首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Notch proteins are a transmembrane receptor family that is structurally and functionally conserved from worms to humans. The mammalian family of Notch proteins consists of several genes encoding Notch receptors and related Notch ligands. Notch signaling is involved in different aspects of the cell-fate decision tree: differentiation, proliferation, and apoptosis. These three processes are finely regulated in human placenta in order to allow a successful pregnancy and correct fetal growth. Notch and its ligands also participate in vascular remodeling and stabilization. Vasculogenesis and blood regulation are of importance in the human placenta for normal fetal development and growth; any disorder of these systems leads to preeclampsia. Drawing on this background, we have investigated the expression of Notch-1, Notch-4, and Jagged-1, together with two members related to the Notch pathway in angiogenesis: VEGF and p21. Normal and preeclamptic human placentas have been evaluated by immunohistochemistry. In preeclamptic samples, a down-regulation of Notch pathway members occurs with a weak/moderate expression of the Notch protein members in all components of placenta compared with physiological placentas that, at term, exhibit the strong expression of Jagged-1 and a moderate expression of both Notch-1 and Notch-4 in all compartments of the placental villi. Moreover, preeclamptic samples also reveal a down-regulation of VEGF expression, together with a moderate nuclear expression of p21Cip1 in the syncytiotrophoblast, cytotrophoblast, and endothelial cells. This down-regulation of VEGF in preeclamptic placentas, in turn, probably decreases Notch protein expression in placental compartments and in endothelial cells and could offer an ethiopathogenetic explanation for the onset of this pathology.  相似文献   

2.
Cyclin E, a G(1) cyclin serving to activate cyclin-dependent kinase 2, is the only cyclin gene for which alternative splicing leading to structurally different proteins has been described. Different cyclin E proteins are present in tumor tissues but absent from normal (steady) tissues. Cyclin E contributes to the regulation of cell proliferation and ongoing differentiation and aging. Because trophoblast has invasive properties and differentiates into syncytium and placental aging may develop at term, we examined cyclin E protein variants in human placenta. Placental samples were collected from 27 deliveries between 33 and 41 wk and were compared with ovarian cancer (positive control). Both placental and tumor tissues showed seven cyclin E low molecular weight (LMW) bands migrating between 50 and 36 kDa. Placental expression of cyclin E showed certain variability among cases. Lowest cyclin E expression was detected in normal placentas (strong expression of Thy-1 differentiation protein in villous core and low dilatation of villous blood sinusoids). Abnormal placentas (significant depletion of Thy-1 and more or less pronounced dilatation of sinusoids) showed significant increase either of all (early stages of placental aging) or only certain cyclin E proteins (advanced aging). Our studies indicate that a similar spectrum of cyclin E protein variants is expressed in the placental and tumor tissues. Low cyclin E expression in normal placentas suggests a steady state. Overexpression of all cyclin E proteins may indicate an activation of cellular proliferation and differentiation to compensate for developing placental insufficiency. However, an enhanced expression of some cyclin E LMW proteins only might reflect an association of cyclin E isoforms with placental aging or an inefficient placental adaptation.  相似文献   

3.
4.
Poor success rates in somatic cell cloning are often attributed to abnormal early embryonic development as well as late abnormal fetal growth and placental development. Although promising results have been reported following chromatin transfer (CT), a novel cloning method that includes the remodeling of the donor nuclei in vitro prior to their transfer into enucleated oocytes, animals cloned by CT show placental abnormalities similar to those observed following conventional nuclear transfer. We hypothesized that the placental gene expression pattern from cloned fetuses was ontologically related to the frequently observed placental phenotype. The aim of the present study was to compare global gene expression by microarray analysis of Day 44–47 cattle placentas derived from CT cloned fetuses with those derived from in vitro fertilization (i.e. control), and confirm the altered mRNA and protein expression of selected molecules by qRT-PCR and immunohistochemistry, respectively. The differentially expressed genes identified in the present study are known to be involved in a range of activities associated with cell adhesion, cell cycle control, intracellular transport and proteolysis. Specifically, an imprinted gene, involved with cell proliferation and placentomegaly in humans (CDKN1C) and a peptidase that serves as a marker for non-invasive trophoblast cells in human placentas (DPP4), had mRNA and protein altered in CT placentas. It was concluded that the altered pattern of gene expression observed in CT samples may contribute to the abnormal placental development phenotypes commonly identified in cloned offspring, and that expression of imprinted as well as trophoblast invasiveness-related genes is altered in cattle cloned by CT.  相似文献   

5.
Molecular heterogeneity of creatine kinase isoenzymes   总被引:4,自引:0,他引:4  
The [32P]phosphoamino acids in proteins of first trimester and term-cultured human placentas have been separated and their relative amounts were measured. A significant phosphorylation of tyrosine residues could be detected in the cultured placental tissue at different stages of gestation. The phosphotyrosine accounts for 2-4% of the total acid-stable phosphate in the phosphoamino acids after partial acid hydrolysis. The difference in the extent of [32P]tyrosine in various placentas seems to be a function of biological variation of the individual placentas, rather than a function of placental age and stage of gestation. In contrast, a significant difference in the phosphorylation ratio of serine and threonine could be measured between first trimester and term placentas. As more evidence is accumulating that protein phosphorylation of tyrosine is involved in the processes of cellular growth and proliferation, our findings of the relatively high tyrosine phosphorylation in human placenta strongly suggest that this type of protein phosphorylation may play an important role in the placental growth and development. Furthermore, these findings may correlate with the existence of the endogenous RNA virus-like particles found in normal human placenta.  相似文献   

6.
Park MR  Cho SK  Lee SY  Choi YJ  Park JY  Kwon DN  Son WJ  Paik SS  Kim T  Han YM  Kim JH 《Proteomics》2005,5(7):1928-1939
In this study, we generated 40 somatic cell cloned (scNT) piglets. Of these, five piglets were stillborn, 22 scNT piglets died suddenly within the first week of life, and 1 piglet died after 40 days. Twelve scNT piglets are still healthy. The birth weights of compromised scNT piglets in comparison with those of normal scNT piglets are significantly reduced (0.80 +/- 0.29 vs 1.27 +/- 0.30 kg, p < 0.05), in spite of longer gestation (114 versus 120 day). Significant findings from histological examinations showed that approximately 25% (7/28) of scNT piglets showed severe congestion of lung and liver or neutrophilic inflammation in brain indicating that unexpected phenotypes can appear as a result of somatic cell cloning. Two-dimensional gel electrophoresis experiments revealed changes in the responses of several detoxification-related proteins related to stress and inflammation and found significant alterations in myocardium-specific proteins, indicating hemodynamic disorder. scNT piglets that survived to adulthood did not show any abnormality except skin and hair color depigmentation. The present study suggests that cerebromeningitis and hemodynamic disorder are a major risk factor for sudden early death of scNT piglets. Although we cannot completely exclude the possibility that scNT piglets are susceptible to specific respiratory infections, our data suggests that the early death of scNT clones is due to cardiopulmonary functional abnormalities and cerebromeningitis.  相似文献   

7.
目的:探讨TNF-α诱导人胎盘胎儿来源间充质干细胞(hfPMSCs)发生凋亡和自噬的作用,以及自噬对细胞凋亡的调控作用。方法:利用流式细胞术检测无血清培养hfPMSCs中CD73、CD90、CD105、CD14、CD34、CD45的表达;用终浓度20μg/L的TNF-α处理hfPMSCs 24h,以未处理细胞作为对照组。Annexin V/PI双染色检测TNF-α对hfPMSCs凋亡程度的影响;分别提取各组总蛋白,Western blot检测自噬标志基因LC3Ⅰ/Ⅱ的表达;利用mRFP-GFP-LC3腺病毒感染细胞,观察胞内点状聚集形成的情况;利用Atg5干扰慢病毒(si-Atg5)及阴性对照慢病毒(si-NC)感染hfPMSCs,Annexin V/PI双染色检测TNF-α对慢病毒感染后hfPMSCs凋亡程度的影响。结果:所培养细胞具有典型的MSCs形态,呈CD73~+CD90~+CD105~+/CD14~-CD34~-CD45~-细胞; Annexin V/PI染色结果显示,TNF-α作用24 h后,hfPMSCs凋亡数和凋亡率均高于对照组(P 0. 05);Western blot检测自噬标志蛋白表达结果表明,TNF-α可增加LC3Ⅱ的表达(P 0. 05);荧光共聚焦显微境观察到TNF-α可显著提高细胞中的点状聚集。利用si-Atg5感染细胞,抑制hfPMSCs自噬的发生,与对照慢病毒si-NC感染细胞比较,可显著促进TNF-α诱导hfPMSCs凋亡的发生(P 0. 05)。结论:TNF-α诱导的自噬抑制人胎盘胎儿来源MSCs凋亡的发生,具有一定的保护性作用。  相似文献   

8.
The placenta is a regulator organ for many metabolic activities between mother and fetus. Therefore, fetal growth is directly related to the placental development. Placental development is a series of events that depend on the coordinated action of trophoblasts’ proliferation, differentiation and invasion. Studies on cell cycle related proteins which control these events are fairly limited. How placental tissue proliferation is affected by diabetes is not exactly known yet. Therefore in this study, the immunohistochemical localizations of cell cycle related proteins like PCNA, Ki67, cyclin D3, p27 and p57 in the differentiation, proliferation and apoptosis mechanisms of normal and diabetic placentas were investigated. Information on cell cycle related proteins that control these events is limited and how they are affected in diabetes mellitus is not fully understood yet. Therefore, in this study, to understand the role of cell cycle regulators in diabetic placentas we aimed to determine the spatio-temporal immunolocalizations of cell cycle regulators in diabetic and normal human term placentas. Term placentas were obtained from diabetic women and from normal pregnancies with informed consent following caesarean deliveries. Placental samples were stained via immunohistochemistry with PCNA, Ki67, cyclin D3, p27 and p57 antibodies and were examined by light microscopy. When compared to control placentas, PCNA, Ki67 and cyclin D3 staining intensities significantly increased in villous parts of diabetes group. Moreover, Ki67 and cyclin D3 stainings also significantly increased in basal plates and chorionic plate respectively. In chorionic plates, p27 and p57 staining intensities significantly decreased in diabetic group. p57 staining also significantly decreased in villous parts of diabetic placentas. Placental abnormalities seen in diabetic placentas could be associated with proliferation and cell cycle arrest mechanisms’ alterations occurred in diabetes mellitus.  相似文献   

9.
The biosynthesis of placental proteins and placental lactogen (HPL) was studied in vitro in 10–12 week, 16–18 week and term human placenta in the presence and absence of PGE. The highest 14C-leucine incorporation was detected in 10 to 12 weeks old placentas. Addition of PGE to the induction medium depressed the rate of incorporation of 14C-leucine into placental proteins on a dose dependent manner. Placentas most sensitive to this action of PGE were those obtained at 18 weeks gestation followed by placentas at term. In vivo application of PGE for tharapeutic induction of abortions resulted in the marked inhibition of placental protein synthesis in vitro.  相似文献   

10.
11.
12.
The purpose of this study was to examine alterations in placental expression of dipeptidyl peptidase IV (DPPIV). The localization of DPPIV was compared in control and preeclamptic placentas. Enzyme activity, mRNA, and protein expression were also measured. In term placentas, DPPIV was expressed preferentially in the fetal vascular endothelial cells within stem villi and only weakly in the villous stromal cells. DPPIV activity in control placentas showed no remarkable changes throughout gestation. Levels of activity in samples from normotensive control cases and women having preeclampsia with or without intrauterine growth restriction were 11.8 +/- 2.1, 13.4 +/- 1.1, and 15.3 +/- 0.62 pmol pNA/min/mg protein, respectively. The preeclamptic placentas with intrauterine growth restriction thus showed significantly higher levels of activity than the controls (p < 0.05). We propose that placental DPPIV influences fetal metabolism via the degradation of fetoplacental circulating bioactive peptides, including incretins, resulting in the regulation of fetal growth.  相似文献   

13.
The [32P]phosphoamino acids in proteins of first trimester and term-cultured human placentas have been separated and their relative amounts were measured. A significant phosphorylation of tyrosine residues could be detected in the cultured placental tissue at different stages of gestation. The phosphotyrosine accounts for 2–4% of the total acid-stable phosphate in the phosphoamino acids after partial acid hydrolysis. The difference in the extent of [32P]tyrosine in various placentas seems to be a function of biological variation of the individual placentas, rather than a function of placental age and stage of gestation. In contrast, a significant difference in the phosphorylation ratio of serine and threonine could be measured between first trimester and term placentas. As more evidence is accumulating that protein phosphorylation of tyrosine is involved in the processes of cellular growth and proliferation, our findings of the relatively high tyrosine phosphorylation in human placenta strongly suggest that this type of protein phosphorylation may play an important role in the placental growth and development. Furthermore, these findings may correlate with the existence of the endogenous RNA virus-like particles found in normal human placenta.  相似文献   

14.
髓核细胞(nucleus pulposus cells,NPCs)的异常凋亡是导致椎间盘退变(intervertebral disc degeneration,IVDD)的主要原因。本研究组前期研究显示,17β-雌二醇(17β-estradiol,E2)能够通过PI3K/Akt信号通路抑制白介素1β(interleukin-1β,IL-1β)诱导的大鼠椎间盘NPCs凋亡。本研究旨在探讨PI3K/Akt途径的下游蛋白是否参与E2对NPCs凋亡的抑制作用。用胰蛋白酶消化法分离原代大鼠NPCs,采用E2和PI3K/Akt信号通路下游蛋白的不同抑制剂预处理后用IL-1β处理,用Annexin V/PI染色法检测凋亡率,用CCK-8法检测细胞活力,用细胞黏附试验检测NPCs与Ⅱ型胶原的黏附能力,用Western blot检测哺乳动物雷帕霉素靶蛋白(mammalian target of Rapamycin,mTOR)、糖原合成酶激酶-3β(glycogen synthase kinase-3β,GSK-3β)和核因子κB(nuclear factor kappaB,NF-κB)磷酸化水平。结果显示,E2显著抑制IL-1β诱导的NPCs凋亡,逆转由IL-1β引起的细胞活力和黏附能力的降低,抑制IL-1β对mTOR磷酸化水平的下调作用,而雷帕霉素可以阻断E2的这些保护作用。以上结果提示,E2可能通过PI3K/Akt/mTOR信号通路抑制IL-1β诱导的NPCs凋亡。  相似文献   

15.
The [32P]phosphoamino acids in proteins of first-trimester and term-cultured human placentas have been separated and their relative amounts have been measured. Significant phosphorylation of tyrosine residues could be detected in the cultured placental tissue at different stages of gestation. The phosphotyrosine accounts for 2–4% of the total acid-stable phosphate in the phosphoamino acids after partial acid hydrolysis. The difference in the extent of [32P]tyrosine in various placentas seems to be a function of biological variation of the individual placentas, rather than a function of placental age and stage of gestation. In contrast, a significant difference in the phosphorylation ratio of serine and threonine could be measured between first-trimester and term placentas. As more evidence is accumulating that protein phosphorylation of tyrosine is involved in the processes of cellular growth and proliferation, our findings of the relatively high tyrosine phosphorylation in human placenta strongly suggest that this type of protein phosphorylation may play an important role in the placental growth and development. Furthermore, these findings may correlate with the existence of the endogenous RNA virus-like particles found in normal human placenta.  相似文献   

16.
Proteins of the annexin/lipocortin family act as in vitro anticoagulants by binding to anionic phospholipid vesicles. In this study, we investigated whether annexin V (placental anticoagulant protein I) would bind to human platelets. Annexin V bound to unstimulated platelets in a reversible, calcium-dependent reaction with an apparent Kd of 7 nM and 5000-8000 sites/platelet. Additional binding sites could be induced by several platelet agonists in the following order of effectiveness: A23187 greater than collagen + thrombin greater than collagen greater than thrombin. However, neither ADP nor epinephrine induced additional binding sites. Three other proteins of the annexin family (annexins II, III, and IV) competed for annexin V platelets binding sites with the same relative potencies previously observed for binding to phospholipid vesicles. Phospholipid vesicles containing phosphatidylserine completely inhibited binding of annexin V to platelets. Annexin V completely blocked binding of 125I-factor Xa to thrombin-stimulated platelets. These results support the hypothesis that phosphatidylserine exposure occurs during platelet activation and may be necessary for assembly of the prothrombinase complex on platelet membranes.  相似文献   

17.
18.
The 14-3-3 proteins are among the most abundant proteins expressed in the brain, comprising about 1% of the total amount of soluble brain proteins. Through phosphoserine- and phosphothreonine-binding motifs, 14-3-3 proteins regulate many signaling proteins and cellular processes including cell death. In the present study, we utilized a well-known kainic acid (KA)-induced excitotoxicity rat model and examined the expression of 14-3-3 and its isoforms in the frontal cortex of KA-treated and control animals. Among the different 14-3-3 isoforms, abundant levels of eta and tau were detected in the frontal cortex, followed by sigma, epsilon, and gamma, while the expression levels of alpha/beta and zeta/delta isoforms were low. Compared to the control animals, KA treatment induced a significant downregulation of the overall 14-3-3 protein level as well as the levels of the abundant isoforms eta, tau, epsilon, and gamma. We also investigated two 14-3-3-interacting proteins that are involved in the cell death process: Bcl-2-associated X (BAX) and extracellular signal-regulated kinase (ERK). Both BAX and phosphorylated ERK showed increased levels following KA treatment. Together, these findings demonstrate an abundance of several 14-3-3 isoforms in the frontal cortex and that KA treatment can cause a downregulation of 14-3-3 expression and an upregulation of 14-3-3-interacting proteins BAX and phospho-ERK. Thus, downregulation of 14-3-3 proteins could be one of the early molecular events associated with excitotoxicity. This could lead to subsequent upregulation of 14-3-3-binding proteins such as BAX and phospho-ERK that contribute to further downstream apoptosis processes, eventually leading to cell death. Maintaining sufficient levels of 14-3-3 expression and function may become a target of therapeutic intervention for excitotoxicity-induced neurodegeneration.  相似文献   

19.
14-3-3 proteins are highly conserved ubiquitous proteins found in all eukaryotic organisms. They are involved in various cellular processes including signal transduction, cell-cycle control, apoptosis, stress response and cytoskeleton organisation. We report here the cloning of two genes encoding 14-3-3 isoforms from the plant parasitic root-knot nematode Meloidogyne incognita, together with an analysis of their expression. Both genes were shown to be transcribed in unhatched second stage larvae, infective second stage larvae, adult males and females. The Mi-14-3-3-a gene was shown to be specifically transcribed in the germinal primordium of infective larvae, whereas Mi-14-3-3-b was transcribed in the dorsal oesophageal gland in larvae of this stage. The MI-14-3-3-B protein was identified by mass spectrometry in in vitro-induced stylet secretions from infective larvae. The stability and distribution of MI-14-3-3 proteins in host plant cells was assessed after stable expression of the corresponding genes in tobacco BY2 cells.  相似文献   

20.
Maternal hypertriglyceridemia is a normal condition in late gestation and is an adaptation to ensure an adequate nutrient supply to the fetus. Placental lipoprotein lipase (LPL) is involved in the initial step in transplacental fatty acid transport as it hydrolyzes maternal triglycerides (TG) to release free fatty acids (FFA). We investigated LPL activity and protein (Western blot) and mRNA expression (real-time RT-PCR) in the placenta of an LPL-deficient mother with marked hypertriglyceridemia. The LPL activity was fourfold lower, LPL protein expression 50% lower, and mRNA expression threefold higher than that of normal, healthy placentas at term (n = 4-7). To further investigate the role of maternal lipids in placental LPL regulation, we isolated placental cytotrophoblasts from term placentas and studied LPL activity and protein and mRNA expression after incubation in Intralipid (as a source of TG) and oleic, linoleic, and a combination of oleic, linoleic, and arachidonic acids as well as insulin. Intralipid (40 and 400 mg/dl) decreased LPL activity by approximately 30% (n = 10-14, P < 0.05) and 400 microM linoleic and linoleic-oleic-arachidonic acid (n = 10) decreased LPL activity by 37 and 34%, respectively. No major changes were observed in LPL protein or mRNA expression. We found no effect of insulin on LPL activity or protein expression in the cultured trophoblasts. To conclude, the activity of placental LPL is reduced by high levels of maternal TG and/or FFA. This regulatory mechanism may serve to counteract an excessive delivery of FFA to the fetus in conditions where maternal TG levels are markedly increased.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号