 2011−June 2012, influenza B accounted for 2,382 (72.5%) of 3,285 influenza-positive respiratory specimens. Of 329 influenza B viral isolates with antigen characterization, 287 (87.2%) were B/Yamagata-lineage viruses. Proportions of ED and outpatient visits being ILI-related increased from November 2011 to January 2012. Of 1,704 confirmed cases of influenza with complications, including 154 (9.0%) deaths, influenza B accounted for 1,034 (60.7%) of the confirmed cases and 103 (66.9%) of the deaths. Reporting rates of confirmed influenza with complications and deaths were 73.5 and 6.6 per 1,000,000, respectively, highest among those aged ≥65 years, 50−64 years, 3−6 years, and 0−2 years. Adjusted VE was −31% (95% CI: −80, 4) against all influenza, 54% (95% CI: 3, 78) against influenza A, and −66% (95% CI: −132, −18) against influenza B.

Conclusions

This influenza epidemic in Taiwan was predominated by B/Yamagata-lineage viruses unprotected by the 2011−12 trivalent vaccine. The morbidity and mortality of this vaccine-mismatched epidemic warrants careful consideration of introducing a quadrivalent influenza vaccine that includes strains of both B lineages.  相似文献   

9.

Background

Southeast Asia is a region with great potential for the emergence of a pandemic influenza virus. Global efforts to improve influenza surveillance in this region have documented the burden and seasonality of influenza viruses and have informed influenza prevention strategies, but little information exists about influenza vaccination guidelines and vaccine sales.

Methods

To ascertain the existence of influenza vaccine guidelines and define the scope of vaccine sales, we sent a standard three-page questionnaire to the ten member nations of the Association of Southeast Asian Nations. We also surveyed three multinational manufacturers who supply influenza vaccines in the region.

Results

Vaccine sales in the private sector were <1000 per 100,000 population in the 10 countries. Five countries reported purchasing vaccine for use in the public sector. In 2011, Thailand had the highest combined reported rate of vaccine sales (10,333 per 100,000). In the 10 countries combined, the rate of private sector sales during 2010–2011 (after the A(H1N1)2009pdm pandemic) exceeded 2008 pre-pandemic levels. Five countries (Indonesia, Malaysia, Singapore, Thailand and Vietnam) had guidelines for influenza vaccination but only two were consistent with global guidelines. Four recommended vaccination for health care workers, four for elderly persons, three for young children, three for persons with underlying disease, and two for pregnant women.

Conclusions

The rate of vaccine sales in Southeast Asia remains low, but there was a positive impact in sales after the A(H1N1)2009pdm pandemic. Low adherence to global vaccine guidelines suggests that more work is needed in the policy arena.  相似文献   

10.
11.
Ng  HoiMan  Zhang  Teng  Wang  Guoliang  Kan  SiMeng  Ma  Guoyi  Li  Zhe  Chen  Chang  Wang  Dandan  Wong  MengIn  Wong  ChioHang  Ni  Jinliang  Zhang  Xiaohua Douglas 《中国病毒学》2021,36(5):1144-1153
Virologica Sinica - Influenza is one of the major respiratory diseases in humans. Macau is a tourist city with high density of population and special population mobility. The study on the...  相似文献   

12.
13.

Background

Influenza vaccine effectiveness (VE) is influenced by the antigenic similarity between vaccine- and circulating strains.

Material and Methods

This paper presents data obtained by the Austrian sentinel surveillance system on the evolution of influenza viruses during the season 2014/15 and its impact on influenza vaccine effectiveness in primary care in Austria as estimated by a test-negative case control design. VE estimates were performed for each influenza virus type/subtype, stratified by underlying diseases and adjusted for age, sex and calendar week of infection.

Results

Detailed genetic and antigenic analyses showed that circulating A(H3N2) viruses were genetically distinct from the 2014/15 A(H3N2) vaccine component indicating a profound vaccine mismatch. The Influenza A(H1N1)pdm09 viruses were antigenically conserved and matched the respective vaccine component. Influenza B viruses were lineage-matched B/Yamagata viruses with a clade-level variation. Consistent with substantial vaccine mismatch for the A(H3N2) viruses a crude overall VE of only 47% was estimated, whereas the VE estimates for A(H1N1)pdm09 were 84% and for influenza B viruses 70%. Increased VE estimates were obtained after stratification by underlying diseases and adjustment for the covariates sex and age, whereby the adjustment for the calendar week of infection was the covariate exerting the highest influence on adjusted VE estimates.

Conclusion

In summary, VE data obtained in this study underscore the importance to perform VE estimates in the context of detailed characterization of the contributing viruses and also demonstrate that the calendar week of influenza virus infection is the most important confounder of VE estimates.  相似文献   

14.

Background

In Kenya, detailed data on the age-specific burden of influenza and RSV are essential to inform use of limited vaccination and treatment resources.

Methods

We analyzed surveillance data from August 2009 to July 2012 for hospitalized severe acute respiratory illness (SARI) and outpatient influenza-like illness (ILI) at two health facilities in western Kenya to estimate the burden of influenza and respiratory syncytial virus (RSV). Incidence rates were estimated by dividing the number of cases with laboratory-confirmed virus infections by the mid-year population. Rates were adjusted for healthcare-seeking behavior, and to account for patients who met the SARI/ILI case definitions but were not tested.

Results

The average annual incidence of influenza-associated SARI hospitalization per 1,000 persons was 2.7 (95% CI 1.8–3.9) among children <5 years and 0.3 (95% CI 0.2–0.4) among persons ≥5 years; for RSV-associated SARI hospitalization, it was 5.2 (95% CI 4.0–6.8) among children <5 years and 0.1 (95% CI 0.0–0.2) among persons ≥5 years. The incidence of influenza-associated medically-attended ILI per 1,000 was 24.0 (95% CI 16.6–34.7) among children <5 years and 3.8 (95% CI 2.6–5.7) among persons ≥5 years. The incidence of RSV-associated medically-attended ILI was 24.6 (95% CI 17.0–35.4) among children <5 years and 0.8 (95% CI 0.3–1.9) among persons ≥5 years.

Conclusions

Influenza and RSV both exact an important burden in children. This highlights the possible value of influenza vaccines, and future RSV vaccines, for Kenyan children.  相似文献   

15.
Influenza viruses are characterized by an ability to cross species boundaries and evade host immunity, sometimes with devastating consequences. The 2009 pandemic of H1N1 influenza A virus highlights the importance of pigs in influenza emergence, particularly as intermediate hosts by which avian viruses adapt to mammals before emerging in humans. Although segment reassortment has commonly been associated with influenza emergence, an expanded host-range is also likely to be associated with the accumulation of specific beneficial point mutations. To better understand the mechanisms that shape the genetic diversity of avian-like viruses in pigs, we studied the evolutionary dynamics of an Eurasian Avian-like swine influenza virus (EA-SIV) in naïve and vaccinated pigs linked by natural transmission. We analyzed multiple clones of the hemagglutinin 1 (HA1) gene derived from consecutive daily viral populations. Strikingly, we observed both transient and fixed changes in the consensus sequence along the transmission chain. Hence, the mutational spectrum of intra-host EA-SIV populations is highly dynamic and allele fixation can occur with extreme rapidity. In addition, mutations that could potentially alter host-range and antigenicity were transmitted between animals and mixed infections were commonplace, even in vaccinated pigs. Finally, we repeatedly detected distinct stop codons in virus samples from co-housed pigs, suggesting that they persisted within hosts and were transmitted among them. This implies that mutations that reduce viral fitness in one host, but which could lead to fitness benefits in a novel host, can circulate at low frequencies.  相似文献   

16.
17.
18.
Accumulation of β-Amyloid (βA) is a key pathogenetic factor in Alzheimer''s disease; however, the normal function of βA is unknown. Recent studies have shown that βA can inhibit growth of bacteria and fungi. In this paper we show that βA also inhibits replication of seasonal and pandemic strains of H3N2 and H1N1 influenza A virus (IAV) in vitro. The 42 amino acid fragment of βA (βA42) had greater activity than the 40 amino acid fragment. Direct incubation of the virus with βA42 was needed to achieve optimal inhibition. Using quantitative PCR assays βA42 was shown to reduce viral uptake by epithelial cells after 45 minutes and to reduce supernatant virus at 24 hours post infection. βA42 caused aggregation of IAV particles as detected by light transmission assays and electron and confocal microscopy. βA42 did not stimulate neutrophil H2O2 production or extracellular trap formation on its own, but it increased both responses stimulated by IAV. In addition, βA42 increased uptake of IAV by neutrophils. βA42 reduced viral protein synthesis in monocytes and reduced IAV-induced interleukin-6 production by these cells. Hence, we demonstrate for the first time that βA has antiviral activity and modulates viral interactions with phagocytes.  相似文献   

19.
20.
Influenza A virus (IAV) in wild bird reservoir hosts is characterized by the perpetuation in a plethora of subtype and genotype constellations. Multiyear monitoring studies carried out during the last two decades worldwide have provided a large body of knowledge regarding the ecology of IAV in wild birds. Nevertheless, other issues of avian IAV evolution have not been fully elucidated, such as the complexity and dynamics of genetic interactions between the co-circulating IAV genomes taking place at a local-scale level or the phenomenon of frozen evolution. We investigated the IAV diversity in a mallard population residing in a single pond in the Czech Republic. Despite the relative small number of samples collected, remarkable heterogeneity was revealed with four different IAV subtype combinations, H6N2, H6N9, H11N2, and H11N9, and six genomic constellations in co-circulation. Moreover, the H6, H11, and N2 segments belonged to two distinguishable sub-lineages. A reconstruction of the pattern of genetic reassortment revealed direct parent-progeny relationships between the H6N2, H11N9 and H6N9 viruses. Interestingly the IAV, with the H6N9 subtype, was re-detected a year later in a genetically unchanged form in the close proximity of the original sampling locality. The almost absolute nucleotide sequence identity of all the respective genomic segments between the two H6N9 viruses indicates frozen evolution as a result of prolonged conservation in the environment. The persistence of the H6N9 IAV in various abiotic and biotic environmental components was also discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号