首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Once dismissed as vestigial organelles, primary cilia have garnered the interest of scientists, given their importance in development/signaling, and for their implication in a new disease category known as ciliopathies. However, many, if not all, “cilia” proteins also have locations/functions outside of the primary cilium. These extraciliary functions can complicate the interpretation of a particular ciliopathy phenotype: it may be a result of defects at the cilium and/or at extraciliary locations, and it could be broadly related to a unifying cellular process for these proteins, such as polarity. Assembly of a cilium has many similarities to the development of other polarized structures. This evolutionarily preserved process for the assembly of polarized cell structures offers a perspective on how the cilium may have evolved. We hypothesize that cilia proteins are critical for cell polarity, and that core polarity proteins may have been specialized to form various cellular protrusions, including primary cilia.
  相似文献   

2.
3.
Structural birth defect (SBD) is a major cause of morbidity and mortality in the newborn period. Although the etiology of SBD is diverse, a wide spectrum of SBD associated with ciliopathies points to the cilium as having a central role in the pathogenesis of SBDs. Ciliopathies are human diseases arising from disruption of cilia structure and/or function. They are associated with developmental anomalies in one or more organ systems and can involve defects in motile cilia, such as those in the airway epithelia or from defects in nonmotile (primary cilia) that have sensory and cell signaling function. Availability of low cost next generation sequencing has allowed for explosion of new knowledge in genetic etiology of ciliopathies. This has led to the appreciation that many genes are shared in common between otherwise clinically distinct ciliopathies. Further insights into the relevance of the cilium in SBD has come from recovery of pathogenic mutations in cilia‐related genes from many large‐scale mouse forward genetic screens with differing developmental phenotyping focus. Our mouse mutagenesis screen for congenital heart disease (CHD) using noninvasive fetal echocardiography has yielded a marked enrichment for pathogenic mutations in genes required for motile or primary cilia function. These novel mutant mouse models will be invaluable for modeling human ciliopathies and further interrogating the role of the cilium in the pathogenesis of SBD and CHD. Overall, these findings suggest a central role for the cilium in the pathogenesis of a wide spectrum of developmental anomalies associated with CHD and SBDs. Birth Defects Research (Part C) 102:115–125, 2014. © 2014 Wiley Periodicals, Inc.  相似文献   

4.
《Organogenesis》2013,9(1):62-68
The primary cilium is an antenna-like organelle that plays a vital role in organ generation and maintenance. It protrudes from the cell surface where it receives signals from the surrounding environment and relays them into the cell. These signals are then integrated to give the required outputs in terms of proliferation, differentiation, migration and polarization that ultimately lead to organ development and homeostasis. Defects in cilia function underlie a wide range of diverse but related human developmental or degenerative diseases. Collectively known as ciliopathies, these disorders present with varying severity and multiple organ involvement. The appreciation of the medical importance of the primary cilium has stimulated a huge effort into studies of the underlying cellular mechanisms. These in turn have revealed that ciliopathies result not only from defective assembly or organization of the primary cilium, but also from impaired ciliary signaling. This special edition of Organogenesis contains a set of review articles that highlight the role of the primary cilium in organ development and homeostasis, much of which has been learnt from studies of the associated human diseases. Here, we provide an introductory overview of our current understanding of the structure and function of the cilium, with a focus on the signaling pathways that are coordinated by primary cilia to ensure proper organ generation and maintenance.  相似文献   

5.
Soluble levels of cytosolic tubulin regulate ciliary length control   总被引:2,自引:0,他引:2  
The primary cilium is an evolutionarily conserved dynamic organelle important for regulating numerous signaling pathways, and, as such, mutations disrupting ciliogenesis result in a variety of developmental abnormalities and postnatal disorders. The length of the cilium is regulated by the cell through largely unknown mechanisms. Normal cilia length is important, as either shortened or elongated cilia have been associated with disease and developmental defects. Here we explore the importance of cytoskeletal dynamics in regulating cilia length. Using pharmacological approaches in different cell types, we demonstrate that actin depolymerization or stabilization and protein kinase A activation result in a rapid elongation of the primary cilium. The effects of pharmacological agents on cilia length are associated with a subsequent increase in soluble tubulin levels and can be impaired by depletion of soluble tubulin with taxol. In addition, subtle nocodazole treatment was able to induce ciliogenesis under conditions in which cilia are not normally formed and also increases cilia length on cells that have already established cilia. Together these data indicate that cilia length can be regulated through changes in either the actin or microtubule network and implicate a possible role for soluble tubulin levels in cilia length control.  相似文献   

6.
Most mammalian cell types have the potential to assemble at least one cilium. Immotile cilia participate in numerous sensing processes, while motile cilia are involved in cell motility and movement of extracellular fluid. The functional importance of cilia and flagella is highlighted by the growing list of diseases due to cilia defects. These ciliopathies are marked by an amazing diversity of clinical manifestations and an often complex genetic aetiology. To understand these pathologies, a precise comprehension of the biology of cilia and flagella is required. These organelles are remarkably well conserved throughout eukaryotic evolution. In this review, we describe the strengths of various model organisms to decipher diverse aspects of cilia and flagella biology: molecular composition, mode of assembly, sensing and motility mechanisms and functions. Pioneering studies carried out in the green alga Chlamydomonas established the link between cilia and several genetic diseases. Moreover, multicellular organisms such as mouse, zebrafish, Xenopus, Caenorhabditis elegans or Drosophila, and protists such as Paramecium, Tetrahymena and Trypanosoma or Leishmania each bring specific advantages to the study of cilium biology. For example, the function of genes involved in primary ciliary dyskinesia (due to defects in ciliary motility) can be efficiently assessed in trypanosomes.  相似文献   

7.
The primary cilium is a microtubule-based organelle that senses extracellular signals as a cellular antenna. Primary cilia are found on many types of cells in our body and play important roles in development and physiology. Defects of primary cilia cause a broad class of human genetic diseases called ciliopathies. To gain new insights into ciliary functions and better understand the molecular mechanisms underlying ciliopathies, it is of high importance to generate a catalog of primary cilia proteins. In this study, we isolated primary cilia from mouse kidney cells by using a calcium-shock method and identified 195 candidate primary cilia proteins by MudPIT (multidimensional protein identification technology), protein correlation profiling, and subtractive proteomic analysis. Based on comparisons with other proteomic studies of cilia, around 75% of our candidate primary cilia proteins are shared components with motile or specialized sensory cilia. The remaining 25% of the candidate proteins are possible primary cilia-specific proteins. These possible primary cilia-specific proteins include EVC2, INPP5E, and inversin, several of which have been linked to known ciliopathies. We have performed the first reported proteomic analysis of primary cilia from mammalian cells. These results provide new insights into primary cilia structure and function.  相似文献   

8.
9.
Primary cilia play an essential role in modulating signaling cascades that shape cellular responses to environmental cues to maintain proper tissue development. Mutations in primary cilium proteins have been linked to several rare developmental disorders, collectively known as ciliopathies. Together with other disorders associated with dysfunctional cilia/centrosomes, affected individuals have increased risk of developing metabolic syndrome, neurologic disorders, and diabetes. In pancreatic tissues, cilia are found exclusively in islet and ductal cells where they play an essential role in pancreatic tissue organization. Their absence or disorganization leads to pancreatic duct abnormalities, acinar cell loss, polarity defects, and dysregulated insulin secretion. Cilia in pancreatic tissues are hubs for cellular signaling. Many signaling components, such as Hh, Notch, and Wnt, localize to pancreatic primary cilia and are necessary for proper development of pancreatic epithelium and β‐cell morphogenesis. Receptors for neuroendocrine hormones, such as Somatostatin Receptor 3, also localize to the cilium and may play a more direct role in controlling insulin secretion due to somatostatin's inhibitory function. Finally, unique calcium signaling, which is at the heart of β‐cell function, also occurs in primary cilia. Whereas voltage‐gated calcium channels trigger insulin secretion and serve a variety of homeostatic functions in β‐cells, transient receptor potential channels regulate calcium levels within the cilium that may serve as a feedback mechanism, regulating insulin secretion. This review article summarizes our current understanding of the role of primary cilia in normal pancreas function and in the diseased state. Birth Defects Research (Part C) 102:126–138, 2014. © 2014 Wiley Periodicals, Inc.  相似文献   

10.
Primary cilia are found on many epithelial cell types, including renal tubular epithelial cells, where they participate in flow sensing. Disruption of cilia function has been linked to the pathogenesis of polycystic kidney disease. We demonstrated previously that the exocyst, a highly conserved eight-protein membrane trafficking complex, localizes to primary cilia of renal tubular epithelial cells, is required for ciliogenesis, biochemically and genetically interacts with polycystin-2 (the protein product of the polycystic kidney disease 2 gene), and, when disrupted, results in MAPK pathway activation both in vitro and in vivo. The small GTPase Cdc42 is a candidate for regulation of the exocyst at the primary cilium. Here, we demonstrate that Cdc42 biochemically interacts with Sec10, a crucial component of the exocyst complex, and that Cdc42 colocalizes with Sec10 at the primary cilium. Expression of dominant negative Cdc42 and shRNA-mediated knockdown of both Cdc42 and Tuba, a Cdc42 guanine nucleotide exchange factor, inhibit ciliogenesis in Madin-Darby canine kidney cells. Furthermore, exocyst Sec8 and polycystin-2 no longer localize to primary cilia or the ciliary region following Cdc42 and Tuba knockdown. We also show that Sec10 directly interacts with Par6, a member of the Par complex that itself directly interacts with Cdc42. Finally, we show that Cdc42 knockdown results in activation of the MAPK pathway, something observed in cells with dysfunctional primary cilia. These data support a model in which Cdc42 localizes the exocyst to the primary cilium, whereupon the exocyst then targets and docks vesicles carrying proteins necessary for ciliogenesis.  相似文献   

11.
12.
13.
14.
15.
Joubert syndrome (JBTS) is a systematic developmental disorder mainly characterized by a pathognomonic mid-hindbrain malformation. All known JBTS-associated genes encode proteins involved in the function of antenna-like cellular organelle, primary cilium, which plays essential roles in cellular signal transduction and development. Here, we identified four unreported variants in ARL13B in two patients with the classical features of JBTS. ARL13B is a member of the Ras GTPase family and functions in ciliogenesis and cilia-related signaling. The two missense variants in ARL13B harbored the substitutions of amino acids at evolutionarily conserved positions. Using model cell lines, we found that the accumulations of the missense variants in cilia were impaired and the variants showed attenuated functions in ciliogenesis or the trafficking of INPP5E. Overall, these findings expanded the ARL13B pathogenetic variant spectrum of JBTS.  相似文献   

16.
Primary cilium is an organelle that plays significant roles in a number of cellular functions ranging from cell mechanosensation, proliferation, and differentiation to apoptosis. Autophagy is an evolutionarily conserved cellular function in biology and indispensable for cellular homeostasis. Both cilia and autophagy have been linked to different types of genetic and acquired human diseases. Their interaction has been suggested very recently, but the underlying mechanisms are still not fully understood. We examined autophagy in cells with suppressed cilia and measured cilium length in autophagy-activated or -suppressed cells. It was found that autophagy was repressed in cells with short cilia. Further investigation showed that MTOR activation was enhanced in cilia-suppressed cells and the MTOR inhibitor rapamycin could largely reverse autophagy suppression. In human kidney proximal tubular cells (HK2), autophagy induction was associated with cilium elongation. Conversely, autophagy inhibition by 3-methyladenine (3-MA) and chloroquine (CQ) as well as bafilomycin A1 (Baf) led to short cilia. Cilia were also shorter in cultured atg5-knockout (KO) cells and in atg7-KO kidney proximal tubular cells in mice. MG132, an inhibitor of the proteasome, could significantly restore cilium length in atg5-KO cells, being concomitant with the proteasome activity. Together, the results suggest that cilia and autophagy regulate reciprocally through the MTOR signaling pathway and ubiquitin-proteasome system.  相似文献   

17.
Energy homeostasis in our body system is maintained by balancing the intake and expenditure of energy. Excessive accumulation of fat by disrupting the balance system causes overweight and obesity, which are increasingly becoming global health concerns. Understanding the pathogenesis of obesity focused on studying the genes related to familial types of obesity. Recently, a rare human genetic disorder, ciliopathy, links the role for genes regulating structure and function of a cellular organelle, the primary cilium, to metabolic disorder, obesity and type II diabetes. Primary cilia are microtubule based hair-like membranous structures, lacking motility and functions such as sensing the environmental cues, and transducing extracellular signals within the cells. Interestingly, the subclass of ciliopathies, such as Bardet-Biedle and Alström syndrome, manifest obesity and type II diabetes in human and mouse model systems. Moreover, studies on genetic mouse model system indicate that more ciliary genes affect energy homeostasis through multiple regulatory steps such as central and peripheral actions of leptin and insulin. In this review, we discuss the latest findings in primary cilia and metabolic disorders, and propose the possible interaction between primary cilia and the leptin and insulin signal pathways which might enhance our understanding of the unambiguous link of a cell’s antenna to obesity and type II diabetes. [BMB Reports 2015; 48(12): 647-654]  相似文献   

18.
Insect chemosensory proteins (CSPs) as well as odorant-binding proteins (OBPs) have been supposed to transport hydrophobic chemicals to receptors on sensory neurons. Compared with OBPs, CSPs are expressed more broadly in various insect tissues. We performed a genome-wide analysis of the candidate CSP gene family in the silkworm. A total of 20 candidate CSPs, including 3 gene fragments and 2 pseudogenes, were characterized based on their conserved cysteine residues and their similarity to CSPs in other insects. Some of these genes were clustered in the silkworm genome. The gene expression pattern of these candidates was investigated using RT-PCR and microarray, and the results showed that these genes were expressed primarily in mature larvae and the adult moth, suggesting silkworm CSPs may be involved in development. The majority of silkworm CSP genes are expressed broadly in tissues including the antennae, head, thorax, legs, wings, epithelium, testes, ovaries, pheromone glands, wing disks, and compound eyes.  相似文献   

19.
The major autosomal dominant polycystic kidney disease (ADPKD) genes, PKD1 and PKD2, are wildly expressed at the organ and tissue level. PKD1 encodes polycystin 1 (PC1), a large membrane associated receptor-like protein that can complex with the PKD2 product, PC2. Various cellular locations have been described for both PC1, including the plasma membrane and extracellular vesicles, and PC2, especially the endoplasmic reticulum (ER), but compelling evidence indicates that the primary cilium, a sensory organelle, is the key site for the polycystin complex to prevent PKD. As with other membrane proteins, the ER biogenesis pathway is key to appropriately folding, performing quality control, and exporting fully folded PC1 to the Golgi apparatus. There is a requirement for binding with PC2 and cleavage of PC1 at the GPS for this folding and export to occur. Six different monogenic defects in this pathway lead to cystic disease development, with PC1 apparently particularly sensitive to defects in this general protein processing pathway. Trafficking of membrane proteins, and the polycystins in particular, through the Golgi to the primary cilium have been analyzed in detail, but at this time, there is no clear consensus on a ciliary targeting sequence required to export proteins to the cilium. After transitioning though the trans-Golgi network, polycystin-bearing vesicles are likely sorted to early or recycling endosomes and then transported to the ciliary base, possibly via docking to transition fibers (TF). The membrane-bound polycystin complex then undergoes facilitated trafficking through the transition zone, the diffusion barrier at the base of the cilium, before entering the cilium. Intraflagellar transport (IFT) may be involved in moving the polycystins along the cilia, but data also indicates other mechanisms. The ciliary polycystin complex can be ubiquitinated and removed from cilia by internalization at the ciliary base and may be sent back to the plasma membrane for recycling or to lysosomes for degradation. Monogenic defects in processes regulating the protein composition of cilia are associated with syndromic disorders involving many organ systems, reflecting the pleotropic role of cilia during development and for tissue maintenance. Many of these ciliopathies have renal involvement, likely because of faulty polycystin signaling from cilia. Understanding the expression, maturation and trafficking of the polycystins helps understand PKD pathogenesis and suggests opportunities for therapeutic intervention.  相似文献   

20.
Motile and primary cilia (PC) are microtubule-based structures located at the cell surface of many cell types. Cilia govern cellular functions ranging from motility to integration of mechanical and chemical signaling from the environment. Recent studies highlight the interplay between cilia and autophagy, a conserved cellular process responsible for intracellular degradation. Signaling from the PC recruits the autophagic machinery to trigger autophagosome formation. Conversely, autophagy regulates ciliogenesis by controlling the levels of ciliary proteins. The cross talk between autophagy and ciliated structures is a novel aspect of cell biology with major implications in development, physiology and human pathologies related to defects in cilium function.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号