首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Prostaglandins E1 or E2 (PGE1, PGE2)1 stimulated adenylate cyclase(s) from particulate fractions of whole liver homogenates 5- to 6-fold, but caused only slight (1.5- to 2-fold) stimulation of the enzyme from homogeneous hepatocytes. In contrast, glucagon stimulated enzyme from hepatocytes 12- to 15-fold and enzyme from whole liver 8- to 10-fold. Accordingly, most of the total prostaglandin-sensitive adenylate cyclase in cell suspensions was recovered in fractions containing non-parenchymal cells, and most of the total glucagon-sensitive activity was recovered with hepatocytes. PGE1 did not change adenosine-3′,5′-monophosphate (cyclic AMP) concentrations, or alter cyclic AMP increases caused by glucagon in hepatocytes. Glucagon consistently increased hepatocyte cyclic AMP concentrations and stimulated glycogenolysis by 35 to 40%. PGE1 did not affect basal or glucagon-stimulated glycogenolysis in the intact cells.  相似文献   

2.
3.
The possible similarities of the mechanism by which vinblastine induces autophagocytosis in liver were compared with the known effects of glucagon in glucagon-induced autophagocytosis. A single intraperitoneal injection of vinblastine produced a wave of autophagocytosis in less than 0.5 h in mouse hepatocytes. Liver glycogen content decreases simultaneously and blood glucose first increased and then decreased below control values. Both liver cAMP concentration and the activity of glycogen phosphorylase remained unchanged. These findings provide evidence that the induction of autophagocytosis after vinblastine injection is not mediated by cAMP. The increased degradation of glycogen may occur in the lysosomal system by means of increased autophagocytosis.  相似文献   

4.
Rat liver glycogen synthase bound to the glycogen particle was partially purified by repeated high-speed centrifugation. This synthase preparation was labeled with 32P by incubations with cAMP-dependent protein kinase and cAMP-independent synthase (casein) kinase-1 in the presence of [γ-32P]ATP. The phosphorylated synthase was separated from other proteins in the glycogen pellet by immunoprecipitation with rabbit anti-rat liver glycogen synthase serum. Analysis of the immunoprecipitates by sodium dodecyl sulfate-gel electrophoresis showed that synthase subunits of Mr 85,000 and 80,000 were present in varying proportions. The 32P-labeled synthase in the immunoprecipitate was digested with trypsin, and the resulting peptides were analyzed by isoelectric focusing. Synthase bound to the glycogen particle was phosphorylated by cAMP-dependent protein kinase at more sites and by cAMP-independent synthase (casein) kinase-1 at less sites than when the homogeneous synthase was incubated with these kinases. Phosphorylation of synthase in the glycogen pellet by either cAMP-dependent protein kinase or cAMP-independent synthase (casein) kinase-1 did not cause a significant inactivation as has been observed when the homogeneous synthase was incubated with these kinases. Inactivation of synthase in the glycogen pellet, however, can be achieved by the combination of both kinases. This inactivation appears to result from the phosphorylation of a new site by cAMP-independent synthase (casein) kinase-1 neighboring a site previously phosphorylated by cAMP-dependent protein kinase.  相似文献   

5.
Rat liver hepatocytes were isolated by collagenase in vitro perfusion technique and effect of insulin on glycogen synthesis and ultra-structure was studied. Addition of insulin stimulated glycogen synthesis and maintained better cellular structure. Synthesis of glycogen was linear in isolated hepatocytes when incubated with various concentrations of glucose (0–800 mg%) reaching initial levels. Concanavaline A inhibited epinephrine stimulated glycogenolysis but had no effect on glucagon stimulated glycogenolysis. These studies indicate that insulin is required for glycogen synthesis and for maintaining hepatocytes ultrastructure. Furthermore, isolated hepatocytes retain various receptors and that different hormones utilize different receptor sites.  相似文献   

6.
Effect of fructose on glycogen synthesis in the perfused rat liver   总被引:1,自引:0,他引:1  
The effect of fructose on glycogen synthesis was examined in the perfused liver of starved rats. With increasing fructose concentration in the perfusate, glycogen synthesis and the % a form of glycogen synthase increased to a maximum at 2 mM and then decreased, progressively. The glucose 6-P level increased with the increase in fructose concentration. On the other hand, the ATP content was unchanged at a concentration of 2 mM or less and decreased at 3 mM or more. We also showed that the stimulation of glycogen synthesis by fructose at a concentration of 2 mM or less was due to activation of glycogen synthase by accumulated glucose 6-P and that ATP depletion at a concentration of 3 mM or more caused an increase in phosphorylase a and a decrease in glycogen synthase activity even in the presence of a high concentration of glucose 6-P.  相似文献   

7.
8.
Incorporation and release of the radioactivity in the liver glycogen of 18.5- and 19.5-day-old rat foetuses were studied after intravenous injection of E11-14C]glycerol. Incorporation occurred during 1 h after injection of the radioactive tracer to the foetus; then, the incorporated radioactivity decreased. Glycogen content in the liver, and glycogen phosphorylase and glycogen synthase were not modified during the experiment. It is therefore postulated that a physiological turnover of glycogen exists in the liver of the rat foetus.  相似文献   

9.
A procedure was developed for determination of glycogen synthase and phosphorylase activities in liver after various in vivo physiological treatments. Liver samples were obtained from anaesthetised rats by freeze-clamping in situ. Other procedures were shown to stimulate the activity of phosphorylase and depress the activity of glycogen in the liver. The direction of glycogen metabolism appears to be regulated by the relative proportions of the two enzymes, as shown by a strong positive correlation between total activities and active forms of phosphorylase and synthase. The enzyme activities responded as expected to stimuli such as insulin and glucose, which depressed phosphorylase and increased synthase activity, and glucagon, which increased phosphorylase and decreased synthase activity. In fasted animals approximately 50% of each enzyme was in the active form, which suggests the existence of a potential futile cycle for glycogen metabolism. The role for such a cycle in the regulation of glycogen synthesis and degradation is discussed.  相似文献   

10.
11.
12.
13.
14.
15.
16.
A procedure was developed for determination of glycogen synthase and phosphorylase activities in liver after various in vivo physiological treatments. Liver samples were obtained from anaesthetised rats by freeze-clamping in situ. Other procedures were shown to stimulate the activity of phosphorylase and depress the activity of glycogen in the liver. The direction of glycogen metabolism appears to be regulated by the relative proportions of the two enzymes, as shown by a strong positive correlation between total activities and active forms of phosphorylase and synthase. The enzyme activities responded as expected to stimuli such as insulin and glucose, which depressed phosphorylase and increased synthase activity, and glucagon, which increased phosphorylase and decreased synthase activity. In fasted animals approximately 50% of each enzyme was in the active form, which suggests the existence of a potential futile cycle for glycogen metabolism. The role for such a cycle in the regulation of glycogen synthesis and degradation is discussed.  相似文献   

17.
18.
32P-labeled glycogen synthase specifically immunoprecipitated from 32P-phosphate incubated rat hepatocytes contains, in addition to [32P] phosphoserine, significant levels of [32P] phosphothreonine (7% of the total [32P] phosphoaminoacids). When the 32P-immunoprecipitate was cleaved with CNBr, the [32P] phosphothreonine was recovered in the large CNBr fragment (CB-2, Mapp 28 Kd). Homogeneous rat liver glycogen synthase was phosphorylated by all the protein kinases able to phosphorylate CB-2 "in vitro" (casein kinases I and II, cAMP-dependent protein kinase and glycogen synthase kinase-3). After analysis of the immunoprecipitated enzyme for phosphoaminoacids, it was observed that only casein kinase II was able to phosphorylate on threonine and 32P-phosphate was only found in CB-2. These results demonstrate that rat liver glycogen synthase is phosphorylated at threonine site(s) contained in CB-2 and strongly indicate that casein kinase II may play a role in the "in vivo" phosphorylation of liver glycogen synthase. This is the first protein kinase reported to phosphorylate threonine residues in liver glycogen synthase.  相似文献   

19.
20.
Rat liver glycogen was freed of non-covalently bound protein. The backbone protein was purified from the pure glycogen. This protein had a molecular weight of 60,000 daltons and amino acid analysis showed it to be rich in glutamate, serine and the hydrophobic amino acids. In both size and amino acid content it differed from the corresponding rabbit muscle protein. An O-type glycoprotein linkage is suggested.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号