首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.

Aims

Surfactant protein A (SP-A) plays critical roles in the innate immune system and surfactant homeostasis of the lung. Mutations in SP-A2 of the carbohydrate recognition domain (CRD) impair its glycosylation and are associated with pulmonary fibrosis in humans. We aim to examine how mutations in SP-A that impair its glycosylation affect its biological properties and lead to disease.

Main methods

We generated rat SP-A constructs with two types of mutations that impair its glycosylation: N-glycosylation site mutations (N21T, N207S and N21T/N207S) and disease-associated CRD mutations (G231V, F198S). We transfected these constructs into Chinese hamster ovary (CHO)-K1 cells and assessed biochemical differences in cellular and secreted wild-type and mutant SP-As by western blot, immunofluorescence, and sensitivity to enzymatic digestion.

Key findings

Mutations of the CRD completely impaired SP-A secretion, whereas mutations of N-glycosylation sites had little effect. Both types of mutations formed nonidet p-40 (NP-40) insoluble aggregates, but the aggregates only from CRD mutations could be partially rescued by a chemical chaperone, 4-phenylbutyrate acid (4-PBA). The majority of CRD mutant SP-A was retained in the endoplasmic reticulum. Moreover, both types of mutations reduced SP-A stability, with CRD mutant SP-A being more sensitive to chymotrypsin digestion. Both types of soluble mutant SP-A could be degraded by the proteasome pathway, while insoluble aggregates could be additionally degraded by the lysosomal pathway.

Significance

Our data provide evidence that the differential glycosylation of SP-A may play distinct roles in SP-A secretion, aggregation and degradation which may contribute to familial pulmonary fibrosis caused by SP-A2 mutations.  相似文献   

2.
G231V and F198S mutations in surfactant protein A2 (SP-A2) are associated with familial pulmonary fibrosis. These mutations cause defects in dimer/trimer assembly, trafficking, and secretion, as well as cause mutant protein aggregation. We investigated the effects and mechanisms of chemical chaperones on the cellular and biochemical properties of mutant SP-A2. Chemical chaperones, including 4-phenyl butyric acid (4-PBA), could enhance secretion and decrease intracellular aggregation of mutant SP-A2 in a dose-dependent manner. Interestingly, increased levels of aggregated mutant SP-A2, resulting from MG-132-mediated proteasome inhibition, could also be alleviated by 4-PBA. 4-PBA treatment reduced the degradation of mutant SP-A2 to chymotrypsin digestion in CHO-K1 cells and up-regulated GRP78 (BiP) expression. Overexpression of GRP78 in SP-A2 G231V- or F198S-expressing cells reduced, whereas shRNA-mediated knockdown of GRP78 enhanced aggregation of mutant SP-A2, suggesting that GRP78 regulates aggregation of mutant SP-A2. Together, these data indicate chemical chaperone 4-PBA and upregulation of GRP78 can alleviate aggregation to stabilize and facilitate secretion of mutant SP-A2. The up-regulation expression of GRP78 might partially contribute to the aggregate-alleviating effect of 4-PBA.  相似文献   

3.
4.
Many kinds of misfolded secretory proteins are known to be degraded in the endoplasmic reticulum (ER). Dislocation of misfolded proteins from the ER to the cytosol and subsequent degradation by the proteasome have been demonstrated. Using the yeast Saccharomyces cerevisiae, we have been studying the secretion of a heterologous protein, Rhizopus niveus aspartic proteinase-I (RNAP-I). Previously, we found that the pro sequence of RNAP-I is important for the folding and secretion, and that Deltapro, a mutated derivative of RNAP-I in which the entire region of the pro sequence is deleted, forms gross aggregates in the yeast ER. In this study, we show that the degradation of Deltapro occurs independently of the proteasome. Its degradation was not inhibited either by a potent proteasome inhibitor or in a proteasome mutant. We also show that neither the export from the ER nor the vacuolar proteinase is required for the degradation of Deltapro. These results raise the possibility that the Deltapro aggregates are degraded in the ER lumen. We have isolated a yeast mutant in which the degradation of Deltapro is delayed. We show that the mutated gene is IRA2, which encodes a GTPase-activating protein for Ras. Because Ira2 protein is a negative regulator of the Ras-cAMP pathway, this result suggests that hyperactivation of the Ras-cAMP pathway inhibits the degradation of Deltapro. Consistently, down-regulation of the Ras-cAMP pathway in the ira2 mutant suppressed the defect of the degradation of Deltapro. Thus, the Ras-cAMP signal transduction pathway seems to control the proteasome-independent degradation of the ER misfolded protein aggregates.  相似文献   

5.
Epidermolysis bullosa simplex (EBS) is a blistering cutaneous disease featuring protein aggregates. Here we investigate the molecular mechanisms linking protein aggregates to cell death in a cellular model of EBS in which HaCaT keratinocytes are transfected with plasmids expressing various mutant forms of keratin 14 (K14). In HaCaT cells, mutant K14 was found to form ubiquitinated protein aggregates that suppressed 20 S proteasome function instead of being degraded by 20 S proteasome. Keratinocytes with mutant K14-induced phosphorylation of the stress-activated kinase c-Jun, as well as up-regulation of unfolding protein Bip, indicates induction of endoplasmic reticulum stress. HaCaT cells were susceptible to apoptosis by activation of caspases-3, and -8, but not caspase-9 or -12. Tumor necrosis factor-alpha (TNFalpha) in the culture medium was increased in keratinocytes with mutant K14 compared with wild K14, and the addition of neutralizing anti-TNFalpha antibody to the culture medium rescued keratinocytes from cell death. Thus, TNFalpha release and the subsequent activation of the TNFalpha receptor by an autocrine/paracrine pathway links protein aggregates to cell death in this keratinocyte EBS cellular model. Furthermore, mutation in K14 reduced its affinity to TNFalpha receptor-associated death domain (TRADD), suggesting that the susceptibility of keratinocytes to caspase-8-mediated apoptosis is increased in mutated K14 because of impairment of the cytoprotective mechanism mediated by K14-TRADD interaction.  相似文献   

6.
Caveolin-3 is the principal structural protein of caveolae in striated muscle. Autosomal dominant limb-girdle muscular dystrophy (LGMD-1C) in humans is due to mutations (DeltaTFT and Pro --> Leu) within the CAV3 gene. We have shown that LGMD-1C mutations lead to formation of unstable aggregates of caveolin-3 that are retained intracellularly and are rapidly degraded. The mechanism by which LGMD-1C mutants of caveolin-3 are degraded remains unknown. Here, we show that LGMD-1C mutants of caveolin-3 undergo ubiquitination-proteasomal degradation. Treatment with proteasomal inhibitors (MG-132, MG-115, lactacystin, or proteasome inhibitor I), but not lysosomal inhibitors, prevented degradation of LGMD-1C caveolin-3 mutants. In the presence of MG-132, LGMD-1C caveolin-3 mutants accumulated within the endoplasmic reticulum and did not reach the plasma membrane. LGMD-1C mutants of caveolin-3 behave in a dominant negative fashion, causing intracellular retention and degradation of wild-type caveolin-3. Interestingly, in cells co-expressing wild-type and mutant forms of caveolin-3, MG-132 treatment rescued wild-type caveolin-3; wild-type caveolin-3 was not degraded and reached the plasma membrane. These results may have clinical implications for treatment of patients with LGMD-1C.  相似文献   

7.
Tumor suppressor p53 is one of the most frequently mutated genes in cancer, with almost 50% of all types of cancer expressing a mutant form of p53. p53 transactivates the expression of its primary negative regulator, HDM2. HDM2 is a ubiquitin ligase, which initiates the proteasomal degradation of p53 following ubiquitination. Proteasome inhibitors, by targeting the ubiquitin proteasome pathway inhibit the degradation of the majority of cellular proteins including wild-type p53. In contrast, in this study we found that the protein expression of mutant p53 was suppressed following treatment with established or novel proteasome inhibitors. Furthermore, for the first time we demonstrated that Arsenic trioxide, which was previously shown to suppress mutant p53 protein level, exhibits proteasome inhibitory activity. Proteasome inhibitor-mediated suppression of mutant p53 was partially rescued by the knockdown of HDM2, suggesting that the stabilization of HDM2 by proteasome inhibitors might be responsible for mutant p53 suppression to some extent. This study suggests that suppression of mutant p53 is a general property of proteasome inhibitors and it provides additional rationale to use proteasome inhibitors for the treatment of tumors with mutant p53.  相似文献   

8.
We reported the first case of a congenital histidine-rich glycoprotein deficiency (HRG Tokushima) in which substitution of Gly85 with Glu (G85E) in the first cystatin domain resulted in intracellular degradation and a low plasma level of HRG [Shigekiyo, T. et al. (1998) Blood 91, 128-133]. Recently, we identified the gene mutation of a second case of HRG deficiency as a Cys223 to Arg (C223R) mutation in the second cystatin domain. To investigate the molecular and cellular bases of these deficiencies, we expressed these HRG mutants in baby hamster kidney (BHK) cells. Pulse-chase experiments in the absence and presence of various proteinase inhibitors revealed that, while wild-type HRG was completely secreted during 4-h chase periods, both the G85E and C223R mutants were only partially secreted and primarily degraded within the cells. The intracellular degradation of the C223R mutant was almost completely inhibited in the presence of a proteasome inhibitor, lactacystin, carbobenzoxy-leucyl-leucyl-leucinal or N-acetyl-leucyl-leucyl-norleucinal, resulting in increased secretion of the C223R mutant, and thus implicating the proteasome system in this degradation process. In contrast, the sum of the amounts of the G85E mutant inside and outside the cells decreased during the chase periods even in the presence of the proteasome inhibitor, carbobenzoxy-leucyl-leucyl-leucinal or N-acetyl-leucyl-leucyl-norleucinal, although proteasome-specific inhibitor lactacystin and one of the cysteine protease inhibitors, E-64-d, prevented the intracellular degradation. These results suggested that intracellular degradation of G85E HRG occurred to some extent through a hitherto unknown mechanism. Similar studies involving recombinant mutants in which Gly85 or Cys223 was replaced with several other amino acids revealed that proteins with mutations leading to the destruction of the predicted b-sheet structure of the cystatin domains were eliminated by the intracellular quality control system.  相似文献   

9.
Multidrug resistance protein 3 (MDR3, ABCB4) is a hepatocellular membrane protein that mediates biliary secretion of phosphatidylcholine. Null mutations in ABCB4 gene give rise to severe early-onset cholestatic liver disease. We have previously shown that the disease-associated mutations p.G68R, p.G228R, p.D459H, and p.A934T resulted in retention of ABCB4 in the endoplasmic reticulum, thus failing to target the plasma membrane. In the present study, we tested the ability of two compounds with chaperone-like activity, 4-phenylbutyrate and curcumin, to rescue these ABCB4 mutants by assessing their effects on subcellular localization, protein maturation, and phospholipid efflux capability. Incubation of transfected cells at a reduced temperature (30°C) or exposure to pharmacological doses of either 4-PBA or curcumin restored cell surface expression of mutants G228R and A934T. The delivery of these mutants to the plasma membrane was accompanied by a switch in the ratio of mature to inmature protein forms, leading to a predominant expression of the mature protein. This effect was due to an improvement in the maturation rate and not to the stabilization of the mature forms. Both mutants were also functionally rescued, displaying bile salt-dependent phospholipid efflux activity after addition of 4-PBA or curcumin. Drug-induced rescue was mutant specific, given neither 4-PBA nor curcumin had an effect on the ABCB4 mutants G68R and A934T. Collectively, these data indicate that the functionality of selected trafficking-defective ABCB4 mutants can be recovered by chemical chaperones through restoration of membrane localization, suggesting a potential treatment for patients carrying such mutations.  相似文献   

10.
The human neurological disorder hyperekplexia is frequently caused by recessive and dominant mutations of the glycine receptor α1 subunit gene, GLRA1 . Dominant forms are mostly attributed to amino acid substitutions within the ion pore or adjacent loops, resulting in altered channel properties. Here, the biogenesis of glycine receptor α1 subunit mutants underlying recessive forms of hyperekplexia was analyzed following recombinant expression in HEK293 cells. The α1 mutant S231R resulted in a decrease of surface integrated protein, consistent with reduced maximal current values. Decreased maximal currents shown for the recessive α1 mutant I244N were associated with protein instability, rather than decreased surface integration. The recessive mutants R252H and R392H encode exchanges of arginine residues delineating the intracellular faces of transmembrane domains. After expression, the mutant R252H was virtually absent from the cell surface, consistent with non-functionality and the importance of the positive charge for membrane integration. Surface expression of R392H was highly reduced, resulting in residual chloride conductance. Independent of the site of the mutation within the α1 polypeptide, metabolic radiolabelling and pulse chase studies revealed a shorter half-life of the full-length α1 protein for all recessive mutants as compared to the wild-type. Treatment with the proteasome blocker, lactacystin, significantly increased the accumulation of α1 mutants in intracellular membranes. These observations indicated that the recessive α1 mutants are recognized by the endoplasmatic reticulum control system, and degraded via the proteasome pathway. Thus, the lack of glycinergic inhibition associated with recessive hyperekplexia may be attributed to sequestration of mutant subunits within the endoplasmatic reticulum quality control system.  相似文献   

11.
Protein aggregation is involved in several human diseases, and presumed to be an important process in protein quality control. In bacteria, aggregation of proteins occurs during stress conditions, such as heat shock. We studied the protein aggregates of Escherichia coli during heat shock. Our results demonstrate that the concentration and diversity of proteins in the aggregates depend on the availability of proteases. Aggregates obtained from mutants in the Lon (La) protease contain three times more protein than wild-type aggregates and show the broadest protein diversity. The results support the assumption that protein aggregates are formed from partially unfolded proteins that were not refolded by chaperones or degraded by proteases.  相似文献   

12.
13.
Familial hypercholesterolemia is a genetic disorder that results from various gene mutations, primarily within the LDL receptor (LDLR). Approximately 50% of the LDLR mutations are defined as class 2 mutations, with the mutant proteins partially or entirely retained in the endoplasmic reticulum. To determine the degradation pathway of the LDLR class 2 mutants, we examined the effects of inhibition of several potential pathways on the levels of the wild-type LDLR and its four representative class 2 mutants (S156L, C176Y, E207K, and C646Y) stably expressed in Chinese hamster ovary (CHO) cells. We found that proteasome inhibitors MG132 and lactacystin blocked the degradation of the LDLR mutants, but not that of the wild-type LDLR. Treatment of CHO cells with these proteasome inhibitors led to a significant accumulation of the mutants at steady state. Furthermore, cell surface levels of the LDLR mutants were significantly increased upon inhibition of the proteasome degradation pathway. In contrast to the proteasome inhibitors, inhibitors of trypsin-like proteases, chymotrypsin-like proteases, and lysosomal pathway inhibitors did not affect the levels of the LDLR mutants. Taken together, these data demonstrate that the proteasome is the principal degradation pathway for LDLR class 2 mutants.  相似文献   

14.
Several temperature-sensitive folding (tsf) mutants of the tailspike protein from bacteriophage P22 have been found to fold with lower efficiency than the wild-type sequence, even at lowered temperatures. Previous refolding studies initiated from the unfolded monomer have indicated that the tsf mutations decrease the rate of structured monomer formation. We demonstrate that pressure treatment of the tailspike aggregates provides a useful tool to explore the effects of tsf mutants on the assembly pathway of the P22 tailspike trimer. The effects of pressure on two different tsf mutants, G244R and E196K, were explored. Pressure treatment of both G244R and E196K aggregates produced a folded trimer. E196K forms almost no native trimer in in vitro refolding experiments, yet it forms a trimer following pressure in a manner similar to the native tailspike protein. In contrast, trimer formation from pressure-treated G244R aggregates was not rapid, despite the presence of a G244R dimer after pressure treatment. The center-of-mass shifts of the fluorescence spectra under pressure are nearly identical for both tsf aggregates, indicating that pressure generates similar intermediates. Taken together, these results suggest that E196K has a primary defect in formation of the beta-helix during monomer collapse, while G244R is primarily an assembly defect.  相似文献   

15.
Autosomal dominant retinitis pigmentosa (ADRP) has been linked to mutations in the gene encoding rhodopsin. Most RP-linked rhodopsin mutants are unable to fold correctly in the endoplasmic reticulum, are degraded by the ubiquitin proteasome system, and are highly prone to forming detergent-insoluble high molecular weight aggregates. Here we have reported that coexpression of folding-deficient, but not folding-proficient, ADRP-linked rhodopsin mutants impairs delivery of the wild-type protein to the plasma membrane. Fluorescence resonance energy transfer and co-precipitation studies revealed that mutant and wild-type rhodopsins form a high molecular weight, detergent-insoluble complex in which the two proteins are in close (<70 A) proximity. Co-expression of ARDP-linked rhodopsin folding-deficient mutants resulted in enhanced proteasome-mediated degradation and steady-state ubiquitination of the wild-type protein. These data suggested a dominant negative effect on conformational maturation that may underlie the dominant inheritance of ARDP.  相似文献   

16.
17.
Mutant ataxin-1, the expanded polyglutamine protein causing spinocerebellar ataxia type 1 (SCA1), aggregates in ubiquitin-positive nuclear inclusions (NI) that alter proteasome distribution in affected SCA1 patient neurons. Here, we observed that ataxin-1 is degraded by the ubiquitin-proteasome pathway. While ataxin-1 [2Q] and mutant ataxin-1 [92Q] are polyubiquitinated equally well in vitro, the mutant form is three times more resistant to degradation. Inhibiting proteasomal degradation promotes ataxin-1 aggregation in transfected cells. And in mice, Purkinje cells that express mutant ataxin-1 but not a ubiquitin-protein ligase have significantly fewer NIs. Nonetheless, the Purkinje cell pathology is markedly worse than that of SCA1 mice. Taken together, NIs are not necessary to induce neurodegeneration, but impaired proteasomal degradation of mutant ataxin-1 may contribute to SCA1 pathogenesis.  相似文献   

18.
Lafora disease (LD) is an autosomal recessive neurodegenerative disorder caused by mutation in either the dual specificity phosphatase laforin or ubiquitin ligase malin. A pathological hallmark of LD is the accumulation of cytoplasmic polyglucosan inclusions commonly known as Lafora bodies in both neuronal and non-neuronal tissues. How mutations in these two proteins cause disease pathogenesis is not well understood. Malin interacts with laforin and recruits to aggresomes upon proteasome inhibition and was shown to degrade misfolded proteins. Here we report that malin is spontaneously misfolded and tends to be aggregated, degraded by proteasomes, and forms not only aggresomes but also other cytoplasmic and nuclear aggregates in all transfected cells upon proteasomal inhibition. Malin also interacts with Hsp70. Several disease-causing mutants of malin are comparatively more unstable than wild type and form aggregates in most transfected cells even without the inhibition of proteasome function. These cytoplasmic and nuclear aggregates are immunoreactive to ubiquitin and 20 S proteasome. Interestingly, progressive proteasomal dysfunction and cell death is also most frequently observed in the mutant malin-overexpressed cells compared with the wild-type counterpart. Finally, we demonstrate that the co-chaperone carboxyl terminus of the Hsc70-interacting protein (CHIP) stabilizes malin by modulating the activity of Hsp70. All together, our results suggest that malin is unstable, and the aggregate-prone protein and co-chaperone CHIP can modulate its stability.  相似文献   

19.
Accumulation of mutant proteins into misfolded species and aggregates is characteristic for diverse neurodegenerative diseases including the polyglutamine diseases. While several studies have suggested that polyglutamine protein aggregates impair the ubiquitin-proteasome system, the molecular mechanisms underlying the interaction between polyglutamine proteins and the proteasome have remained elusive. In this study, we use fluorescence live-cell imaging to demonstrate that the proteasome is sequestered irreversibly within aggregates of overexpressed N-terminal mutant Huntingtin fragment or simple polyglutamine expansion proteins. Moreover, by direct targeting of polyglutamine proteins for proteasomal degradation, we observe incomplete degradation of these substrates both in vitro and in vivo. Thus, our data reveal that intrinsic properties of the polyglutamine proteins prevent their efficient degradation and clearance. Additionally, fluorescence resonance energy transfer is detected between the proteasome and aggregated polyglutamine proteins indicative of a close and stable interaction. We propose that polyglutamine-containing proteins are kinetically trapped within proteasomes, which could explain their deleterious effects on cellular function over time.  相似文献   

20.
Rpn6p is a component of the lid of the 26 S proteasome. We isolated and analyzed two temperature-sensitive rpn6 mutants in the yeast, Saccharomyces cerevisiae. Both mutants showed defects in protein degradation in vivo. However, the affinity-purified 26 S proteasome of the rpn6 mutants grown at the permissive temperature degraded polyubiquitinated Sic1p efficiently, even at a higher temperature. Interestingly, their enzyme activity was even higher at a higher temperature, indicating that once made mutant proteasomes are stable and have little defect in the proteolytic function. These results suggest that the deficiency in protein degradation observed in vivo is rather due to a defect in the assembly of a holoenzyme at the restrictive temperature. Indeed, both rpn6 mutants grown at the restrictive temperature were defective in assembling the 26 S proteasome. A striking feature of the rpn6 mutants at the restrictive temperature was that there appeared a protein complex composed of only four of the nine lid components, Rpn5p, Rpn8p, Rpn9p, and Rpn11p. Altogether, we conclude that Rpn6p is essential for the integrity/assembly of the lid in the sense that it is necessary for the incorporation of Rpn3p, Rpn7p, Rpn12p, and Sem1p (Rpn15p) into the lid, thereby playing an essential role in the proper function of the 26 S proteasome.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号