首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
以含有丙型肝炎病毒核心蛋白基因的质粒pJLA502-C为模板,用PCR方法重新扩增克隆了核心蛋白基因,在扩增基因的上下端分别增加了NCOⅠ及SalⅠ酶切位点。将克隆的基因酶切后插入表达载体pBV221内,转化大肠肝菌DH_(5α),获得表达非融合核心蛋白的工程菌,42℃热诱导5hr,表达蛋白占菌体蛋白总量的15%。经包涵体纯化及分子筛纯化等,获得核心蛋白,经ELISA及Western Blotting分析表明有较好的抗原性和特异性。  相似文献   

2.
Short hairpin RNAs (shRNAs) efficiently inhibit gene expression by RNA interference. Here, we report the efficient inhibition by DNA-based vector-derived shRNAs of core protein expression in Huh-7 cells. The shRNAs were designed to target the core region of the hepatitis C virus (HCV) genome. The core region is the most conserved region in the HCV genome, making it an ideal target for shRNAs. We identified an effective site on the core region for suppression of the HCV core protein. The HCV core protein in core protein-expressing Huh-7 cells was downregulated by core protein-shRNA expression vectors (core-shRNA-452, 479, and 503). Our results support the feasibility of using shRNA-based gene therapy to inhibit HCV core protein production.  相似文献   

3.
主要研究采用微接触印刷术在生物材料表面制备的细胞外基质蛋白微图形对人体软骨细胞粘附、铺展以及蛋白质表达等细胞行为的影响.研究结果表明,蛋白质微图形表面对细胞的粘附、铺展、排列以及细胞蛋白质表达具有明显的影响.细胞优先粘附在微图形蛋白区域,微图形形状以及尺度明显影响细胞的粘附形态以及铺展程度,同时也影响细胞生长过程中的Ⅱ型与Ⅵ型胶原蛋白的表达,细胞的铺展行为与细胞的蛋白质表达具有一定的正相关性,铺展较好的细胞表现出更好的Ⅱ型与Ⅵ型胶原蛋白表达.结果表明,通过在材料表面制备细胞外基质蛋白微图形可以有效调控人体软骨细胞的生长行为与功能.  相似文献   

4.
丙型肝炎病毒核心蛋白基因在大肠杆菌内的表达及应用   总被引:2,自引:0,他引:2  
将从中国丙肝病人血清中扩增克隆的丙型肝炎病毒核心蛋白基因(408bp)酶切处理后插入表达载体pJLA502内,获得高表达核心蛋白的重组工程菌。将重组菌经42℃热诱导5h,SDS-PAGE分析表明,表达的核心蛋白占菌体蛋白总量的20%。经分子筛和吸附层析纯化后获得的核心蛋白,ELISA检测证实有较好的抗原性和特异性。用表达的核心抗原加用表达的NS_3抗原(C_33)装配的抗-HCV试剂盒,经用标准血清验证及与国外第二代抗-HCV试剂盒比较,证实符合丙肝诊断试剂要求。  相似文献   

5.
6.
丙型肝炎病毒核心蛋白在大肠杆菌中的表达   总被引:4,自引:0,他引:4  
目的:建立稳定表达丙型肝炎病毒(HCV)核心蛋白的原核表达系统,获得高产量的纯化核心蛋白。方法:应用多聚酶链反应(PCR),以HCV—H株全长cDNA序列为模板,扩增获得核心区基因片段,克隆入原核表达载体pBVIL1,构建原核表达载体pBVIL1-C,转化HB101宿主菌,通过温度诱导表达核心蛋白。结果:扩增得到目的基因长度为573bp,构建pBVIL1-C表达载体,在HB101宿主菌中通过温度诱导获得稳定表达,表达蛋白占菌体总蛋白含量的21%,Western—Blot检测证实表达产物可与HCV患者阳性血清发生特异性结合反应。结论:HCV核心蛋白可在大肠杆菌中获得高表达并具有良好的反应原性。  相似文献   

7.
Dense core granules (DCGs) in Tetrahymena thermophila contain two protein classes. Proteins in the first class, called granule lattice (Grl), coassemble to form a crystalline lattice within the granule lumen. Lattice expansion acts as a propulsive mechanism during DCG release, and Grl proteins are essential for efficient exocytosis. The second protein class, defined by a C-terminal β/γ-crystallin domain, is poorly understood. Here, we have analyzed the function and sorting of Grt1p (granule tip), which was previously identified as an abundant protein in this family. Cells lacking all copies of GRT1, together with the closely related GRT2, accumulate wild-type levels of docked DCGs. Unlike cells disrupted in any of the major GRL genes, ΔGRT1 ΔGRT2 cells show no defect in secretion, indicating that neither exocytic fusion nor core expansion depends on GRT1. These results suggest that Grl protein sorting to DCGs is independent of Grt proteins. Consistent with this, the granule core lattice in ΔGRT1 ΔGRT2 cells appears identical to that in wild-type cells by electron microscopy, and the only biochemical component visibly absent is Grt1p itself. Moreover, gel filtration showed that Grl and Grt proteins in cell homogenates exist in nonoverlapping complexes, and affinity-isolated Grt1p complexes do not contain Grl proteins. These data demonstrate that two major classes of proteins in Tetrahymena DCGs are likely to be independently transported during DCG biosynthesis and play distinct roles in granule function. The role of Grt1p may primarily be postexocytic; consistent with this idea, DCG contents from ΔGRT1 ΔGRT2 cells appear less adhesive than those from the wild type.In eukaryotes, the directional transport of lumenal proteins throughout the network of membrane-bound organelles depends on reversible assembly of multisubunit protein complexes in the cytoplasm. For example, the assembly of a localized clathrin coat at a cell''s surface facilitates both the concentration of specific transmembrane receptors together with their bound ligands at that site and the invagination and budding of the plasma membrane, resulting in endocytosis (18). Similarly, other cytosolic coats assemble and direct traffic at the endoplasmic reticulum (ER) and Golgi apparatus (4). For one protein trafficking pathway in eukaryotic cells, however, the determinative protein self-assembly occurs not in the cytoplasm but within the lumen of the secretory pathway itself. Dense core granules (DCGs) are secretory vesicles whose lumenal cargo consists of a condensed polypeptide aggregate. This cargo is secreted when the vesicles fuse with the plasma membrane in response to a specific extracellular stimulus, an event called regulated exocytosis. The aggregation of the cargo occurs progressively within the secretory pathway, beginning in the trans-Golgi network (TGN), and may be promoted by multiple factors including compartment-specific proton and calcium levels (23). Aggregation facilitates the vesicular storage of concentrated secretory proteins but also serves as a sorting mechanism to segregate DCG proteins from proteins that are secreted via other pathways. Evidence for this mechanism includes in vitro experiments showing that some proteins released via constitutive exocytosis remain soluble under TGN-like conditions that promote DCG protein aggregation (10). In vivo, sorting would result if aggregated and soluble proteins exit the TGN in different carriers. Importantly, there is no evidence that sorting of DCG proteins at the TGN requires assembly of cytosolic coat complexes.While aggregative sorting represents an attractively simple mechanism, relatively little is known about the structure or dynamic properties of the aggregates themselves. This is an interesting issue, as illustrated by several phenomena. First, aggregates in some cell types, like those formed by proinsulin in pancreatic β cells, can become reordered as protein crystals during a multistage process called granule maturation (13). Second, Aplysia bag cells can sort different subsets of DCG proteins into distinct granules, suggesting that aggregation can be finely regulated and that different aggregates have different properties in vivo (20). Both of these phenomena have also been observed within the DCGs of unicellular ciliates (3, 14). In addition, ciliate DCGs demonstrate another degree of subtlety in DCG formation because the granule cores in many of these organisms are divided into distinct domains (25). The domain organization indicates that DCG proteins in these cells can segregate from one another even as they are sorted to the same vesicular destination. While the structures of DCGs in many ciliates have been captured by electron microscopy, molecular studies have advanced in two species, Tetrahymena thermophila and Paramecium tetraurelia (30, 33).In many ciliates, the individual DCGs are organized in at least two distinct domains within the lumen. First, the bulk of the cargo is organized as a core crystal that expands, spring-like, upon exocytosis (28). This expansion can drive rapid extrusion of the DCG contents, which may be essential for hunting or defensive behaviors (17). In addition, many ciliate DCGs possess a single polarized tip structure that is involved in DCG docking to the plasma membrane and exocytic fusion (25). These tip structures are also filled with condensed, highly organized proteins, which appear by both genetic and morphological criteria to be different from proteins making up the expansible core (1, 21). The proteins that form the distinct domains are beginning to be identified and analyzed. Those that constitute the expansible springs are encoded by homologous families of genes named GRL (granule lattice) in Tetrahymena and tmp (trichocyst matrix) in Paramecium (11, 12, 15). Assembly of Grl proteins begins in the ER with formation of heterooligomers. This is an obligatory step, as shown by the fact that deletion of individual Grl proteins by targeted gene disruption resulted in the ER retention of remaining Grl proteins (12). Further assembly of Grl proteins to form a crystal occurs during DCG maturation and is accompanied by site-specific proprotein processing (34). Upon exocytosis, the expansion of the crystalline core is controlled by calcium binding to the fully processed Grl proteins (34).In addition to the GRL family-encoded proteins, 13 other lumenal DCG proteins have been putatively or definitively identified in Tetrahymena, and homologous proteins are predicted in the Paramecium genome (6). The entire set belongs to a gene family that is defined by a carboxy-terminal β/γ-crystallin domain, which may function as a DCG-targeting motif (16). Studies of two different members of this family in Tetrahymena, IGR1 (induced during granule regeneration 1) and GRT1 (granule tip 1), suggested that these proteins are functionally distinct from the spring-forming Grl proteins. First, whereas gene disruption of any of the highly transcribed GRL genes resulted in grossly aberrant spring formation, no such defect was seen upon disruption of IGR1 (16). However, this could be explained by the fact that IGR1 encodes a relatively low-abundance protein in DCGs, and furthermore its function could be redundant with that of the highly related gene, IGR2.The second protein in the β/γ-crystallin domain family that has been investigated is the 80-kDa product of the GRT1 gene. Grt1p was first detected as one of the most abundant DCG components released during exocytosis (32). Biochemical analysis showed that Grt1p differs in its solubility from the Grl proteins and also that it is packaged intact in DCGs rather than undergoing proteolytic processing (31). Since processing is essential for Grl protein assembly and function, this difference appears highly significant. Second, Grt1p accumulates at a single pole of each DCG, corresponding to the tip of the organelle that docks and then fuses with the plasma membrane (5). Two Mendelian mutants with defects in DCG maturation show delocalized Grt1p, and these mutant DCGs can dock but do not appear to undergo exocytosis (5). These results suggested that Grt1p might be involved in forming a DCG tip domain that interacted with the plasma membrane.We have now investigated the trafficking and function of Grt1p. Our data provide both direct biochemical and cell-biological evidence that Grt1p and Grl proteins form distinct complexes during DCG biogenesis in Tetrahymena. Together with earlier results, our experiments provide genetic evidence that Grl and Grt complexes can be independently trafficked to DCGs. Cells lacking GRT1, together with the closely related GRT2, still show rapid and efficient release of DCG contents upon stimulation with secretagogues, but the released DCG contents are subtly different from those of the wild type, suggesting that Grt1p may primarily serve a postexocytic function.  相似文献   

8.
运用限制性内切酶XbaⅠ、SalⅠ对pKSGAG进行双酶切,获得HIV-lgag基因,并与真核表达载体pCI—neo连接,构建含有中国流行株HIV-1核心蛋白真核表达载体pCI—neoGAG。经XbaⅠ/SalⅠ双酶切及测序鉴定证实,成功地构建了HIV-1核心蛋白真核表达载体pCI-neoGAG。通过脂质体将pCI—neoGAG转染入p815细胞,G418筛选4周后,使用间接免疫荧光方法检测表达产物。结果表明所构建的HIV-1核心蛋白真核表达载体能在p815细胞中高效表达,为下一步进行HIV-1 DNA疫苗研究奠定了基础。  相似文献   

9.
中国株HIV-1核心蛋白真核表达载体的构建与表达   总被引:4,自引:0,他引:4  
运用限制性内切酶XbaⅠ、SalⅠ对pKSGAG进行双酶切,获得HIV-1 gag基因,并与真核表达载体pCI-neo连接,构建含有中国流行株HIV-1 核心蛋白真核表达载体pCI-neoGAG.经XbaⅠ/SalⅠ双酶切及测序鉴定证实,成功地构建了HIV-1 核心蛋白真核表达载体pCI-neoGAG.通过脂质体将pCI-neoGAG转染入p815细胞,G418筛选4周后,使用间接免疫荧光方法检测表达产物.结果表明所构建的HIV-1 核心蛋白真核表达载体能在p815细胞中高效表达,为下一步进行HIV-1 DNA疫苗研究奠定了基础.  相似文献   

10.
通过逆转录-聚合酶链反应(RT-PCR)从丙肝患者的血清中分离出编码完整HCV核心蛋白(C区)的cDNA片段,并将其克隆到杆状病毒转移质粒中。重组转移质粒DNA与线性的杆状病毒DNA共转染Sf9昆虫细胞,经蚀斑筛选获得了带编码全部核心蛋白基因的重组杆状病毒。重组病毒感染细胞后表达HCV核心蛋白,其分子量的为20kD。免疫印染和酶联免疫实验表明,此重组蛋白能被人HCV阳性血清所识别。动物实验表明此重组蛋白能诱导小鼠产生特异性抗体。  相似文献   

11.
12.
Protein subcellular localization has been systematically characterized in budding yeast using fluorescently tagged proteins. Based on the fluorescence microscopy images, subcellular localization of many proteins can be classified automatically using supervised machine learning approaches that have been trained to recognize predefined image classes based on statistical features. Here, we present an unsupervised analysis of protein expression patterns in a set of high-resolution, high-throughput microscope images. Our analysis is based on 7 biologically interpretable features which are evaluated on automatically identified cells, and whose cell-stage dependency is captured by a continuous model for cell growth. We show that it is possible to identify most previously identified localization patterns in a cluster analysis based on these features and that similarities between the inferred expression patterns contain more information about protein function than can be explained by a previous manual categorization of subcellular localization. Furthermore, the inferred cell-stage associated to each fluorescence measurement allows us to visualize large groups of proteins entering the bud at specific stages of bud growth. These correspond to proteins localized to organelles, revealing that the organelles must be entering the bud in a stereotypical order. We also identify and organize a smaller group of proteins that show subtle differences in the way they move around the bud during growth. Our results suggest that biologically interpretable features based on explicit models of cell morphology will yield unprecedented power for pattern discovery in high-resolution, high-throughput microscopy images.  相似文献   

13.
14.
15.
Reports concerning the effect of endurance exercise on the anabolic response to strength training have been contradictory. This study re-investigated this issue, focusing on training effects on indicators of protein synthesis and degradation. Two groups of male subjects performed 7 weeks of resistance exercise alone (R; n = 7) or in combination with preceding endurance exercise, including both continuous and interval cycling (ER; n = 9). Muscle biopsies were taken before and after the training period. Similar increases in leg-press 1 repetition maximum (30%; P<0.05) were observed in both groups, whereas maximal oxygen uptake was elevated (8%; P<0.05) only in the ER group. The ER training enlarged the areas of both type I and type II fibers, whereas the R protocol increased only the type II fibers. The mean fiber area increased by 28% (P<0.05) in the ER group, whereas no significant increase was observed in the R group. Moreover, expression of Akt and mTOR protein was enhanced in the ER group, whereas only the level of mTOR was elevated following R training. Training-induced alterations in the levels of both Akt and mTOR protein were correlated to changes in type I fiber area (r = 0.55–0.61, P<0.05), as well as mean fiber area (r = 0.55–0.61, P<0.05), reflecting the important role played by these proteins in connection with muscle hypertrophy. Both training regimes reduced the level of MAFbx protein (P<0.05) and tended to elevate that of MuRF-1. The present findings indicate that the larger hypertrophy observed in the ER group is due more to pronounced stimulation of anabolic rather than inhibition of catabolic processes.  相似文献   

16.
研究HCV核心蛋白对干扰素α诱导的抗病毒分子PKR和2′-5′OAS表达的影响及其机制。HCV核心蛋白表达质粒转染HepG2细胞,RT-PCR分析PKR和2′-5′OAS的mRNA水平变化,荧光素酶活性分析核心蛋白对ISRE介导的基因表达的影响;Western-blot分析SOCS3、STAT1及STAT1磷酸化水平的变化。在干扰素α刺激情况下,表达HCV核心蛋白的细胞中,PKR和2′-5′OAS的mRNA水平下降,ISRE介导的荧光素酶活性降低,STAT1磷酸化水平下降。此外,核心蛋白表达的细胞中SOCS3的mRNA和蛋白水平明显升高。结果表明,HCV核心蛋白可能通过激活SOCS3、抑制STAT1的磷酸化,从而下调干扰素α诱导的PKR和2′-5′OAS表达。  相似文献   

17.
研究HCV核心蛋白对干扰素α诱导的抗病毒分子PKR和2′-5′OAS表达的影响及其机制。HCV核心蛋白表达质粒转染HepG2细胞,RT-PCR分析PKR和2′-5′OAS的mRNA水平变化,荧光素酶活性分析核心蛋白对ISRE介导的基因表达的影响;Western-blot分析SOCS3、STAT1及STAT1磷酸化水平的变化。在干扰素α刺激情况下,表达HCV核心蛋白的细胞中,PKR和2′-5′OAS的mRNA水平下降,ISRE介导的荧光素酶活性降低,STAT1磷酸化水平下降。此外,核心蛋白表达的细胞中SOCS3的mRNA和蛋白水平明显升高。结果表明,HCV核心蛋白可能通过激活SOCS3、抑制STAT1的磷酸化,从而下调干扰素α诱导的PKR和2′-5′OAS表达。  相似文献   

18.
目的:表达HCV核心蛋白,为检测丙肝病毒提供合适抗原。方法:以含HCV核心全长cDNA克隆的pMD18T/core质粒为模板,PCR扩增全长的HCV核心抗原基因,插入表达载体pQEN1构建重组质粒pQEN1/Core,转化BL-21(DE3)大肠杆菌,IPTG诱导表达6×His融合蛋白,表达产物经SDS-PAGE及Western blot检测和鉴定。结果:经SDS-PAGE及Western blot显示HCV核心蛋白在大肠杆菌中正确表达,融合蛋白分子量约为22 kD,表达量约占菌体蛋白总量的30%。纯化后的C蛋白能与慢性丙型肝炎患者有血清反应。结论:HCV核心蛋白在大肠杆菌中成功表达并具有较强的抗原性。  相似文献   

19.
利用基因工程重组技术获得了绿色荧光蛋白(gfp)基因与HCV核心蛋白基因的嵌合体,并在大肠杆菌中高效表达了48kDa的融合蛋白,经Dot-ELISA和Western blot免疫活性分析证实,融合蛋白仍具有core抗原的三个免疫活性部位,同时用荧光显微镜观察并用荧光光度计测定了大肠直菌表达的融合蛋白的荧光光谱,结果证实,我们在大肠杆菌中表达的GFP-core融合蛋白既能发射易于检测的绿色荧光,又具  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号