首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 695 毫秒
1.
The average length of a vertebrate axon is approximately 130 nt. Decreasing the size of an internal axon to less than 51 nt induces axon skipping, implying a minimal size for exons. A few constitutively included internal exons, however, are extremely small. To investigate if such micro-exons require special mechanisms for their inclusion, we studied the sequences necessary for inclusion of a 6-nt axon from chicken cardiac troponin T (cTNT). In vivo, the cTNT micro-exon was not included in mRNA unless accompanied by a 134-nt sequence located next to the micro-exon in the downstream intron. Increasing the length of the micro-exon alleviated the requirement for the intron element, indicating that the lack of inclusion of the micro-exon in the absence of a facilitating sequence was due to its small size, rather than suboptimal splice sites. The intron element contained six copies of a G-rich 7-nt sequence. Multimers of the repeat supported exon inclusion, indicating that the repeat sequence is an important part of the intron element. The entire intron element activated inclusion of a heterologous 7-nt exon, suggesting that the intron element is a general enhancer for the splicing of micro-exons. In vitro, the intron element and the repeated sequence facilitated splicing of a heterologous exon. Because of the ability of the cTNT intron element to facilitate the splicing of heterologous exons, we have termed the element an intron splicing enhancer (ISE). Interestingly, the ISE demonstrated position independence in that it facilitated inclusion of the heterologous micro-exon when placed either upstream or downstream of the micro-exon. In vitro, the ISE or copies of the ISE G-rich repeat stimulated splicing of an adjacent intron. The ISE thus becomes one of only a few characterized ISEs containing a G-rich repeat and the first to work both upstream and downstream of a target axon.  相似文献   

2.
We have shown previously that truncation of the human beta-globin pre-mRNA in the second exon, 14 nucleotides downstream from the 3' splice site, leads to inhibition of splicing but not cleavage at the 5' splice site. We now show that several nonglobin sequences substituted at this site can restore splicing and that the efficiency of splicing depends on the length of the second (downstream) exon and not a specific sequence. Deletions in the first exon have no effect on the efficiency of in vitro splicing. Surprisingly, an intron fragment from the 5' region of the human or rabbit beta-globin intron 2, when placed 14 nucleotides downstream from the 3' splice site, inhibited all the steps in splicing beginning with cleavage at the 5' splice site. This result suggests that the intron 2 fragment carries a "poison" sequence that can inhibit the splicing of an upstream intron.  相似文献   

3.
4.
We have generated several deletions within the intron of a yeast actin gene construct which have lead to different splicing efficiencies as measured by Northern blot (RNA blot) and primer extension analyses. Our data especially demonstrate that a minimum distance from the 5' splice site to the internal branch acceptor site is required for accurate and efficient splicing. In a construct in which splicing was completely abolished, splicing could be restored by expanding the distance from the 5' splice site to the internal branch acceptor site with heterologous sequences. Alternative splicing, i.e., exon skipping and the use of a cryptic 5' splice site, was observed when the mRNA precursor was derived from a tandem repeat of a truncated intron with flanking exon sequences.  相似文献   

5.
The mouse c-src gene contains a short neuron-specific exon, N1. To characterize the sequences that regulate N1 splicing, we used a heterologous gene, derived from the human beta-globin gene, containing a short internal exon that is usually skipped by the splicing machinery. Various fragments from the src gene were inserted into the globin substrate to measure their effects on the splicing of the test exon. These clones were transiently expressed in neuronal and nonneuronal cell lines, and the level of exon inclusion was measured by primer extension. Several sequences from the N1 exon region induced the splicing of the heterologous exon. The most powerful effect was seen with a sequence from the intron downstream of the N1 exon. This sequence acted as a strong splicing enhancer, activating splicing of the test exon when placed in the intron downstream. The enhancer was strongest in neuronal LA-N-5 cells but also activated splicing in nonneuronal HEK293 cells. Deletion and linker scanning mutagenesis indicate that the enhancer is made up of multiple smaller elements that must act in combination. One of these elements was identified as the sequence UGCAUG. Three copies of this element can strongly activate splicing of the test exon in LA-N-5 neuroblastoma cells. These component elements of the src splicing enhancer are also apparently involved in the splicing of other short cassette exons.  相似文献   

6.
tau mutations that deregulate alternative exon 10 (E10) splicing cause frontotemporal dementia with parkinsonism chromosome 17-type by several mechanisms. Previously we showed that E10 splicing involved exon splicing enhancer sequences at the 5' and 3' ends of E10, an exon splicing silencer, a weak 5' splice site, and an intron splicing silencer (ISS) within intron 10 (I10). Here, we identify additional regulatory sequences in I10 using both non-neuronal and neuronal cells. The ISS sequence extends from I10 nucleotides 11-18, which is sufficient to inhibit use of a weakened 5' splice site of a heterologous exon. Furthermore, ISS function is location-independent but requires proximity to a weak 5' splice site. Thus, the ISS functions as a linear sequence. A new cis-acting element, the intron splicing modulator (ISM), was identified immediately downstream of the ISS at I10 positions 19-26. The ISM and ISS form a bipartite regulatory element, within which the ISM functions when the ISS is present, mitigating E10 repression by the ISS. Additionally, the 3' splice site of E10 is weak and requires exon splicing enhancer elements for efficient E10 inclusion. Thus far, tau FTDP-17 splicing mutations affect six predicted cis-regulatory sequences.  相似文献   

7.
Two alternative exons, BEK and K-SAM, code for part of the ligand binding site of fibroblast growth factor receptor 2. Splicing of these exons is mutually exclusive, and the choice between them is made in a tissue-specific manner. We identify here pre-mRNA sequences involved in controlling splicing of the K-SAM exon. The short K-SAM exon sequence 5'-TAGGGCAGGC-3' inhibits splicing of the exon. This inhibition can be overcome by mutating either the exon's 5' or 3' splice site to make it correspond more closely to the relevant consensus sequence. Two separate sequence elements in the intron immediately downstream of the K-SAM exon, one of which is a sequence rich in pyrimidines, are both needed for efficient K-SAM exon splicing. This is no longer the case if either the exon's 5' or 3' splice site is reinforced. Furthermore, if the exon inhibitory sequence is removed, the intron sequences are not required for splicing of the K-SAM exon in a cell line which normally splices this exon. At least three elements are thus involved in controlling splicing of the K-SAM exon: suboptimal 5' and 3' splice sites, an exon inhibitory sequence, and intron activating sequences.  相似文献   

8.
9.
The plasmid vector pLIV11 is used commonly to achieve liver-specific expression of genes of interest in transgenic mice and rabbits. Expression is driven by the human apolipoprotein (apo)E 5′ proximal promoter, which includes 5 kb of upstream sequence, exon 1, intron 1, and 5 bp of exon 2. A 3.8 kb 3′ hepatic control region, derived from a region ∼18 kb downstream of the apoE gene, enhances liver-specific expression. Here, we report that cDNA sequences inserted into the multiple cloning site (MCS) of pLIV11, which is positioned just downstream of truncated exon 2, can cause exon 2 skipping. Hence, splicing is displaced to downstream cryptic 3′ splice acceptor sites causing deletion of cloned 5′ untranslated mRNA sequences and, in some cases, deletion of the 5′ end of an open reading frame. To prevent use of cryptic splice sites, the pLIV11 vector was modified with an engineered 3′ splice acceptor site inserted immediately downstream of truncated apoE exon 2. Presence of this sequence fully shifted splicing of exon 1 from the native intron 1–exon 2 splice acceptor site to the engineered site. This finding confirmed that sequences inserted into the MCS of the vector pLIV11 can affect exon 2 recognition and provides a strategy to protect cloned sequences from alternative splicing and possible attenuation of transgenic expression.  相似文献   

10.
Internal exon size in vertebrates occurs over a narrow size range. Experimentally, exons shorter than 50 nucleotides are poorly included in mRNA unless accompanied by strengthened splice sites or accessory sequences that act as splicing enhancers, suggesting steric interference between snRNPs and other splicing factors binding simultaneously to the 3' and 5' splice sites of microexons. Despite these problems, very small naturally occurring exons exist. Here we studied the factors and mechanism involved in recognizing a constitutively included six-nucleotide exon from the cardiac troponin T gene. Inclusion of this exon is dependent on an enhancer located downstream of the 5' splice site. This enhancer contains six copies of the simple sequence GGGGCUG. The enhancer activates heterologous microexons and will work when located either upstream or downstream of the target exon, suggesting an ability to bind factors that bridge splicing units. A single copy of this sequence is sufficient for in vivo exon inclusion and is the binding site for the known bridging mammalian splicing factor 1 (SF1). The enhancer and its bound SF1 act to increase recognition of the upstream exon during exon definition, such that competition of in vitro reactions with RNAs containing the GGGGCUG repeated sequence depress splicing of the upstream intron, assembly of the spliceosome on the 3' splice site of the exon, and cross-linking of SF1. These results suggest a model in which SF1 bridges the small exon during initial assembly, thereby effectively extending the domain of the exon.  相似文献   

11.
The chicken beta-tropomyosin gene contains an internal pair of mutually exclusive exons (6A and 6B) that are selected in a tissue-specific manner. Exon 6A is incorporated in fibroblasts and smooth muscle cells, whereas exon 6B is skeletal muscle specific. In this study we show that two different regions in the intron between the two mutually exclusive exons are important for this specific selection in nonmuscle cells. Sequences in the 3' end of the intron have a negative effect in the recognition of the 3' splice site, while sequences in the 5' end of the intron have a positive effect in the recognition of the 5' splice site. First, sequences in exon 6B as well as in the intron upstream of exon 6B are both able to inhibit splicing when placed in a heterologous gene. The sequences in the polypyrimidine stretch region contribute to splicing inhibition of exons 5 or 6A to 6B through a mechanism independent of their implication in the previously described secondary structure around exon 6B. Second, we have identified a sequence of 30 nucleotides in the intron just downstream of exon 6A that is essential for the recognition of the 5' splice site of exon 6A. This is so even after introduction of a consensus sequence into the 5' splice site of this exon. Deletion of this sequence blocks splicing of exon 6A to 6B after formation of the presplicing complex. Taken together, these results suggest that both the mutually exclusive behavior and the choice between exons 6A and 6B of the chicken beta-tropomyosin gene are trans regulated.  相似文献   

12.
Inclusion of fibronectin alternative exon B in mRNA is developmentally regulated. Here we demonstrate that exon B contains two unique purine-rich sequence tracts, PRE1 and PRE2, that are important for proper 5' splice site selection both in vivo and in vitro. Targeted mutations of both PREs decreased the inclusion of exon B in the mRNA by 50% in vivo. Deletion or mutation of the PREs reduced removal of the downstream intron, but not the upstream intron, and induced the activation of cryptic 5' splice sites in vitro. PRE-mediated 5' splice selection activity appears sensitive to position and sequence context. A well characterized exon sequence enhancer that normally acts on the upstream 3' splice site can partially rescue proper exon B 5' splice site selection. In addition, we found that PRE 5' splice selection activity was preserved when exon B was inserted into a heterologous pre-mRNA substrate. Possible roles of these unique activities in modulating exon B splicing are considered.  相似文献   

13.
We previously reported that exon skipping in vivo due to point mutations in the 5' splice site (5'ss) signal of an internal mammalian exon can be prevented by coexpression of U1 small nuclear RNAs, termed shift-U1s, with complementarity to sequence upstream or downstream of the mutated site. We now show by S1 nuclease protection experiments that a typical shift-U1 restores splicing of the upstream intron, but not necessarily of the down stream intron. This indicates that the normal 5'ss sequence acts as an enhancer for splicing of the upstream intron, that it owes this activity to base pairing with U1, and that the enhancer activity is reproduced by base pairing of U1 with other sequences in the area. Shift-U1s are dispensable when the 3'ss sequence of the upstream intron is improved, which suggests that base pairing of U1 with sequences at or near the downstream end of the exon normally functions by compensating for a weakness in the upstream 3'ss. Accordingly, U1 appears to be involved in communication across the exon, but our data indicate at the same time that extensive base pairing between U1 and the 5'ss sequence is not necessary for accurate splicing of the downstream intron. These findings are discussed in relation to the coordinate selection exon termini proposed by the exon definition model.  相似文献   

14.
Alternative splicing of the agrin mRNA controls the ability of agrin protein to induce the clustering of acetylcholine receptors at the neuromuscular junction. Using a transfectable reporter gene, we show that one agrin alternative exon, the Y exon, is controlled by a regulatory sequence in the downstream intron. Portions of this intronic sequence have the properties of a splicing enhancer that can activate splicing of a heterologous exon when placed in the intron downstream. The regulatory region is complex in structure, containing several different elements capable of activating splicing. Individual enhancing elements differ in their cell-type specificity, and are not apparently synergistic, as two elements together induce lower splicing than either does separately. Essential nucleotides within these regulatory elements were identified by scanning mutagenesis across the active region. Interestingly, the elements do not appear similar to known intronic splicing enhancer elements. This Y exon enhancer and its components take part in an apparent combinatorial system of control where multiple regulatory elements of varying activity combine to produce a precisely cell-specific exon inclusion. As a major contributor to the regulation of the Y exon, the enhancer ultimately controls the properties of the agrin protein.  相似文献   

15.
16.
We have investigated the RNA structure of the region surrounding the muscle-specific exon 6B of the chicken beta-tropomyosin gene. We have used a variety of chemical and enzymatic probes: dimethylsulfate, N-cyclohexyl-N'-(2-(N-methylmorpholino)-ethyl)-carbodiimide-p-tolu enesulfonate) , RNase T1 and RNase V1. Lead acetate was also used to obtain some information on the tertiary structure of this region. Probing the wild-type sequence suggests a model involving one-stem and three-stem-loop structures in and around this exon. Two of these, hairpin I and stem III, have previously been implicated in repression of splicing of the intron following exon 6B in a HeLa nuclear extract. Stem I includes sequences at the beginning of exon 6B and stem III results from interaction of the intron upstream from exon 6B with sequences in the middle of the intron downstream from this exon (the intron whose splicing is repressed). Neither stem I nor stem III directly involves the consensus sequences (5' splice site, branch-point, 3' splice site) of the repressed intron. Probing RNAs that are derepressed for splicing of this intron show that there are structural changes around the 5' splice site and branch-point sequence that correlate with the derepression. This is true, despite the fact that the derepressed RNAs are altered in a region far from these consensus sequences. The most striking structural correlation with splicing capacity of the intron downstream from exon 6B is seen by probing with lead acetate. Lead ions cut RNA at specific residues; these sites are very sensitive to RNA tertiary structure. Repressed and derepressed RNAs show entirely different cleavage patterns after incubation with lead acetate. Remarkably, hybridizing a derepressed RNA with an RNA comprising the ascending arm of stem III not only re-establishes repression, but also converts the pattern of susceptibility to attack by lead ions over the whole molecule. We suggest that RNA conformation plays a role in keeping exon 6B from being spliced into non-muscle cell mRNA.  相似文献   

17.
The alternative exon 5 of the striated muscle-specific cardiac troponin T (cTNT) gene is included in mRNA from embryonic skeletal and cardiac muscle and excluded in mRNA from the adult. The embryonic splicing pattern is reproduced in primary skeletal muscle cultures for both the endogenous gene and transiently transfected minigenes, whereas in nonmuscle cell lines, minigenes express a default exon skipping pattern. Using this experimental system, we previously showed that a purine-rich splicing enhancer in the alternative exon functions as a constitutive splicing element but not as a target for factors regulating cell-specific splicing. In this study, we identify four intron elements, one located upstream,and three located downstream of the alternative exon, which act in a positive manner to mediate the embryonic splicing pattern of exon inclusion. Synergistic interactions between at least three of the four elements are necessary and sufficient to regulate splicing of a heterologous alternative exon and heterologous splice sites. Mutations in these elements prevent activation of exon inclusion in muscle cells but do not affect the default level of exon inclusion in nonmuscle cells. Therefore, these elements function as muscle-specific splicing enhancers (MSEs) and are the first muscle-specific positive-acting splicing elements to be described. One MSE located downstream from the alternative exon is conserved in the rat and chicken cTNT genes. A related sequence is found in a third muscle-specific gene, that encoding skeletal troponin T, downstream from an alternative exon with a developmental pattern of alternative splicing similar to that of rat and chicken cTNT. Therefore, the MSEs identified in the cTNT gene may play a role in developmentally regulated alternative splicing in a number of different genes.  相似文献   

18.
《Gene》1996,174(1):27-34
The rabbit κ-casein (κ-Cas) encoding gene has been isolated as a series of overlapping DNA fragments cloned from a rabbit genomic library constructed in bacteriophage λEMBL3. The clones harboured the 7.5-kb gene flanked by about 2.1 kb upstream and 9 kb downstream sequences. The cloned gene is the most frequently occurring of two κ-Cas alleles identified in New Zealand rabbits. Comparison of the corresponding domains in rabbit and bovine κ-Cas shows that both genes comprise 5 exons and that the exon/intron boundary positions are conserved whereas the introns have diverged considerably. The first three introns are shorter in the rabbit, the second intron showing the greatest difference between the two species: 1.35 kb instead of 5.8 kb in the bovine gene. Repetitive sequence motives reminiscent of the rabbit C type repeat and the complementary inverted C type repeat were identified in the fourth and first introns, respectively. Transgenic mice were produced by microinjecting into mouse oocytes an isolated genomic DNA fragment which contained the entire κ-Cas coding region, together with 2.1-kb 5′ and 4.0-kb 3′ flanking region. Expression of transgene rabbit κ-Cas mRNA could be detected in the mammary gland of lactating transgenic mice and the production of rabbit κ-Cas was detected in milk using species-specific antibodies. The cloned gene is thus functional.  相似文献   

19.
Graveley BR 《Cell》2005,123(1):65-73
Drosophila Dscam encodes 38,016 distinct axon guidance receptors through the mutually exclusive alternative splicing of 95 variable exons. Importantly, known mechanisms that ensure the mutually exclusive splicing of pairs of exons cannot explain this phenomenon in Dscam. I have identified two classes of conserved elements in the Dscam exon 6 cluster, which contains 48 alternative exons--the docking site, located in the intron downstream of constitutive exon 5, and the selector sequences, which are located upstream of each exon 6 variant. Strikingly, each selector sequence is complementary to a portion of the docking site, and this pairing juxtaposes one, and only one, alternative exon to the upstream constitutive exon. The mutually exclusive nature of the docking site:selector sequence interactions suggests that the formation of these competing RNA structures is a central component of the mechanism guaranteeing that only one exon 6 variant is included in each Dscam mRNA.  相似文献   

20.
Muscleblind-like 1 (MBNL1) is a splicing regulator that controls developmentally regulated alternative splicing of a large number of exons including exon 11 of the Insulin Receptor (IR) gene and exon 5 of the cardiac Troponin T (cTNT) gene. There are three paralogs of MBNL in humans, all of which promote IR exon 11 inclusion and cTNT exon 5 skipping. Here, we identify a cluster of three binding sequences located downstream of IR exon 11 that constitute the MBNL1 response element and a weaker response element in the upstream intron. In addition, we used sequential deletions to define the functional domains of MBNL1 and MBNL3. We demonstrate that the regions required for splicing regulation are separate from the two pairs of zinc-finger RNA-binding domains. MBNL1 and MBNL3 contain core regulatory regions for both activation and repression located within an 80-amino-acid segment located downstream of the N-terminal zinc-finger pair. Deletions of these regions abolished regulation without preventing RNA binding. These domains have common features with the CUG-BP and ETR3-like Factor (CELF) family of splicing regulators. These results have identified protein domains required for splicing repression and activation and provide insight into the mechanism of splicing regulation by MBNL proteins.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号