首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Rearranged X chromosome in Turner syndrome (TS) are generally well tolerated but in cases of ring X chromosomes and of X/autosome translocations the incidence of mental retardation and other congenital abnormalities can be significantly higher. These abnormal phenotypes can be ascribed to failed or partial X inactivation. Here, we report a 10-year-old female who was referred for a cytogenetic analysis because she developed an alopecia universalis. The patient, of normal intelligence, had been found to have traits of TS, especially short stature. A first cytogenetic analysis showed a no mosaic 45,X karyotype. Since, the risk of developing gonadoblastoma in TS patients with mosaicism for a Y derivative chromosome and because association of alopecia universalis and TS is uncommon, fluorescence in situ hybridization (FISH) was performed to search for a second cell population. Our patient was found to have a mosaic 45,X/46,X,+r. FISH analysis using sex chromosome probes permitted us to identify the very small marker as a ring X chromosome, detected in 90% of cells. The ring appeared to be formed almost totally of alphoid sequences with breakpoints in the juxtacentromeric region. The r(X) does not include the XIST locus and may, therefore, not be subject to X-inactivation. Unexpectedly mild phenotype in our patient and its association with alopecia universalis will be discussed.  相似文献   

2.
Turner syndrome females (45,X) do not have mental retardation (MR), whereas some mosaic ring X Turner syndrome females, with 45,X/46,X,r(X), have severe MR. The MR is believed to be caused by a failure of X chromosome inactivation (XCI) of the small ring X chromosome, which leads to functional X disomy (FXD), To explore this hypothesis, we examined the proportion of FXD cells in the peripheral blood of four ring X Turner syndrome females with various levels of MR, using two newly developed XCI assays based on DNA methylation of X-linked genes. As a result, the two patients with extremely severe MR showed complete FXD patterns, whereas the remaining two patients with relatively milder MR showed partial FXD patterns. These results indicate that the proportion of FXD cells may be associated with the severity of MR in mosaic ring X Turner syndrome females, although this association should be confirmed by examining brain cells during development. One of the cases with severe MR and a complete FXD pattern neither lacked the XIST gene nor had uniparental X isodisomy, and we discuss the mechanism of the failure of XCI in this case.  相似文献   

3.
In this report we describe and comment the high incidence of mental subnormality in a series of 21 Turner syndrome patients with ring chromosome X, diagnosed in Leuven in the period 1965-1989. In 7 of the 21 (one third) a varying degree of mental retardation, from borderline intelligence to severe mental retardation was found. In 4 of them (18.5%) mental retardation was moderate to severe.  相似文献   

4.
The phenotypically normal sister of a patient affected by fragile X syndrome was referred for genetic counselling and was found to carry a mosaic karyotype 46,X,r(X)/45,X. Because the probability of the simultaneous chance occurrence of fragile X syndrome and a ring chromosome X in the same family is very low, we postulated that the breakpoint of the ring chromosome X originated in the cytogenetic break in Xq27.3 responsible for fragile X syndrome. In order to determine the relative positions of the breakpoint on the ring chromosome X and the (CGG)n unstable sequence responsible for the fragile X mutation, we used molecular markers to analyse the telomeric regions of chromosome X in this family. The results showed that the ring chromosome X was the maternal fragile X chromosome and that the telomeric deletion on the long arm encompassed the (CGG)n sequence. This suggests that the cytogenetic break in Xq27.3 is distinct from the unstable (CGG)n sequence, or that the break followed by the end-to-end fusion creating the ring chromosome was not completely conservative. Analysis of DNA markers on the short arm of chromosome X evidenced a deletion of a large part of the pseudoautosomal region, allowing us to position the genes involved in stature and in some syndromes associated with telomeric deletions of Xp on the proximal side of the pseudoautosomal region.  相似文献   

5.
We report on a 16-year-old patient with Turner syndrome who presented a mos 46,X,del(X)(p22.1)[35]/45,X [19]/46,X,r(X)(p22.1q28)[6]GTG-band karyotype. The R-banding showed that the abnormal X-chromosome was inactive in all 61 cells analyzed. Fluorescence in situ hybridization with a Xp/Yp subtelomeric probe revealed that both abnormal chromosomes lacked the complementary sequences, a fact consistent with a terminal deletion. Besides, the molecular analysis of the human androgen receptor gene showed that the rearranged chromosome was paternal in origin. Since the deleted and the ring chromosomes had the same size and banding pattern, and because the former was the predominant cell line, it was inferred that the Xp- formed a ring in some cells apparently without further loss of genetic material. However, the reverse sequence and even a simultaneous origin due to a complex intrachromosomal exchange are also conceivable. The mild Turner syndrome phenotype is explained by the mosaicism and by the size of the deleted segment.  相似文献   

6.
X/X translocations are quite rare in humans. The effect of this anomaly on the phenotype is variable and depends on the amount of deleted material and whether the chromosomes are joined by their long or short arms. We report an unusual case of Turner syndrome mosaicism in a 16-year-old girl, who was referred to our Institute for primary amenorrhoea associated with short stature. Endocrine evaluation revealed hypergonadotropic hypogonadism, which required a study of the karyotype. Cytogenetic analysis, performed on peripheral blood leucocytes, showed a mos 45,X/46,X,ter rea (X;X)(p22.3;p22.3) de novo karyotype. The prevalent cell line was 45,X (90% cells). A second cell line (10% cells) showed a very large marker chromosome, similar to a large metacentric chromosome. FISH (fluorescent in situ hybridisation) and molecular analysis revealed that the marker chromosome was dicentric and totally derived from the paternal X chromosome.  相似文献   

7.
Summary The present report summarizes molecular studies of parental origin and sex chromosome mosaicism in forty-one 45,X conceptuses, consisting of 29 spontaneous abortions and 12 liveborn individuals with Turner syndrome. Our studies indicate that most 45,X conceptuses have a single, maternally derived X chromosome, regardless of whether the conceptus is liveborn or spontaneously aborted. In studies of mosaicism, our identification of X- and Y-chromosome mosaics among 45,X spontaneous abortions indicates that mosaicism does not ensure survival to term of 45,X fetuses. However, the incidence of sex chromosmome mosaicism is substantially higher in liveborn than in aborted 45,X conceptuses, indicating that the presence of a second cell line increases the likelihood of survival to term.  相似文献   

8.
Numerical sex chromosome abnormalities were analyzed in sperm from four fathers of Turner syndrome patients of paternal origin to determine whether there was an increased frequency of sex chromosome aneuploidy and to elucidate whether meiotic malsegregation mechanisms could be involved in the origin of Turner syndrome. Determination of the parental origin of the single X chromosome (maternal in all four cases) and exclusion of X and Y mosaicism were carried out by polymerase chain reaction amplification of five X chromosome polymorphisms and three Y chromosome segments. A total of 45,299 sperm nuclei from Turner fathers and 85,423 sperm nuclei from eight control donors was analyzed by three-color fluorescence in situ hybridization. The four patients showed a significant increase in the percentages of XY sperm (mean 0.22%; range 0.20% to 0.22%) compared with control donors (mean 0.11%; range 0.06% to 0.18%). These results suggest that the four individuals have an increased frequency of nondisjunctional errors in meiosis I, resulting in the production of an increased proportion of XY spermatozoa and of sperm lacking a sex chromosome. Received: 24 November 1998 / Accepted: 2 February 1999  相似文献   

9.
Thirty-seven 45 X Turner syndrome patients with confirmed peripheral blood lymphocyte karyotype were initially selected to determine the origin of the retained X chromosome and to correlate it with their parents' stature. Blood samples were available in 25 families. The parental origin of the X chromosome was determined in 24 informative families through the analysis of the exon 1-CAG repeat variation of the androgen receptor gene. In 70.8% of the cases, the retained X chromosome was maternal in origin and 29.2% was paternal. When we classified the patients according to maternal (Xm) or paternal (Xp) X chromosome, there was a positive correlation between patients' and maternal heights only in the Xm group. There was no correlation with paternal height in either group, and a significant correlation with target height was only observed in the Xm group. In conclusion, maternal height is the best variable correlating with the height of 45 X Turner syndrome patients who retain the maternal X chromosome, suggesting a strong influence of genes located on the maternal X chromosome on stature.  相似文献   

10.
11.
Summary Blood samples of an 8-year-old girl with Turner syndrome were examined using cytogenetic and molecular methods. Chromosomal analyses revealed a mosaic karyotype consisting of 25% 47,X,der(X),+r(X) and 75% 46,X,der(X) cells. Southern blot hybridizations with Y-specific DNA probes excluded a Y chromosomal origin of the small ring chromosome. In situ hybridization using DNA probe pXBR showed it to be X-derived. Examination of C-, Q-, and R-banding patterns indicated that the der(X) chromosome probably arose by a translocation event.  相似文献   

12.
Studies on aneuploidy have shown that the X is the most frequently lost chromosome in females, and that the number of X chromosome-positive micronuclei increases with age in women. Recently, we showed that the inactive X chromosome is incorporated preferentially in micronuclei. The objectives of the current study were, firstly, to determine the incidence of X chromosome incorporation into micronuclei in males and, secondly, to determine the incidence of X chromosome incorporation into micronuclei of females with Turner syndrome. Blood samples were obtained from 18 male newborns and 35 normal adult males ranging in age from 22 to 79 years and from seven women with non-mosaic Turner syndrome aged 11–39 years. Isolated lymphocytes were cultured in the presence of cytochalasin B and 2000 binucleated cells per subject were scored for micronuclei. Cells were then hybridized with the biotinylated X centromere-specific probe, pBamX7, and visualized with fluorescein-conjugated avidin. All micronucleated cells were relocated and evaluated for the presence or absence of the X chromosome. Of the 335 micronuclei observed, 6.6% (22/335) contained an X chromosome. Analysis of variance shows a statistically significant increase, for both males and Turner females, in the number of X chromosome-positive micronuclei with age (P < 0.001). These data also show that the X chromosome is included in micronuclei from males more often than would be expected by chance (P < 0.005; χ2 analysis, 15 df). Here we show that there is a tenfold difference in the frequency of X chromosome-positive micronuclei in 46,XX females compared to 46,XY males and 45,X females, providing further support to our previous finding that the X chromosome in micronuclei is the inactive chromosome. Received: 29 April 1997 / Accepted: 9 May 1997  相似文献   

13.
Several patients with X chromosome structural abnormalities have been more severely affected clinically than expected. Since bends at Xq13-21 have been associated with inactivation, the authors scored bends retrospectively in 62 patients with X chromosome aneuploidy and 21 cases with structural abnormalities of the X chromosome. They found that patients with 2 X inactivation sites where one X was structurally abnormal had significantly fewer cells with X bends than normal 46,XX. In addition, these patients also showed X bends on the normal X more often than would be expected if non-random X inactivation of the abnormal X chromosome was occurring. Five of the 6 patients with a short or long arm deletion or paracentric inversion of Xq were mentally retarded or had other congenital anomalies not usually associated with Turner syndrome. This suggests to them that these clinical findings may be related to interference with X inactivation patterns in cells with a structurally abnormal X chromosome.  相似文献   

14.
Small ring (X) chromosomes lacking the XIST gene at Xq13.2 have been associated with a severe phenotype that includes mental retardation, facial dysmorphism and congenital abnormalities. It has been hypothesised that the loss of XIST results in functional disomy for the sequences contained in the ring. We studied 47 females with a 45,X/46,r(X) karyotype and found seven to have an XIST-negative ring. Only one of the seven patients had the severe phenotype. The remaining six patients had physical phenotypes consistent with Turner syndrome. The rings were characterised cytogenetically and molecularly. The severe phenotype in one patient can be explained by the absence of XIST expression, the relatively large amount of Xp material in the ring and, possibly, the concomitant maternal uniparental isodisomy. We propose three explanations for the unexpectedly mild phenotypes in the remaining six patients; (1) the rings contained limited amounts of X-chromosome material, and sequences that, when functionally disomic, result in a severe phenotype were absent; (2) mosaicism resulting in the absence of the ring from tissues, such as the brain, which are important in the severe phenotype and (3) the presence of an inactive X in some tissues at some time, exemplified by the demonstration of XIST expression in one patient.  相似文献   

15.
16.
Fluorescence in situ hybridization with the use of the equine X whole chromosome painting probe was carried out on chromosome spreads originating from three mares with poor reproductive performance (infertility, miscarriage or stillbirth). The numbers of analysed spreads were high (105, 300 and 480) and in all three mares a low frequency of mosaicism was identified. The mares had the following karyotypes: 64,XX/63,X/65,XXX (93.6%/5.7%/0.7%), 64,XX/63,X (98.9%/1.1%) and 64,XX/63,X (94.3%/5.7%). The incidence and importance of the low percentage X chromosome mosaicism are discussed.  相似文献   

17.
A de novo paracentric inversion of the short arm of an X chromosome (p11.2p22.1) was observed in a 17-year-old girl studied because of primary amenorrhea and a Turner phenotype. To our knowledge this is only the second case of a paracentric inversion of the X chromosome short arm reported, the first having been briefly described in 1982, in a young lady with the Turner phenotype. In spite of its balanced appearance, there is little doubt that this rearrangement is the cause of the phenotypic anomalies of the patient, probably as the result of gene(s) modification(s) at the breakpoints on the X chromosome, or because the inverted gene sequence resulted in modifications by position effect. It has become increasingly difficult to recognize obvious phenotype-genotype correlations in Turner syndrome, given the multiplicity of chromosome rearrangements--some of them quite subtle--which are associated with ovarian dysgenesis.  相似文献   

18.
Primary amenorrhoea is defined as the absence of menstruation in phenotypic women aged 16 years or older, if secondary sexual characteristics are present. X chromosome abnormalities probably comprise about one half of all cases, including Turner syndrome and X chromosome rearrangements. Conventional banding cytogenetic methods might miss the accurate detection of structural chromosome abnormalities. The fluorescence in situ hybridization (FISH) and multicolor FISH techniques are required to interpret specific chromosomal rearrangement. As far as we know, we report the first case with chromosome mosaicism for monosomy X and terminal deletion of Xq26 with duplication of Xp11-->pter. In spite of the fact that a 45,X karyotype was detected in 46% of lymphocytes, she was tall and her secondary sexual characteristics were moderately developed, including breast, pubic and axillary hair stages. Cytogenetic and FISH analyses should be considered for patients presenting primary amenorrhoea even if there are no other clinical features suggestive of chromosome abnormality.  相似文献   

19.
Summary A family in which the proband showed phenotypic signs of both the Turner and Down syndromes was studied cytogenetically and with restriction fragment length polymorphisms. The proband's karyotype was 46,X,+21, showing double aneuploidy without any signs of mosaicism. The single X and one chromosome 21 were of paternal origin while two chromosomes 21 were of maternal origin. The nondisjunction of chromosome 21 took place in maternal meiosis II. If it is assumed that the absence of mosaicism renders postzygotic mitotic loss of the X chromosome unlikely, then the X chromosome would have been lost in maternal meiosis I or II. Recombination had occurred between the nondisjoined chromosomes 21. We conclude that double nondisjunction took place in one parent and that asynapsis was not a prerequisite for the autosomal nondisjunction.  相似文献   

20.
We have used X- and Y-linked RFLPs to determine the origin of the single X chromosome in 25 live-born individuals with Turner syndrome. We determined that 18 individuals retained a maternal X (Xm) and that seven retained the paternal X (Xp). No occult mosaicism was detected. We found no differences in either maternal or paternal ages for the two groups. The ratio of maternal X to paternal X is just over 2:1, which is consistent with the expected proportion of meiotic or mitotic products, with equal loss at each step, given the nonviability of 45,Y. Six phenotypic or physiologic characteristics were assessed: (1) birth weight, (2) height percentile at time of testing, (3) presence of a webbed neck, (4) cardiovascular abnormalities, (5) renal abnormalities, and (6) thyroid autoimmunity. There were no significant differences in birth weights or heights between the girls who retained the maternal X or the paternal X. In addition, no differences between the groups could be appreciated in the incidence of the physical, anatomic, or physiologic parameters assessed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号