共查询到20条相似文献,搜索用时 0 毫秒
1.
Kun Huang Donglin Bian Bin Jiang Qixi Zhai Ningning Gao Ruiying Wang 《Cell biochemistry and function》2017,35(3):141-143
Peripheral mechanical neuropathic pain is a serious side effect of docetaxel chemotherapy for cancer. However, the underlying mechanism for this side effect is unknown. In the present study, we found that docetaxel treatment induced mechanical allodynia in rats. We further revealed that the transient receptor potential ankyrin subtype 1 protein (TRPA1) protein level is upregulated and the TRPA1 activator allyl isothiocyanate induced larger ion currents in the dorsal root ganglion neurons from the docetaxel treated rats. In addition, application the TRPA1 blocker Ap18 reversed the docetaxel‐induced mechanical hypersensitivity. We suggest that the docetaxel‐induced mechanical allodynia is mediated by upregulation of TRPA1 in dorsal root ganglion neurons. 相似文献
2.
TRPM8 (transient receptor potential M8) and TRPA1 (transient receptor potential A1) are cold-temperature-sensitive nociceptors expressed in sensory neurons but their behaviour in neuronal cells is poorly understood. Therefore DNA expression constructs containing human TRPM8 or TRPA1 cDNAs were transfected into HEK (human embryonic kidney cells)-293 or SH-SY5Y neuroblastoma cells and G418 resistant clones analysed for effects of agonists and antagonists on intracellular Ca2+ levels. Approximately 51% of HEK-293 and 12% of SH-SY5Y cell clones expressed the transfected TRP channel. TRPM8 and TRPA1 assays were inhibited by probenecid, indicating the need to avoid this agent in TRP channel studies. A double-residue mutation in ICL-1 (intracellular loop-1) of TRPM8 (SV762,763EL, mimicking serine phosphorylation) or one in the C-terminal tail region (FK1045,1046AG, a lysine knockout) retained sensitivity to agonists (WS 12, menthol) and antagonist {AMTB [N-(3-Aminopropyl)-2-[(3-methylphenyl)methoxy]-N-(2-thienylmethyl)benzamide]}. SNP (single nucleotide polymorphism) variants in TRPA1 ICL-1 (R797T, S804N) and TRPA1 fusion protein containing C-terminal (His)10 retained sensitivity to agonists (cinnamaldehyde, allyl-isothiocyanate, carvacrol, eugenol) and antagonists (HC-030031, A967079). One SNP variant, 797T, possessed increased sensitivity to agonists. TRPA1 became repressed in SH-SY5Y clones but was rapidly rescued by Src-family inhibitor PP2 [4-amino-5-(4-chlorophenyl)-7-(t-butyl)pyrazolo[3,4-d]pyrimidine]. Conversely, TRPM8 in SH-SY5Y cells was inhibited by PP2. Further studies utilizing SH-SY5Y may identify structural features of TRPA1 and TRPM8 involved in conferring differential post-translational regulation. 相似文献
3.
The alpha subunit of voltage-gated Na(+) channels of brain, skeletal muscle, and cardiomyocytes is functionally modulated by the accessory beta(1), but not the beta(2) subunit. In the present study, we used beta(1)/beta(2) chimeras to identify molecular regions within the beta(1) subunit that are responsible for both the increase of the current density and the acceleration of recovery from inactivation of the human heart Na(+) channel (hH1). The channels were expressed in Xenopus oocytes. As a control, we coexpressed the beta(1)/beta(2) chimeras with rat brain IIA channels. In agreement with previous studies, the beta(1) extracellular domain sufficed to modulate IIA channel function. In contrast to this, the extracellular domain of the beta(1) subunit alone was ineffective to modulate hH1. Instead, the putative membrane anchor plus either the intracellular or the extracellular domain of the beta(1) subunit was required. An exchange of the beta(1) membrane anchor by the corresponding beta(2) subunit region almost completely abolished the effects of the beta(1) subunit on hH1, suggesting that the beta(1) membrane anchor plays a crucial role for the modulation of the cardiac Na(+) channel isoform. It is concluded that the beta(1) subunit modulates the cardiac and the neuronal channel isoforms by different molecular interactions: hH1 channels via the membrane anchor plus additional intracellular or extracellular regions, and IIA channels via the extracellular region only. 相似文献
4.
Xu Zhang Mengdie Xia Yang Li Huihui Liu Xin Jiang Wenlin Ren Jianping Wu Paul DeCaen Feng Yu Sheng Huang Jianhua He David E Clapham Nieng Yan Haipeng Gong 《Cell research》2013,23(3):409-422
NaChBac is a bacterial voltage-gated sodium (Nav) channel that shows sequence similarity to voltage-gated calcium channels. To understand the ion-permeation mechanism of Nav channels, we combined molecular dynamics simulation, structural biology and electrophysiological approaches to investigate the recently determined structure of NavRh, a marine bacterial NaChBac ortholog. Two Na+ binding sites are identified in the selectivity filter (SF) in our simulations: The extracellular Na+ ion first approaches site 1 constituted by the side groups of Ser181 and Glu183, and then spontaneously arrives at the energetically more favorable site 2 formed by the carbonyl oxygens of Leu179 and Thr178. In contrast, Ca2+ ions are prone to being trapped by Glu183 at site 1, which then blocks the entrance of both Na+ and Ca2+ to the vestibule of the SF. In addition, Na+ permeates through the selective filter in an asymmetrical manner, a feature that resembles that of the mammalian Nav orthologs. The study reported here provides insights into the mechanism of ion selectivity on Na+ over Ca2+ in mammalian Nav channels. 相似文献
5.
Nav1.5 dysfunctions are commonly linked to rhythms disturbances that include type 3 long QT syndrome (LQT3), Brugada syndrome (BrS), sick sinus syndrome (SSS) and conduction defects. Recently, this channel protein has been also linked to structural heart diseases such as dilated cardiomyopathy (DCM). 相似文献
6.
CCL2 [chemokine (C–C motif) ligand 2] contributes to the inflammation-induced neuropathic pain through activating VGSC (voltage-gated sodium channel)-mediated nerve impulse conduction, but the underlying mechanism is currently unknown. Our study aimed to investigate whether PKC (protein kinase C)–NF-κB (nuclear factor κB) is involved in CCL2-induced regulation of voltage-gated sodium Nav1.8 currents and expression. DRG (dorsal root ganglion) neurons were prepared from adult male Sprague–Dawley rats and incubated with various concentration of CCL2 for 24 h. Whole-cell patch-clamps were performed to record the Nav1.8 currents in response to the induction by CCL2. After being pretreated with 5 and10 nM CCL2 for 16 h, CCR2 [chemokine (C–C motif) receptor 2] and Nav1.8 expression significantly increased and the peak currents of Nav1.8 elevated from the baseline 46.53±4.53 pA/pF to 64.28±3.12 pA/pF following 10 nM CCL2 (P<0.05). Compared with the control, significant change in Nav1.8 current density was observed when the CCR2 inhibitor INCB3344 (10 nM) was applied. Furthermore, inhibition of PKC by AEB071 significantly eliminated CCL2-induced elevated Nav1.8 currents. In vitro PKC kinase assays and autoradiograms suggested that Nav1.8 within DRG neurons was a substrate of PKC and direct phosphorylation of the Nav1.8 channel by PKC regulates its function in these neurons. Moreover, p65 expression was significantly higher in CCL2-induced neurons (P<0.05), and was reversed by treatment with INCB3344 and AEB071. PKC–NF-κB are involved in CCL2-induced elevation of Nav1.8 current density by promoting the phosphorylation of Nav1.8 and its expression. 相似文献
7.
Karbat I Turkov M Cohen L Kahn R Gordon D Gurevitz M Frolow F 《Journal of molecular biology》2007,366(2):586-601
Scorpion depressant beta-toxins show high preference for insect voltage-gated sodium channels (Na(v)s) and modulate their activation. Although their pharmacological and physiological effects were described, their three-dimensional structure and bioactive surface have never been determined. We utilized an efficient system for expression of the depressant toxin LqhIT2 (from Leiurus quinquestriatushebraeus), mutagenized its entire exterior, and determined its X-ray structure at 1.2 A resolution. The toxin molecule is composed of a conserved cysteine-stabilized alpha/beta-core (core-globule), and perpendicular to it an entity constituted from the N and C-terminal regions (NC-globule). The surface topology and overall hydrophobicity of the groove between the core and NC-globules (N-groove) is important for toxin activity and plays a role in selectivity to insect Na(v)s. The N-groove is flanked by Glu24 and Tyr28, which belong to the "pharmacophore" of scorpion beta-toxins, and by the side-chains of Trp53 and Asn58 that are important for receptor site recognition. Substitution of Ala13 by Trp in the N-groove uncoupled activity from binding, suggesting that this region of the molecule is also involved in "voltage-sensor trapping", the mode of action that typifies scorpion beta-toxins. The involvement of the N-groove in recognition of the receptor site, which seems to require a defined topology, as well as in sensor trapping, which involves interaction with a moving channel region, is puzzling. On the basis of the mutagenesis studies we hypothesize that following binding to the receptor site, the toxin undergoes a conformational change at the N-groove region that facilitates the trapping of the voltage-sensor in its activated position. 相似文献
8.
Kanako Koizumi Masataka Narukawa Yuji Iitsuka Taiichiro Seki Tatsuo Watanabe 《Biochemical and biophysical research communications》2009,382(3):545-548
We searched for novel agonists of TRP receptors especially for TRPA1 and TRPV1 in foods. We focused attention on garlic compounds, diallyl sulfide (DAS), diallyl disulfide (DADS), and diallyl trisulfide (DATS). In TRPA1 or TRPV1 heterogeneously expressed CHO cells, all of those compounds increased [Ca2+]i in concentration-dependent manner. The EC50 values of DADS and DATS were similar to that of allyl isothiocyanate (AITC) and that of DAS was 170-fold larger than that of AITC. Maximum responses of these sulfides were equal to that of AITC. The EC50 values of these compounds for TRPV1 were around 100 μM against that of capsaicin (CAP), 25.6 nM and maximum responses of garlic compounds were half to that of CAP. The Ca2+ responses were significantly suppressed by co-application of antagonist. We conclude that DAS, DADS, and DATS are agonist of both TRPA1 and TRPV1 but with high affinity for TRPA1. 相似文献
9.
The mammalian target of rapamycin (mTOR) promotes increased protein synthesis required for cell growth. It has been suggested that phosphatidic acid, produced upon activation of phospholipase D (PLD), is a common mediator of growth factor activation of mTOR signaling. We used Rat-1 fibroblasts expressing the alpha(1A) adrenergic receptor to study if this G(q)-coupled receptor uses PLD to regulate mTOR signaling. Phenylephrine (PE) stimulation of the alpha(1A) adrenergic receptor induced mTOR autophosphorylation at Ser2481 and phosphorylation of two mTOR effectors, 4E-BP1 and p70 S6 kinase. These PE-induced phosphorylations were greatly reduced in cells depleted of intracellular Ca(2+). PE activation of PLD was also inhibited in Ca(2+)-depleted cells. Incubation of cells with 1-butanol to inhibit PLD signaling attenuated PE-induced phosphorylation of mTOR, 4E-BP1 and p70 S6 kinase. By contrast, platelet-derived growth factor (PDGF)-induced phosphorylation of these proteins was not blocked by Ca(2+) depletion or 1-butanol treatment. These results suggest that the alpha(1A) adrenergic receptor promotes mTOR signaling via a pathway that requires an increase in intracellular Ca(2+) and activation of PLD. The PDGF receptor, by contrast, appears to activate mTOR by a distinct pathway that does not require Ca(2+) or PLD. 相似文献
10.
Andrew R. Ednie Jean M. HarperEric S. Bennett 《Biochimica et Biophysica Acta (BBA)/General Subjects》2015
Background
Voltage-gated Na+ channels (Nav) are responsible for the initiation and conduction of neuronal and muscle action potentials. Nav gating can be altered by sialic acids attached to channel N-glycans, typically through isoform-specific electrostatic mechanisms.Methods
Using two sets of Chinese Hamster Ovary cell lines with varying abilities to glycosylate glycoproteins, we show for the first time that sialic acids attached to O-glycans and N-glycans within the Nav1.4 D1S5–S6 linker modulate Nav gating.Results
All measured steady-state and kinetic parameters were shifted to more depolarized potentials under conditions of essentially no sialylation. When sialylation of only N-glycans or of only O-glycans was prevented, the observed voltage-dependent parameter values were intermediate between those observed under full versus no sialylation. Immunoblot gel shift analyses support the biophysical data.Conclusions
The data indicate that sialic acids attached to both N- and O-glycans residing within the Nav1.4 D1S5-S6 linker modulate channel gating through electrostatic mechanisms, with the relative contribution of sialic acids attached to N- versus O-glycans on channel gating being similar.General significance
Protein N- and O-glycosylation can modulate ion channel gating simultaneously. These data also suggest that environmental, metabolic, and/or congenital changes in glycosylation that impact sugar substrate levels, could lead, potentially, to changes in Nav sialylation and gating that would modulate AP waveforms and conduction. 相似文献11.
Tetrodotoxin (TTX) is a highly potent neurotoxin that blocks the action potential by selectively binding to voltage-gated sodium channels (Na(v)). The skeletal muscle Na(v) (Na(v)1.4) channels in most pufferfish species and certain North American garter snakes are resistant to TTX, whereas in most mammals they are TTX-sensitive. It still remains unclear as to whether the difference in this sensitivity among the various vertebrate species can be associated with adaptive evolution. In this study, we investigated the adaptive evolution of the vertebrate Na(v)1.4 channels. By means of the CODEML program of the PAML 4.3 package, the lineages of both garter snakes and pufferfishes were denoted to be under positive selection. The positively selected sites identified in the p-loop regions indicated their involvement in Na(v)1.4 channel sensitivity to TTX. Most of these sites were located in the intracellular regions of the Na(v)1.4 channel, thereby implying the possible association of these regions with the regulation of voltage-sensor movement. 相似文献
12.
13.
《Channels (Austin, Tex.)》2013,7(1):90-94
Nav1.5 dysfunctions are commonly linked to rhythms disturbances that include type 3 long QT syndrome (LQT3), Brugada syndrome (BrS), sick sinus syndrome (SSS) and conduction defects. Recently, this channel protein has been also linked to structural heart diseases such as dilated cardiomyopathy (DCM). 相似文献
14.
Jittima Weerachayaphorn 《生物化学与生物物理学报:生物膜》2008,1778(4):1051-1059
Citric acid cycle intermediates are absorbed from the gastrointestinal tract through carrier-mediated mechanisms, although the transport pathways have not been clearly identified. This study examines the transport of citric acid cycle intermediates in the Caco-2 human colon carcinoma cell line, often used as a model of small intestine. Inulin was used as an extracellular volume marker instead of mannitol since the apparent volume measured with mannitol changed with time. The results show that Caco-2 cells contain at least three distinct transporters, including the Na+-dependent di- and tricarboxylate transporters, NaDC1 and NaCT, and one or more sodium-independent pathways, possibly involving organic anion transporters. Succinate transport is mediated mostly by Na+-dependent pathways, predominantly by NaDC1, but with some contribution by NaCT. RT-PCR and functional characteristics verified the expression of these transporters in Caco-2 cells. In contrast, citrate transport in Caco-2 cells occurs by a combination of Na+-independent pathways, possibly mediated by an organic anion transporter, and Na+-dependent mechanisms. The non-metabolizable dicarboxylate, methylsuccinate, is also transported by a combination of Na+-dependent and -independent pathways. In conclusion, we find that multiple pathways are involved in the transport of di- and tricarboxylates by Caco-2 cells. Since many of these pathways are not found in human intestine, this model may be best suited for studying Na+-dependent transport of succinate by NaDC1. 相似文献
15.
Fumiko Sekiguchi Yosuke Miyamoto Daiki Kanaoka Hiroki Ide Shigeru Yoshida Tsuyako Ohkubo Atsufumi Kawabata 《Biochemical and biophysical research communications》2014
Hydrogen sulfide (H2S), a gasotransmitter, is formed from l-cysteine by multiple enzymes including cystathionine-γ-lyase (CSE). We have shown that an H2S donor, NaHS, causes hyperalgesia in rodents, an effect inhibited by knockdown of Cav3.2 T-type Ca2+ channels (T-channels), and that NaHS facilitates T-channel-dependent currents (T-currents) in NG108-15 cells that naturally express Cav3.2. In the present study, we asked if endogenous and exogenous H2S participates in regulation of the channel functions in Cav3.2-transfected HEK293 (Cav3.2-HEK293) cells. dl-Propargylglycine (PPG), a CSE inhibitor, significantly decreased T-currents in Cav3.2-HEK293 cells, but not in NG108-15 cells. NaHS at 1.5 mM did not affect T-currents in Cav3.2-HEK293 cells, but enhanced T-currents in NG108-15 cells. In the presence of PPG, NaHS at 1.5 mM, but not 0.1–0.3 mM, increased T-currents in Cav3.2-HEK293 cells. Similarly, Na2S, another H2S donor, at 0.1–0.3 mM significantly increased T-currents in the presence, but not absence, of PPG in Cav3.2-HEK293 cells. Expression of CSE was detected at protein and mRNA levels in HEK293 cells. Intraplantar administration of Na2S, like NaHS, caused mechanical hyperalgesia, an effect blocked by NNC 55-0396, a T-channel inhibitor. The in vivo potency of Na2S was higher than NaHS. These results suggest that the function of Cav3.2 T-channels is tonically enhanced by endogenous H2S synthesized by CSE in Cav3.2-HEK293 cells, and that exogenous H2S is capable of enhancing Cav3.2 function when endogenous H2S production by CSE is inhibited. In addition, Na2S is considered a more potent H2S donor than NaHS in vitro as well as in vivo. 相似文献
16.
Background
Physiological responses to cold exhibit individual variation that can be affected by various factors, such as morphological characteristics, seasonal changes, and lifestyle; however, the genetic factors associated with this variation remain unclear. Recent studies have identified mtDNA as a potential genetic factor affecting cold adaptation. In addition, non-shivering thermogenesis (NST), a process closely related to mitochondrial dynamics, has also been suggested as an important factor affecting human response to cold. The present study aimed to clarify the relationship between mitochondrial haplogroup and NST during periods of mild cold exposure.Methods
Seventeen healthy university students (D: n = 8, non-D: n = 9) participated in the present study during summer and winter. A climate chamber was programmed so that ambient temperature inside dropped from 28°C to 16°C over the course of an 80-minute period. Physiological parameters were recorded throughout the course of the experiments.Results
Increases in VO2 were significantly greater during periods of cold exposure in winter than they were during periods of cold exposure in summer, and individuals from the D group exhibited greater winter values of ΔVO2 than individuals from the non-D group.Tre was significantly lower during periods of rest and cold exposure in winter; however, no significant difference was observed between Tre values of individuals in the D and non-D groups. In addition, although was significantly lower during periods of rest in winter than it was during those same periods in summer, no significant seasonal differences in values of were observed during periods of cold exposure.Conclusions
Results of the present study indicated that NST was greater in winter, and that the D group exhibited greater NST than the non-D group during winter. Despite the differences between groups in NST, no significant differences in rectal and skin temperatures were found between groups in either season. Therefore, it was supposed that mitochondrial DNA haplogroups had a greater effect on variation in energy expenditure involving NST than they had on insulative responses. Future studies are necessary in order to investigate more multiple candidate genes related to human cold adaptation and to elucidate the relationship between gene polymorphism and physiological polytypism. 相似文献17.
为探讨NAC转录因子在蝴蝶兰低温胁迫响应中的分子调控机理,该研究以蝴蝶兰的叶片为材料,运用RT-PCR及RACE技术克隆得到一条蝴蝶兰的NAC转录因子基因完整的cDNA序列,命名为PhNAC1(GenBank登录号MF797909),并分析了其在两种低温条件下的表达模式。结果表明:PhNAC1基因cDNA序列全长1 442 bp,ORF全长942 bp,编码313个氨基酸。预测其蛋白分子量为35.22 kDa,等电点为6.95,属于稳定亲水性蛋白。二级结构预测表明,无规则卷曲和延伸链为该蛋白的主要结构元件,与三级结构预测结果基本相符。PhNAC1编码的氨基酸序列与其他已登录的兰科植物NAC蛋白进行同源序列比对,表明与小兰屿蝴蝶兰(XP_0205763790)亲缘关系较近,序列一致性达97%,其次为铁皮石斛(XP_020695081),一致性为84%。实时荧光定量PCR分析表明,PhNAC1基因在营养器官和生殖器官中均有表达,在蕊柱中的表达量最高。在11℃/6℃低温条件下,PhNAC1基因的转录表达水平在前5天随着处理时间逐渐升高,到第7天开始下降;在4℃低温条件下,PhNAC1基因的表达水平在处理0.5 h时表达量有所下降,1 h后表达量上升至对照水平,之后无明显变化,在处理24至48 h又逐渐升高,推测PhNAC1基因参与蝴蝶兰低温胁迫响应。 相似文献
18.
Scn1a missense mutation impairs GABAA receptor-mediated synaptic transmission in the rat hippocampus
Yukihiro Ohno Nobumasa Sofue Tomoji Mashimo Tadao Serikawa 《Biochemical and biophysical research communications》2010,400(1):117-122
Mutations of the Nav1.1 channel subunit SCN1A have been implicated in the pathogenesis of human febrile seizures (FS). We have recently developed hyperthermia-induced seizure-susceptible (Hiss) rat, a novel rat model of FS, which carries a missense mutation (N1417H) in Scn1a[1]. Here, we conducted electrophysiological studies to clarify the influences of the Scn1a mutation on the hippocampal synaptic transmission, specifically focusing on the GABAergic system. Hippocampal slices were prepared from Hiss or F344 (control) rats and maintained in artificial cerebrospinal fluid saturated with 95% O2 and 5% CO2in vitro. Single neuron activity was recorded from CA1 pyramidal neurons and their responses to the test (unconditioned) or paired pulse (PP) stimulation of the Schaffer collateral/commissural fibers were evaluated. Hiss rats were first tested for pentylenetetrazole-induced seizures and confirmed to show high seizure susceptibility to the blockade of GAGAA receptors. The Scn1a mutation in Hiss rats did not directly affect spike generation (i.e., number of evoked spikes and firing threshold) of the CA1 pyramidal neurons elicited by the Schaffer collateral/commissural stimulation. However, GABAA receptor-mediated inhibition of pyramidal neurons by the PP stimulation was significantly disrupted in Hiss rats, yielding a significant increase in the number of PP-induced firings at PP intervals of 32-256 ms. The present study shows that the Scn1a missense mutation preferentially impairs GABAA receptor-mediated synaptic transmission without directly altering the excitability of the pyramidal neurons in the hippocampus, which may be linked to the pathogenesis of FS. 相似文献
19.
Wenwu Sun Zhonghua Wang Jianping Cao Haiyang Cui Zhuang Ma 《Cell stress & chaperones》2016,21(2):367-372
Reactive oxygen species (ROS) are responsible for lung damage during inhalation of cold air. However, the mechanism of the ROS production induced by cold stress in the lung is still unclear. In this work, we measured the changes of ROS and the cytosolic Ca2+ concentration ([Ca2+]c) in A549 cell. We observed that cold stress (from 20 to 5 °C) exposure of A549 cell resulted in an increase of ROS and [Ca2+]c, which was completely attenuated by removing Ca2+ from medium. Further experiments showed that cold-sensing transient receptor potential subfamily member 1 (TRPA1) agonist (allyl isothiocyanate, AITC) increased the production of ROS and the level of [Ca2+]c in A549 cell. Moreover, HC-030031, a TRPA1 selective antagonist, significantly inhibited the enhanced ROS and [Ca2+]c induced by AITC or cold stimulation, respectively. Taken together, these data demonstrated that TRPA1 activation played an important role in the enhanced production of ROS induced by cold stress in A549 cell. 相似文献
20.
Hai Huang Claire Rodriguez-Lafrasse Béatrice Kugener Mohamed Chahine 《FEBS letters》2009,583(5):890-170
Various entities and genetic etiologies, including inherited long QT syndrome type 3 (LQT3), contribute to sudden infant death syndrome (SIDS). The goal of our research was to biophysically characterize a new SCN5A mutation (S1333Y) in a SIDS infant. S1333Y channels showed the gain of Na+ channel function characteristic of LQT3, including a persistent inward Na+ current and an enhanced window current that was generated by a −8 mV shift in activation and a +7 mV shift in inactivation. The correlation between the biophysical data and arrhythmia susceptibility suggested that the SIDS was secondary to the LQT3-associated S1333Y mutation. 相似文献