首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Priming plants by non-pathogenic bacteria allows the host to save energy and to reduce time needed for development of defense reaction during a pathogen attack. However, information on the role of endophytes in plant defense is limited. Here, the ability of endophytic bacteria to promote growth and resistance of potato plants towards infection by the necrotroph Pectobacterium atrosepticum was studied. A Pseudomonas sp. strain was selected due to antagonism towards bacterial pathogens and a Methylobacterium sp. strain because of efficient plant colonization. The aim of this study was to find if there is any correlation between plant growth promotion and induction of resistance by endophytes of potato, as well as to study the putative mechanisms of endophytes interacting with the plant during resistance induction. Both tested strains promoted growth of potato shoots but only the Pseudomonas sp. increased potato resistance towards the soft rot disease. Induction of disease resistance by the Methylobacterium sp. was inversely proportional to the size of bacterial population used for inoculation. The plant antioxidant system was moderately activated during the induction of resistance by the biocontrol strains. qPCR data on expression of marker genes of induced systemic resistance and acquired systemic resistance in endophyte-infected Arabidopsis plants showed activation of both salicylic acid and jasmonate/ethylene-dependent pathways after challenge inoculation with the pathogen. We suggest that some endophytes have the potential to activate both basal and inducible plant defense systems, whereas the growth promotion by biocontrol strains may not correlate with induction of disease resistance.  相似文献   

2.
王欣禹  周勇  任安芝  高玉葆 《生态学报》2014,34(23):6789-6796
以感染内生真菌的天然禾草羊草为实验材料,通过体外纯培养条件下的内生真菌、感染内生真菌的离体叶片和在体叶片对3种病原菌的抑菌实验,以探讨内生真菌对宿主植物羊草在抗病性方面的贡献。结果表明:体外纯培养条件下,分离自羊草的内生真菌Epichlobromicola对新月弯孢(Curvularia lunata)、根腐离蠕孢(Bipolaris sorokiniana)和枝孢霉(Cladosporium sp.)这3种病原菌都具有抑制作用,抑菌率分别达56.22%,46.93%和45.15%,且内生真菌培养滤液可以有效抑制这3种病原菌的孢子萌发,平均萌发率分别为30.4%,15.7%和16.4%;宿主植物叶片在离体条件下,内生真菌感染可以有效降低羊草叶片受C.lunata和C.sp.侵染后的病斑数或病斑长度,但对B.sorokiniana不起作用,甚至提高了叶片的病斑数及病斑长度,而离体叶片提取液对不同病原菌均有不同程度的抑制作用;在体条件下,内生真菌均可以通过降低叶片病斑数来增强羊草植株对这3种病原菌的抗性。由此看来,内生真菌E.bromicola对宿主植物羊草在抗病原菌侵染方面有一定的增益作用。  相似文献   

3.
Piriformospora indica is a root endophytic fungus with plant-promoting properties in numerous plant species and induces resistance against root and shoot pathogens in barley, wheat, and Arabidopsis. A study over several years showed that the endophyte P. indica colonised the roots of the most consumed vegetable crop tomato. P. indica improved the growth of tomato resulting in increased biomass of leaves by up to 20%. Limitation of disease severity caused by Verticillium dahliae by more than 30% was observed on tomato plants colonised by the endophyte. Further experiments were carried out in hydroponic cultures which are commonly used for the indoor production of tomatoes in central Europe. After adaptation of inoculation techniques (inoculum density, plant stage), it was shown that P. indica influences the concentration of Pepino mosaic virus in tomato shoots. The outcome of the interaction seems to be affected by light intensity. Most importantly, the endophyte increases tomato fruit biomass in hydroponic culture concerning fresh weight (up to 100%) and dry matter content (up to 20%). Hence, P. indica represents a suitable growth promoting endophyte for tomato which can be applied in production systems of this important vegetable plant not only in soil, but also in hydroponic cultures.  相似文献   

4.
This study, framed in two different phases, studied the plant-growth promotion and the induction of systemic resistance in groundnut by Methylobacterium. Seed imbibition with Methylobacterium sp. increased germination by 19.5% compared with controls. Combined inoculation of Methylobacterium sp. with Rhizobium sp. also significantly increased plant growth, nodulation, and yield attributes in groundnut compared with individual inoculation of Rhizobium sp. Methylobacterium sp. challenge-inoculated with Aspergillus niger/Sclerotium rolfsii in groundnut significantly enhanced germination percentage and seedling vigour and showed increased phenylalanine ammonia lyase (PAL), β-1,3-glucanase, and peroxidase (PO) activities. Under pot-culture conditions, in Methylobacterium sp. seed—treated groundnut plants challenge-inoculated with A. niger/S. rolfsii through foliar sprays on day 30, the activities of enzymes PO, PAL, and β-1,3-glucanase increased constantly from 24 to 72 hours, after which decreased activity was noted. Five isozymes of polyphenol oxidase and PO could be detected in Methylobacterium-treated plants challenged with A. niger/S. rolfsii. Induced systemic resistance activity in groundnut against rot pathogens in response to methylotrophic bacteria suggests the possibility that pink-pigmented facultative methylotrophic bacteria might be used as a means of biologic disease control.  相似文献   

5.
A multiplex polymerase chain reaction (PCR) assay for simultaneous, fast and reliable detection of the main soft rot and blackleg potato pathogens in Europe has been developed. It utilises three pairs of primers and enables detection of three groups of pectinolytic bacteria frequently found in potato, namely: Pectobacterium atrosepticum, Pectobacterium carotovorum subsp. carotovorum together with Pectobacterium wasabiae and Dickeya spp. in a multiplex PCR assay. In studies with axenic cultures of bacteria, the multiplex assay was specific as it gave positive results only with strains of the target species and negative results with 18 non‐target species of bacteria that can possibly coexist with pectinolytic bacteria in a potato ecosystem. The developed assay could detect as little as 0.01 ng µL–1 of Dickeya sp. genomic DNA, and down to 0.1 ng µL–1 of P. atrosepticum and P. carotovorum subsp. carotovorum genomic DNA in vitro. In the presence of competitor genomic DNA, isolated from Pseudomonas fluorescens cells, the sensitivity of the multiplex PCR decreased tenfold for P. atrosepticum and Dickeya sp., while no change was observed for P. carotovorum subsp. carotovorum and P. wasabiae. In spiked potato haulm and tuber samples, the threshold level for target bacteria was 101 cfu mL–1 plant extract (102 cfu g–1 plant tissue), 102 cfu mL–1 plant extract (103 cfu g–1 plant tissue), 103 cfu mL–1 plant extract (104 cfu g–1 plant tissue), for Dickeya spp., P. atrosepticum and P. carotovorum subsp. carotovorum/P. wasabiae, respectively. Most of all, this assay allowed reliable detection and identification of soft rot and blackleg pathogens in naturally infected symptomatic and asymptomatic potato stem and progeny tuber samples collected from potato fields all over Poland.  相似文献   

6.
The effect of single actinobacterial endophyte seed inoculants and a mixed microbial soil inoculant on the indigenous endophytic actinobacterial population in wheat roots was investigated by using the molecular technique terminal restriction fragment length polymorphism (T-RFLP). Wheat was cultivated either from seeds coated with the spores of single pure actinobacterial endophytes of Microbispora sp. strain EN2, Streptomyces sp. strain EN27, and Nocardioides albus EN46 or from untreated seeds sown in soil with and without a commercial mixed microbial soil inoculant. The endophytic actinobacterial population within the roots of 6-week-old wheat plants was assessed by T-RFLP. Colonization of the wheat roots by the inoculated actinobacterial endophytes was detected by T-RFLP, as were 28 to 42 indigenous actinobacterial genera present in the inoculated and uninoculated plants. The presence of the commercial mixed inoculant in the soil reduced the endophytic actinobacterial diversity from 40 genera to 21 genera and reduced the detectable root colonization by approximately half. The results indicate that the addition of a nonadapted microbial inoculum to the soil disrupted the natural actinobacterial endophyte population, reducing diversity and colonization levels. This was in contrast to the addition of a single actinobacterial endophyte to the wheat plant, where the increase in colonization level could be confirmed even though the indigenous endophyte population was not adversely affected.  相似文献   

7.
Twelve wild, endophyte-infected populations of perennial ryegrass were tested for resistance against artificial infection of Drechslera siccans and Fusarium spp. Plants with identified endophyte presence (E+), together with plants free from endophytes (E−), were inoculated with serious turf grass pathogens: D. siccans (cause of brown blight) and a mixture of Fusarium species (cause of Fusarium blight). For both diseases, the positive effect of endophyte presence on plant resistance was observed. In the case of a few ecotypes, endophyte infection increased resistance against both diseases, which is of practical importance for disease control.  相似文献   

8.
Pectobacterium carotovorum and Pectobacterium atrosepticum are dreadful causal agents of potato soft rot. Actually, there are no efficient bactericides used to protect potato against Pectobacterium spp. Biological control using actinobacteria could be an interesting approach to manage this disease. Thus, two hundred actinobacteria isolated from Moroccan habitats were tested for their ability to inhibit in vitro 4 environmental Pectobacterium strains and the two reference strains (P. carotovorum CFBP 5890 and P. atrosepticum CFBP 5889). Eight percent of these isolates were active against at least one of the tested pathogens and only 2% exhibited an antimicrobial activity against all tested Pectobacterium strains. Four bioactive isolates having the greatest pathogen inhibitory capabilities and classified as belonging to the genus Streptomyces species through 16S rDNA analysis were subsequently tested for their ability to reduce in vivo soft rot symptoms on potato slices of Bintje, Yukon Gold, Russet and Norland cultivars caused by the two pathogens P. carotovorum and P. atrosepticum. This test was carried out by using biomass inoculums and culture filtrate of the isolates as treatment. Among these, strain Streptomyces sp. OE7, reduced by 65–94% symptom severity caused by the two pathogens on potato slices. Streptomyces OE7 showed a potential for controlling soft rot on potato slices and could be useful in an integrated control program against potato soft rot pathogens in the objective to reduce treatments with chemical compounds.  相似文献   

9.
Methylobacterium species frequently inhabit plant surfaces and are able to utilize the methanol emitted from plants as carbon and energy sources. As some of the Methylobacterium species are known to promote plant growth, significant attention has been paid to the mechanism of growth promotion and the specificity of plant–microbe interactions. By screening our Methylobacterium isolate collection for the high growth promotion effect in vitro, we selected some candidates for field and pot growth tests for rice and barley, respectively. We found that inoculation resulted in better ripening of rice seeds, and increased the size of barley grains but not the total yield. In addition, using whole-cell matrix-assister laser desorption/ionization- time-of-flight mass spectrometry (MALDI-TOF/MS) analysis, we identified and classified Methylobacterium isolates from Methylobacterium-inoculated rice plants. The inoculated species could not be recovered from the rice plants, and in some cases, the Methylobacterium community structure was affected by the inoculation, but not with predomination of the inoculated species. The isolates from non-inoculated barley of various cultivars grown in the same field fell into just two species. These results suggest that there is a strong selection pressure at the species level of Methylobacterium residing on a given plant species, and that selection of appropriate species that can persist on the plant is important to achieve growth promotion.  相似文献   

10.
11.
Summer-active (continental) and summer-dormant (Mediterranean) tall fescue morphotypes are each adapted to different environmental conditions. Endophyte presence provides plant parasitic nematode resistance, but not with all endophyte strains and cultivar combinations. This study sought to compare effects of four nematode genera on continental and Mediterranean cultivars infected with common toxic or novel endophyte strains. A 6-mon greenhouse study was conducted with continental cultivars, Kentucky 31 (common toxic) and Texoma MaxQ II (novel endophyte) and the Mediterranean cultivar Flecha MaxQ (novel endophyte). Endophyte-free plants of each cultivar were controls. Each cultivar × endophyte combination was randomly assigned to a control, low or high inoculation rate of a mixed nematode culture containing stunt nematodes (Tylenchorhynchus spp.), ring nematodes (Criconemella spp.), spiral nematodes (Helicotylenchus spp.), and lesion nematodes (Pratylenchus spp.). Endophyte infection had no effect on nematode population densities. The cultivar × endophyte interaction was significant. Population densities of stunt nematode, spiral nematode, and ring nematodes were higher for Flecha MaxQ than other cultivar × endophyte combinations. Novel endophyte infection enhances suitability of Flecha MaxQ as a nematode host.  相似文献   

12.
Enterobacter sp. strain SST3 is an endophytic bacterium isolated from Saccharum spp. Here we present its annotated draft genome that may shed light on its role as a bacterial endophyte of sugarcane. To our knowledge, this is the first genome announcement of a sugarcane-associated bacterium from the genus Enterobacter.  相似文献   

13.
Foliar endophytic fungi are present in almost all vascular plants. The composition of endophyte communities varies among plant individuals. Likely, but understudied, sources of this variation are the species composition of the plant community and initial attacks by insect herbivores. We addressed these issues by characterizing fungal endophyte communities on leaves of chestnut (Castanea sativa) grown in pure vs. mixed stands. We used ITS metabarcoding methods to identify endophytic fungi associated with galls caused by the invasive gall wasp, Dryocosmus kuriphilus, and with surrounding chestnut leaf tissues. We found 1378 different OTUs. The richness, diversity and composition of endophyte communities differed between galls and surrounding leaf tissues but were independent of forest stand composition. Fungal endophyte richness was lower in galls than in surrounding leaf tissues. Most differences in the composition of fungal endophyte communities between galls and foliar tissues were due to OTU turnover. These results suggest that insect-induced galls provide a particular habitat condition for endophytic microorganisms, regardless of forest species composition. A better understanding of endophyte biology is important to improve their use as biocontrol agents of galling insects.  相似文献   

14.
Plants growing in natural environments experience myriad interactions with a diverse assemblage of pathogens, parasites and mutualists. Many of these interactions involve symbiotic bacteria and fungi, but they also include macroparasitic plants. In this study, we investigated the interactions among a host grass (Lolium pratense, ex., Festuca pratensis), its symbiotic endophytic fungus (Neotyphodium uncinatum), a root hemiparasitic plant (Rhinanthus serotinus) of the host grass and a generalist herbivore (aphid Aulacorthum solani) of the hemiparasite. We demonstrate that the hemiparasitic plant acquires defending mycotoxins produced by the endophytic fungus living within their shared host grass. The uptake of defensive mycotoxins from the endophyte‐infected host grass enhances the resistance of the hemiparasitic plant to the generalist aphid herbivore. Endophyte infection increases the performance of the hemiparasitic plant, but reduces the growth of the host grass. In other words, the mutualistic endophytic fungus becomes parasitic in the presence of the hemiparasitic plant. Our results suggest that the outcomes of grass–endophyte interactions are conditional on the complexity of community‐level interactions; thus, the outcome of multispecies interactions may not be predictable from pair‐wise combinations of species.  相似文献   

15.
A plant growth-promoting bacteria, Azospirillum sp. B510, isolated from rice, can enhance growth and yield and induce disease resistance against various types of diseases in rice. Because little is known about the interaction between other plant species and this strain, we have investigated the effect of its colonization on disease resistance in tomato plants. Treatment with this strain by soil-drenching method established endophytic colonization in root tissues in tomato plant. The endophytic colonization with this strain-induced disease resistance in tomato plant against bacterial leaf spot caused by Pseudomonas syringae pv. tomato and gray mold caused by Botrytis cinerea. In Azospirillum-treated plants, neither the accumulation of SA nor the expression of defense-related genes was observed. These indicate that endophytic colonization with Azospirillum sp. B510 is able to activate the innate immune system also in tomato, which does not seem to be systemic acquired resistance.  相似文献   

16.
The presence of human-pathogenic, enteric bacteria on the surface and in the interior of raw produce is a significant health concern. Several aspects of the biology of the interaction between these bacteria and alfalfa (Medicago sativa) seedlings are addressed here. A collection of enteric bacteria associated with alfalfa sprout contaminations, along with Escherichia coli K-12, Salmonella enterica serotype Typhimurium strain ATCC 14028, and an endophyte of maize, Klebsiella pneumoniae 342, were labeled with green fluorescent protein, and their abilities to colonize the rhizosphere and the interior of the plant were compared. These strains differed widely in their endophytic colonization abilities, with K. pneumoniae 342 and E. coli K-12 being the best and worst colonizers, respectively. The abilities of the pathogens were between those of K. pneumoniae 342 and E. coli K-12. All Salmonella bacteria colonized the interiors of the seedlings in high numbers with an inoculum of 102 CFU, although infection characteristics were different for each strain. For most strains, a strong correlation between endophytic colonization and rhizosphere colonization was observed. These results show significant strain specificity for plant entry by these strains. Significant colonization of lateral root cracks was observed, suggesting that this may be the site of entry into the plant for these bacteria. At low inoculum levels, a symbiosis mutant of Medicago truncatula, dmi1, was colonized in higher numbers on the rhizosphere and in the interior by a Salmonella endophyte than was the wild-type host. Endophytic entry of M. truncatula appears to occur by a mechanism independent of the symbiotic infections by Sinorhizobium meliloti or mycorrhizal fungi.  相似文献   

17.
Mutualistic fungus promotes plant invasion into diverse communities   总被引:3,自引:0,他引:3  
Reducing the biological diversity of a community may decrease its resistance to invasion by exotic species. Manipulative experiments typically support this hypothesis but have focused mainly on one trophic level (i.e., primary producers). To date, we know little about how positive interactions among species may influence the relationship between diversity and invasibility, which suggests a need for research that addresses the question: under what conditions does diversity affect resistance to invasion? We used experimental manipulations of both plant diversity and the presence of an endophytic fungus to test whether a fungal mutualist of an invasive grass species (Lolium arundinaceum) switches the relationship between plant community diversity and resistance to invasion. Association with the fungal endophyte (Neotyphodium coenophialum) increased the ability of L. arundinaceum to invade communities with greater species diversity. In the absence of the endophyte, the initial diversity of the community significantly reduced the establishment of L. arundinaceum. However, establishment was independent of initial diversity in the presence of the endophyte. Fungal symbionts, like other key species, are often overlooked in studies of plant diversity, yet their presence may explain variation among studies in the effect of diversity on resistance to invasion.  相似文献   

18.
Citrus variegated chlorosis (CVC) is caused by Xylella fastidiosa, a phytopathogenic bacterium that can infect all Citrus sinensis cultivars. The endophytic bacterial communities of healthy, resistant, and CVC-affected citrus plants were studied by using cultivation as well as cultivation-independent techniques. The endophytic communities were assessed in surface-disinfected citrus branches by plating and denaturing gradient gel electrophoresis (DGGE). Dominant isolates were characterized by fatty-acid methyl ester analysis as Bacillus pumilus, Curtobacterium flaccumfaciens, Enterobacter cloacae, Methylobacterium spp. (including Methylobacterium extorquens, M. fujisawaense, M. mesophilicum, M. radiotolerans, and M. zatmanii), Nocardia sp., Pantoea agglomerans, and Xanthomonas campestris. We observed a relationship between CVC symptoms and the frequency of isolation of species of Methylobacterium, the genus that we most frequently isolated from symptomatic plants. In contrast, we isolated C. flaccumfaciens significantly more frequently from asymptomatic plants than from those with symptoms of CVC while P. agglomerans was frequently isolated from tangerine (Citrus reticulata) and sweet-orange (C. sinensis) plants, irrespective of whether the plants were symptomatic or asymptomatic or showed symptoms of CVC. DGGE analysis of 16S rRNA gene fragments amplified from total plant DNA resulted in several bands that matched those from the bacterial isolates, indicating that DGGE profiles can be used to detect some endophytic bacteria of citrus plants. However, some bands had no match with any isolate, suggesting the occurrence of other, nonculturable or as yet uncultured, endophytic bacteria. A specific band with a high G+C ratio was observed only in asymptomatic plants. The higher frequency of C. flaccumfaciens in asymptomatic plants suggests a role for this organism in the resistance of plants to CVC.  相似文献   

19.
We studied the diversity and biocontrol potential of 100 fungal endophytes isolated from Espeletia spp., endemic plant species from the Paramo in the Andean mountain range. Our sample was genotypically highly diverse at all ITS similarity levels. The antagonistic properties of these isolates were tested against common crop pathogens in Colombia, including Pectobacterium carotovorum, Ralstonia solanacearum, Pseudomonas syringae, Xanthomonas campestris, Rhizoctonia solani, Botrytis cinerea, Fusarium oxysporum, and Phytophthora infestans. All endophytic isolates were able to significantly inhibit the growth of at least one of the plant pathogens tested (P?<?0.05). Three main types of endophyte/pathogen interactions were observed. However, only those endophytes that produced an evident inhibition halo were further studied using their crude extracts to confirm that the inhibitory effect was due to the production of endophytic bioactive metabolites. From these experiments, nine promising isolates were selected for co-inoculation tests with R. solani in tomato plants. The isolates identified as Aureobasidium pullulans and Paraconiothyrium sporulosum not only protected the plants against this pathogen but also allowed them to exhibit similar growth and development as the uninoculated control. This work explores new alternatives for disease management without the application of chemical pesticides.  相似文献   

20.
A total of 250 endophytic fungal isolates, representing 30 morphotaxa, were isolated and characterised, they were collected from the different living symptomless parts of date palm trees of orchards of six Egyptian governorates. Colonisation was greater in samples from the midrib than in those from laminar tissue and slightly greater at the tip of the lamina compared with the base of the leaf. Acremonium spp. were frequently isolated as date palm root endophytes. Acremonium isolates were screened in Petri dishes to select the highest antagonistic one against an Algerian isolate of Fusarium oxysporum f.sp. albedinis. Two-week-old axenically reared date palm seedlings grown in Petri dishes were directly injected with spore suspension (1.5?×?107 spores/ml) of a pure culture of the virulent antagonistic isolate of Acremonium sp. One week after endophytic colonisation, date palm seedlings were then challenged with the pathogen, Fusarium albedinis. The challenged seedlings exhibited a significant reduction in wilt symptom percentage (by 87.0%), while the seedlings exposed to Fusarial toxin without pathogen exhibited the wilt disease symptoms. This indicates that the endophyte ably depresses any toxic action of F. albedinis. The endophytic fungus was recovered from sites distant from the point of inoculation after six?months from the application, indicating that the Acremonium sp. has the potential to move throughout the tissue plant, even the end time of trial. The Acremonium mode of action, as a biocontrol agent, was discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号