首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The kinetic specificities of BPN' and Carlsberg subtilisins [EC 3.4.21.14] were examined with various nucleus-substituted derivatives of Nalpha-acetylated aromatic amino acid methyl esters for mapping their hydrophobic binding sites in comparison with that of alpha-chymotrypsin. The Carlsberg enzyme was generally much more reactive than the BPN' enzyme due to the larger kcat value. The fact that the two sutilisins hydrolyzed Ac-Tyr(PABz)-OMe, which is a derivative of tyrosine bearing a planar trans-p-phenylazobenzoyl group at the OH-function, with the smallest Km value showed that these enzymes possess a more extended aromatic binding site than has so far been demonstrated. Ac-Phe(4-NO2)-OMe was remarkable in being hydrolyzed with a particularly large kcat value (5,500 +/- 700 s-1 at pH 7.8 for Carlsberg subtilisin). Ac-Phe(4-NO2)-OMe and Ac-Tyr-OMe were distinguished by Carlsberg subtilisin in terms of kcat but not by BPN' subtilisin, suggesting that the specificity site of the former is more sensitive to a small change in size of substituent than that of the latter. Ac-Trp(NCps)-OMe and Ac-Trp(NCps)-OH were bound to the enzyme's active site but in a competitive manner. A difference in the standard free energies of binding between the two enzymes may indicate that the hydrophobic cleft of Carlsberg subtilisin is somewhat deeper and/or narrower than that of BPN' subtilisin.  相似文献   

2.
The refined crystal structure of subtilisin Carlsberg at 2.5 A resolution   总被引:4,自引:0,他引:4  
We report here the X-ray crystal structure of native subtilisin Carlsberg, solved at 2.5 A resolution by molecular replacement and refined by restrained least squares to a crystallographic residual (Formula see text): of 0.206. we compare this structure to the crystal structure of subtilisin BPN'. We find that, despite 82 amino acid substitutions and one deletion in subtilisin Carlsberg relative to subtilisin BPN', the structures of these enzymes are remarkably similar. We calculate an r.m.s. difference between equivalent alpha-carbon positions in subtilisin Carlsberg and subtilisin BPN' of only 0.55 A. This confirms previous reports of extensive structural homology between these two subtilisins based on X-ray crystal structures of the complex of eglin-c with subtilisin Carlsberg [McPhalen, C.A., Schnebli, H.P. and James, M.N.G. (1985) FEBS Lett., 188, 55; Bode, W., Papamokos, E. and Musil, D. (1987) Eur. J. Biochem., 166, 673-692]. In addition, we find that the native active sites of subtilisins Carlsberg and BPN' are virtually identical. While conservative substitutions at residues 217 and 156 may have subtle effects on the environments of substrate-binding sites S1' and S1 respectively, we find no obvious structural correlate for reports that subtilisins Carlsberg and BPN' differ in their recognition of model substrates. In particular, we find no evidence that the hydrophobic binding pocket S1 in subtilisin Carlsberg is 'deeper', 'narrower' or 'less polar' than the corresponding binding site in subtilisin BPN'.  相似文献   

3.
Presteady state and steady state analyses of the alpha-chymotrypsin [EC 3.4.21.1]-catalyzed hydrolysis of three specific ester substrates and three ring-substituted derivatives were carried out to elucidate the effect of hydrophobic interactions due to the different side chains of the substrates on the individual steps of the reaction. Hydrolysis of all the substrates except for N alpha-acetyl-Nin-formyltryptophan methyl ester (Ac-Trp(CHO)-OMe) was controlled by the deacylation rate. In spite of their comparable Ks values, the substrates with small kcat, such as N alpha-acetyltryptophan methyl ester and N alpha-acetyl-2-(2-nitro-4-carboxyphenylsufenyl)-tryptophan methyl ester, characteristically gave Km values one order of magnitude smaller than the others. For the reaction of Ac-Trp(CHO)-OMe, it was ascertained that the deacylation step was not rate-controlling. It is suggested that the acylation step controls the rate in this case.  相似文献   

4.
In order to investigate how changes in the structures of side-chain aromatic groups of specific substrates influence binding and kinetic specificity in alpha chymotrypsin [EC 3.4.21.1]-catalyzed reactions, a number of nucleus-substituted derivatives of the specific ester substrates were prepared and steady-state kinetic studies were carried out at pH 6.5 and 7.8. Ac-Trp(NCps)-OMe was hydrolyzed more readily at low substrate concentration than Ac-Trp-OMe due to its smaller Km(app) value, suggesting that the bulky 2-nitro-4-carboxyphenylsulfenyl moiety interacts with outer residues rather than with those in the hydrophobic pocket and that this interaction increases the binding specificity. Inhibition experiments using the corresponding carboxylate and analogous inhibitors, however, showed that the carboxy group at the para position of the phenyl nucleus of the substituent sterically hinders association with the active site of alpha-chymotrypsin at pH 7.8 but not at pH 6.5. The kcat values of Ac-Trp(CHO)-0Me, Ac-Tyr(3-NO2)-OMe, and Ac-m-Tyr-OMe were much higher than those of the corresponding specific substrates, indicating that derivatives with a substitute as large as a formyl, nitro or hydroxyl group at the xi-position are stereochemically favorable to the catalytic process. Remarkable increases in Km(app) were also observed. The individual parameters for Ac-Dopa-OMe, however, were comparable to those for Ac-Tyr-OMe.  相似文献   

5.
Steady state kinetic studies of alpha-chymotrypsin [EC 3.4.21.1]-catalyzed hydrolysis of nucleus-substituted derivatives of the specific substrates were made at pH 6.5 and 7.8. Ac-Trp(NCps)-OMe was hydrolyzed more readily than Ac-Trp-OMe owing to its smaller Km value. The kcat values of Ac-Trp(CHO)-OMe and Ac-Tyr(3-no2)-ome were higher than those of the corresponding unmodified substrates, suggesting that derivatives with a substituent as large as a formyl or nitro group at the epsilon-position are stereochemically favorable to the catalytic process. Derivatives of Ac-Phe-OMe with a chain of four atoms at the 3 or 4-position of the phenyl nucleus and 2,3-dihydropyrrolo[2,3-b]indoles derived from Ac-Trp-OMe were not hydrolyzed at all.  相似文献   

6.
The effect of pH and temperature on the apparent association equilibrium constant (Ka) for the binding of the recombinant proteinase inhibitor eglin c from leech Hirudo medicinalis to human leukocyte elastase (EC 3.4.21.37), bovine alpha-chymotrypsin (EC 3.4.21.1) and subtilisin Carlsberg (EC 3.4.21.14) has been investigated. On lowering the pH from 9.5 to 4.5, values of Ka for eglin c binding to the serine proteinases considered decrease thus reflecting the acid-pK shift of the invariant histidyl catalytic residue (His57 in human leukocyte elastase and bovine alpha-chymotrypsin, and His64 in subtilisin Carlsberg) from congruent to 6.9, in the free enzymes, to congruent to 5.1, in the enzyme:inhibitor adducts. At pH 8.0, values of the apparent thermodynamic parameters for eglin c binding are: human leukocyte elastase - Ka = 1.0 x 10(10) M-1, delta G phi = -13.4 kcal/mol, delta H phi = +1.8 kcal/mol, and delta S phi = +52 entropy units; bovine alpha-chymotrypsin -Ka = 5.0 x 10(9) M-1, delta G phi = -13.0 kcal/mol, delta H phi = +2.0 kcal/mol, and delta S phi = +51 entropy units; and subtilisin Carlsberg - Ka = 6.6 x 10(9) M-1, delta G phi = -13.1 kcal/mol, delta H phi = +2.0 kcal/mol, and delta S phi = +51 entropy units (values of Ka, delta G phi and delta S phi were obtained at 21 degrees C; values of delta H phi were temperature independent over the range explored, i.e. between 10 degrees C and 40 degrees C; 1 kcal = 4184J).(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

7.
Subtilisin BPN' hydrolysed N-acetyl-l-3-(2-naphthyl)-alanine methyl ester, N-acetyl-l-leucine methyl ester and N-acetyl-l-valine methyl ester, faster than alpha-chymotrypsin. Of eight ;locked' substrates tested, only methyl 5,6-benzindan-2-carboxylate was hydrolysed faster by subtilisin, whereas the other esters were better substrates for chymotrypsin. Compared with the values for chymotrypsin, the stereospecific ratios during the hydrolysis of the optically active locked substrates by subtilisin were decreased by one and two orders of magnitude for bi- and tri-cyclic substrates respectively. The polar groups adjacent to the alpha-carbon atom of locked substrates did not contribute significantly to the reactivity of the more active optical isomers, but had a detrimental effect on the less active antipodes during hydrolysis by both the enzymes. These studies show that the binding site of subtilisin BPN' is longer and broader than that of alpha-chymotrypsin.  相似文献   

8.
A new substrate for subtilisins, anthraniloyl-Ala-Ala-Phe-4-nitroanilide, has been synthesized and characterized. The peptide is a fluorogenic substrate that is intramolecularly quenched without loss of its chromogenic properties and offers a possibility for double-assay kinetic analysis. The kinetic parameters determined for subtilisin Carlsberg are Km = 0.004 mM, kcat = 104 s-1, and those for subtilisin BPN' are Km = 0.020 mM, kcat = 49 s-1. The substrate is extremely sensitive for subtilisins; the specificity constants are 10-fold higher than the corresponding values for the widely used substrate, succinyl-Ala-Ala-Pro-Phe-4-nitroanilide, and 200- to 1000-fold higher than the values obtained with succinyl-Ala-Ala-Phe-4-nitroanilide. The favorable effect of the anthraniloyl group as a P4 residue in the substrate sequence Ala-Ala-Phe-4-nitroanilide was assumed to be due to an ability to stiffen S4-P4 interactions. The mechanism proposed is hydrogen bond formation between the phenol group of tyrosine-104 and the amino group of the anthraniloyl moiety. In the spectrophotometric assay with the new substrate, the lower detection limit for subtilisin Carlsberg was 1 nM.  相似文献   

9.
In the course of searching for specific chromogenic substrates which might be useful in screening for protease-deficient mutants of Bacillus subtilis, we have developed a method for the synthesis of N-benzoyl-L-tyrosine thiobenzyl ester (BzTyrSBzl) in good yield. Spontaneous base hydrolysis of this thiol ester is low, but several serine proteases hydrolyze it readily. Spectrophotometric measurement of the hydrolysis of the ester in the presence of 5,5'-dithiobis(2-nitrobenzoic acid) provides a continuous assay for chymotrypsin as sensitive as any assay reported in the literature. Serine proteases which hydrolyze this substrate may be detected in polyacrylamide disc gels by incubation in the presence of nitro blue tetrazolium. Apparent Km values of 0.02 and 7 mM and kcat values of 37 S-1 and 126 S-1 were observed for the hydrolysis of BzTyrSBzl by alpha-chymotrypsin and subtilisin BPN', respectively. Additionally, 5 mM indole was observed to behave as a strict competitive inhibitor of the alpha-chymotrypsin-catalyzed hydrolysis of BzTyrSBzl but was observed to increase the maximal rate of hydrolysis of p-nitrophenyl acetate by alpha-chymotrypsin by 30%, as previously described. These data, the published data of other workers, and results from studies with molecular models of trypsin and subtilisin BPN' are used as the basis for describing more fully a secondary hydrophobic binding pocket on alpha-chymotrypsin. The pocket is immediately adjacent to the active site serine and is tentatively suggested to be composed of 4 aliphatic side chain residues and 2 glycine residues.  相似文献   

10.
Peptide substrates of the general structure acetyl-Alan (n = 2-5), acetyl-Pro-Ala-Pro-Phe-Alan-NH2 (n = 0-3), and acetyl-Pro-Ala-Pro-Phe-AA-NH2 (AA = various amino acids) were synthesized and used to investigate the enzyme-substrate interactions of the microbial serine proteases thermitase, subtilisin BPN', and proteinase K on the C-terminal side of the scissile bond. The elongation of the substrate peptide chain up to the second amino acid on the C-terminal side (P'2) enhances the hydrolysis rate of thermitase and subtilisin BPN', whereas for proteinase K an additional interaction with the third amino acid (P'3) is possible. The enzyme subsite S'1 specificity of the proteases investigated is very similar. With respect to kcat/Km values small amino acid residues such as Ala and Gly are favored in this position. Bulky residues such as Phe and Leu were hydrolyzed to a lower extent. Proline in P'1 abolishes the hydrolysis of the substrates. Enzyme-substrate interactions on the C-terminal side of the scissile bond appear to affect kcat more than Km for all three enzymes.  相似文献   

11.
A series of arylalkanoate esters and alpha-acetamidoarylalkanoate esters were tested as substrates for alpha-chymotrypsin and subtilisin BPN'. Chymotrypsin hydrolysed N-acetyl-l-phenylalanine methyl ester and methyl 4-phenylbutyrate faster than their respective higher and lower homologues, whereas methyl 2-acetamido-6-phenylhexanoate and methyl 6-phenylhexanoate were better substrates for subtilisin than their lower homologues. N-Acetyl-l-tryptophan methyl ester and its analogue, N-acetyl-3-(1-naphthyl)-alanine methyl ester, were hydrolysed 23 times faster by chymotrypsin than by subtilisin. These results indicate that the binding site of alpha-chymotrypsin is roughly 1.1nm (11A) long and curved, whereas that of subtilisin is a longer system and less curved. The stereo-specificity during the hydrolysis of typical substrates by both enzymes was found to vary over a wide range. The enhancing effect of the alpha-acetamido group in the l-series of substrates and the detrimental effect in the d-series of substrates also varies considerably.  相似文献   

12.
The serine proteases alpha-chymotrypsin, trypsin, and subtilisin Carlsberg were immobilized in a sol-gel matrix and the effects on the enzyme activity in organic media are evaluated. The percentage of immobilized enzyme is 90% in the case of alpha-chymotrypsin and the resulting specific enzyme activity in the transesterification of N-acetyl-L-phenylalanine ethyl ester with 1-propanol in cyclohexane is 43 times higher than that of a nonimmobilized lyophilized alpha-chymotrypsin. The activities of trypsin and subtilisin Carlsberg are enhanced with 437 and 31 times, respectively. The effect of immobilization on the enzyme activity is highest in hydrophobic solvents.  相似文献   

13.
The interaction between BPN' or Carlsberg subtilisins and peptides of the type Ac-Glyn-X-OMe (n = 0, 1, 2, 3), where X denotes one of five different aromatic amino acids, was investigated to elucidate the effect of the secondary interaction on catalysis in relation to the nature of the X residue. The increase in interaction upon elongation of the chain was accompanied by a large increase in kcat but with no marked change in Km in all the series of sensitive substrates. The peptides containing 2-(2-nitro-4-carboxyphenylsulfenyl)-tryptophan, however, acted as competitive inhibitors and exhibited an invariant dissociation constant in spite of the different chain lengths. These observations suggest that the secondary enzyme-substrate interaction induces a conformational change in the active site of the enzyme or in the substrate in such a way as to lower the activation energy and to form a stabilized transient complex. In this respect, BPN' and Carlsberg subtilisins are similar to porcine pepsin and Streptomyces griseus protease 1 rather than to alpha-chymotrypsin.  相似文献   

14.
The substrate specificities of alpha-chymotrypsin and subtilisins for peptide synthesis in hydrophilic organic solvents were investigated. Chymotrypsin exhibited high specificity to aromatic amino acids as acyl donors, while subtilisin Carlsberg and subtilisin BPN' were specific to aromatic and neutral aliphatic amino acids, in accordance with the S1 specificities of the enzymes for peptide hydrolysis in aqueous solutions. On the contrary, chymotrypsin exhibited higher specificities to hydrophilic amino acid amides as acyl acceptors (nucleophiles) for peptide synthesis with N-acetyl-L-tyrosine ethyl ester, in contrast to the S1' specificity for peptide hydrolysis and peptide synthesis in aqueous solutions. Furthermore, nucleophile specificity changed with the change in water-organic solvent composition; the increase in water content led to increase in relative reactivity of leucinamide to that of alaninamide. It was also found that protection of the carboxyl group of alanine by amidation is much preferable to protection by esterification in terms of reactivity as nucleophiles.  相似文献   

15.
Analogous soluble and insoluble derivatives of subtilisin Novo (EC 3.4.21.14) were prepared by coupling the enzyme to CNBr-activated DEAE-dextran and DEAE-Sephadex, respectively. The DEAE-dextran-subtilisin displayed pH optima and Km values for ester hydrolysis similar to subtilisin, whereas the pH versus activity profiles obtained with DEAE-Sephadex-subtilisin were shifter towards the alkaline pH region and the Km values were increased. Compared with subtilisin, DEAE-dextran-subtilisin showed a 40-65% reduction of kcat for hydrolysis of N-acetyl-L-tyrosine ethyl ester, p-tosyl-L-arginine methyl ester and benzyloxycarbonyl-glycyl-L-tyrosinamide and its maximum velocities for digestion of casein and clupein also amounted to 40-60% of the subtilisin values. With Deae-sephadex-subtilisin, in contrast, the maximum velocity of hydrolysis decreased to a greater extent for polypeptide substrates compared to ester substrates. The present results indicate that the chemical nature of a support can effect intrinsic properties of a matrix-bound enzyme in addition to the steric and diffusional effects usually observed with polymer-attached enzymes.  相似文献   

16.
Summary During an investigation into the substrate specificity and processing of subtilisin Carlsberg fromBacillus licheniformis, two major independent findings were made: (i) as has been shown previously, a stretch of five amino acids (residues 97–101 of the mature enzyme) that loops out into the binding cleft is involved in substrate binding by subtilisin Carlsberg. In order to see whether this loop element also determines substrate specificity, the coding region for these five amino acids was deleted from the cloned gene for subtilisin Carlsberg by site-directed mutagenesis. Unexpectedly the resulting mutant preproenzyme (P42c, Mr=42 kDa) was not processed to the mature form (Mr=30 kDa) and was not released into the medium by a proteasedeficientB. subtilis host strain; rather, it accumulated in the cell membrane. This result demonstrates that the integrity of this loop element, which is very distant from the processing cleavage sites in the preproenzyme, is required for secretion of subtilisin Carlsberg. (ii) In culture supernatants fromB. subtilis harbouring the cloned wild-type subtilisin Carlsberg gene the transient appearance (at 0–3 h after onset of stationary phase) of a processing intermediate (P38c, Mr=38 kDa) of this protease could be demonstrated. P38c very probably represents a genuine proform of subtilisin Carlsberg.  相似文献   

17.
1. The kinetic parameters of 25 peptidyl-p-nitroanilide substrates were investigated with subtilisin Carlsberg as model enzyme. 2. For a series of 12 substrates, the contribution of various side chains to the affinity constant was computed by regression analysis. From these contributions the sequence of a new and better substrate, N-benzyloxycarbonyl-arginyl-norleucyl-norleucyl-p-nitroanilide (Z-Arg-Nle-Nle-Nan) was predicted. The compound was synthesized and assayed. Its calculated 1/Km value, 43.5 mM-1, was in a good agreement with the value of 40.0 mM-1 that was determined experimentally. 3. On expanding the series to 19 substrates, it was found that the productivity of enzyme-substrate binding is influenced primarily by those subsites which have a significantly greater contribution to the affinity constants than others. 4. The additivity principle applied reasonably well for the contribution of individual side chains to the kinetic parameters. This fact suggests that regression analysis can be used for the prediction of the amino acid sequence of better substrates than those already tested, probably not only for subtilisin but also for other proteolytic enzymes.  相似文献   

18.
The reaction catalyzed by the activating enzyme for dinitrogenase reductase from Rhodospirillum rubrum has been studied using an ADP-ribosyl hexapeptide, obtained from proteolysis of inactive dinitrogenase reductase, and synthetic analogs such as N alpha-dansyl-N omega-ADP-ribosylarginine methyl ester. The activating enzyme catalyzed N-glycohydrolysis of the ribosyl-guanidinium linkage releasing ADP-ribose and regenerating an unmodified arginyl guanidinium group. Optimal glycohydrolysis of the low molecular weight substrates occurred at pH 6.6 and required 1 mM MnCl2, but did not require ATP. The ADP-ribosyl hexapeptide (Km 11 microM), N alpha-dansyl-N omega-ADP-ribosylarginine methyl ester (Km 12 microM), N alpha-dansyl-N omega-ADP-ribosylarginine (Km 12 microM), N alpha-dansyl-N omega-1,N6-etheno-ADP-ribosylarginine methyl ester (Km 11 microM), and N alpha-dansyl-N omega-GDP-ribosylarginine methyl ester (Km 11 microM) were comparable substrates. N omega-ADP-ribosylarginine (Km 2 mM) was a poor substrate, and the activating enzyme did not catalyze N-glycohydrolysis of N alpha-dansyl-N omega-5'-phosphoribosylarginine methyl ester or N alpha-dansyl-N omega-ribosylarginine methyl ester. 13C NMR of N alpha-tosyl-N omega-ADP-ribosylarginine methyl ester established that the activating enzyme specifically hydrolyzed the alpha-ribosyl-guanidinium linkage. The beta-linked anomer was hydrolyzed only after anomerization to the alpha configuration. We recommend [arginine(N omega-ADP-alpha-ribose)]dinitrogenase reductase N-glycohydrolase (dinitrogenase reductase activating) and dinitrogenase reductase activating glycohydrolase as the systematic and working names for the activating enzyme.  相似文献   

19.
The hydrolysis of 30 substituted phenyl hippurates (X-C6H4OCOCH2NHCOC6H5) by subtilisin BPN' was studied and from the results the following quantitative structure-activity relationship was derived: log 1/Km = 0.39 sigma + 0.16 B5.4 + 0.29 pi'3 + 3.58. In this expression Km is the Michaelis constant, sigma is the Hammett constant, B5.4 is the sterimol steric parameter of X in the 4-position and pi'3 is the hydrophobic parameter for the more hydrophobic of the two possible meta substituents. The other meta substitutent is assigned a pi value of 0. This mathematical model is qualitatively compared with a molecular graphics model constructed from the X-ray crystallographic coordinates of subtilisin BPN'. The results with subtilisin BPN' are compared with our earlier study of similar substrates with Carlsberg subtilisin.  相似文献   

20.
Specific and nonspecific thionester substrates for alpha-chymotrypsin and subtilisin Carlsberg have been synthesized and the kinetic parameters for their enzyme-catalyzed hydrolyses measured. Despite equal nonenzymic reactivities of ester-thionester pairs, each thionester is considerably less reactive toward enzymic hydrolysis, the difference being greatest for the specific substrates. The data support the operation of electrophilic catalysis by a hydrogen bond network at the carbonyl oxygen adjacent to the scissile bond of the substrate. The free energy of stabilization is 19 kJ mol-1 for a specific thionester substrate and will be higher for oxygen esters and amides. Chymotrypsin binds esters and thionesters about equally well, whereas subtilisin binds thionesters more tightly. This is consistent with continuous hydrogen bonding in the chymotrypsin mechanism and with a differential hydrogen bonding mechanism for subtilisin. A comparison of the relative rates of enzyme-catalyzed hydrolysis of ester and thionester substrates with their relative reactivities toward amines does not support an acyl histidine intermediate in the serine protease mechanism.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号