首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Social selection is presented here as a parallel theory to sexual selection and is defined as a selective force that occurs when individuals change their own social behaviors, responding to signals sent by conspecifics in a way to influence the other individuals' fitness. I analyze the joint evolution of a social signal and behavioral responsiveness to the signal by a quantitative-genetic model. The equilibria of average phenotypes maintained by a balance of social selection and natural selection and their stability are examined for two alternative assumptions on behavioral responsiveness, neutral and adaptive. When behavioral responsiveness is neutral on fitness, a rapid evolution by runaway selection occurs only with enough genetic covariance between the signal and responsiveness. The condition for rapid evolution also depends on natural selection and the number of interacting individuals. When signals convey some information on signalers (e.g., fighting ability), behavioral responsiveness is adaptive such that a receiver's fitness is also influenced by the signal. Here there is a single point of equilibrium. The equilibrium point and its stability do not depend on the genetic correlation. The condition needed for evolution is that the signal is beneficial for receivers, which results from reliability of the signal. Frequency-dependent selection on responsiveness has almost no influence on the equilibrium and the rate of evolution.  相似文献   

2.
3.
Female mating preferences are often flexible, reflecting the social environment in which they are expressed. Associated indirect genetic effects (IGEs) can affect the rate and direction of evolutionary change, but sexual selection models do not capture these dynamics. We incorporate IGEs into quantitative genetic models to explore how variation in social environments and mate choice flexibility influence Fisherian sexual selection. The importance of IGEs is that runaway sexual selection can occur in the absence of a genetic correlation between male traits and female preferences. Social influences can facilitate the initiation of the runaway process and increase the rate of trait elaboration. Incorporating costs to choice do not alter the main findings. Our model provides testable predictions: (1) genetic covariances between male traits and female preferences may not exist, (2) social flexibility in female choice will be common in populations experiencing strong sexual selection, (3) variation in social environments should be associated with rapid sexual trait divergence, and (4) secondary sexual traits will be more elaborate than previously predicted. Allowing feedback from the social environment resolves discrepancies between theoretical predictions and empirical data, such as why indirect selection on female preferences, theoretically weak, might be sufficient for preferences to become elaborated.  相似文献   

4.
The ability of humans to communicate via language is a complex, adapted phenotype, which undoubtedly has a recently evolved genetic component. However, the evolutionary dynamics of language-associated alleles are poorly understood. To improve our knowledge of such systems, a population-genetics model for language-associated genes is developed. (The model is general and applicable to social interactions other than communication.) When an allele arises that potentially improves the ability of individuals to communicate, it will experience positive frequency-dependent selection because its fitness will depend on how many other individuals communicate the same way. Consequently, new and rare alleles are selected against, posing a problem for the evolutionary origin of language. However, the model shows that if individuals form language-based cliques, then novel language-associated alleles can sweep through a population. Thus, the origin of language ability can be sufficiently explained by Darwinian processes operating on genetic diversity in a finite population of human ancestors.  相似文献   

5.
Evolutionary conditions for the emergence of communication in robots   总被引:1,自引:0,他引:1  
Information transfer plays a central role in the biology of most organisms, particularly social species [1, 2]. Although the neurophysiological processes by which signals are produced, conducted, perceived, and interpreted are well understood, the conditions conducive to the evolution of communication and the paths by which reliable systems of communication become established remain largely unknown. This is a particularly challenging problem because efficient communication requires tight coevolution between the signal emitted and the response elicited [3]. We conducted repeated trials of experimental evolution with robots that could produce visual signals to provide information on food location. We found that communication readily evolves when colonies consist of genetically similar individuals and when selection acts at the colony level. We identified several distinct communication systems that differed in their efficiency. Once a given system of communication was well established, it constrained the evolution of more efficient communication systems. Under individual selection, the ability to produce visual signals resulted in the evolution of deceptive communication strategies in colonies of unrelated robots and a concomitant decrease in colony performance. This study generates predictions about the evolutionary conditions conducive to the emergence of communication and provides guidelines for designing artificial evolutionary systems displaying spontaneous communication.  相似文献   

6.
Phylogenetic signal, evolutionary process, and rate   总被引:1,自引:0,他引:1  
A recent advance in the phylogenetic comparative analysis of continuous traits has been explicit, model-based measurement of "phylogenetic signal" in data sets composed of observations collected from species related by a phylogenetic tree. Phylogenetic signal is a measure of the statistical dependence among species' trait values due to their phylogenetic relationships. Although phylogenetic signal is a measure of pattern (statistical dependence), there has nonetheless been a widespread propensity in the literature to attribute this pattern to aspects of the evolutionary process or rate. This may be due, in part, to the perception that high evolutionary rate necessarily results in low phylogenetic signal; and, conversely, that low evolutionary rate or stabilizing selection results in high phylogenetic signal (due to the resulting high resemblance between related species). In this study, we use individual-based numerical simulations on stochastic phylogenetic trees to clarify the relationship between phylogenetic signal, rate, and evolutionary process. Under the simplest model for quantitative trait evolution, homogeneous rate genetic drift, there is no relation between evolutionary rate and phylogenetic signal. For other circumstances, such as functional constraint, fluctuating selection, niche conservatism, and evolutionary heterogeneity, the relationship between process, rate, and phylogenetic signal is complex. For these reasons, we recommend against interpretations of evolutionary process or rate based on estimates of phylogenetic signal.  相似文献   

7.
Patterns, such as bars and spots, are common in birds. Some patterns can function in camouflage and/or communication and can benefit both males and females, paving the way for elaboration in sexual dimorphism. Historically, sexual dichromatism was predominantly considered to be a consequence of mating systems. However, the distribution of traits between the sexes is not always indicative of function; genetic correlation may cause traits to evolve in both sexes and traits may serve a social function in males and/or females. In addition, sexual dichromatism in bird plumage patterns can be composed of multiple types of patterns within and/or between the sexes. Therefore, there can be more than one type of dimorphism and some are more elaborate than others. Under classical models of genetic correlation, patterns evolve in both sexes followed by a loss of patterning in one sex. Elaborate types of sexual dimorphism in plumage patterns may be due to selection acting on existing patterns and are perhaps derived. Waterfowl (Anseriformes) and gamebirds (Galliformes) arguably have the most striking plumage patterns. Using 288 species from these orders I reconstructed the evolutionary history of plumage pattern dimorphism. There was little support for genetic correlation but elaborate types of dimorphism are probably derived. Backward and forward evolutionary transitions between different types of dimorphism can occur by loss or elaboration. These results demonstrate that plumage patterns are evolutionary labile and current forms may represent shifting adaptations to a changing environment. © 2013 The Linnean Society of London, Biological Journal of the Linnean Society, 2014, 111 , 262–273.  相似文献   

8.
Organisms express phenotypic plasticity during social interactions. Interacting phenotype theory has explored the consequences of social plasticity for evolution, but it is unclear how this theory applies to complex social structures. We adapt interacting phenotype models to general social structures to explore how the number of social connections between individuals and preference for phenotypically similar social partners affect phenotypic variation and evolution. We derive an analytical model that ignores phenotypic feedback and use simulations to test the predictions of this model. We find that adapting previous models to more general social structures does not alter their general conclusions but generates insights into the effect of social plasticity and social structure on the maintenance of phenotypic variation and evolution. Contribution of indirect genetic effects to phenotypic variance is highest when interactions occur at intermediate densities and decrease at higher densities, when individuals approach interacting with all group members, homogenizing the social environment across individuals. However, evolutionary response to selection tends to increase at greater network densities as the effects of an individual's genes are amplified through increasing effects on other group members. Preferential associations among similar individuals (homophily) increase both phenotypic variance within groups and evolutionary response to selection. Our results represent a first step in relating social network structure to the expression of social plasticity and evolutionary responses to selection.  相似文献   

9.
Indirect genetic effects (IGEs) occur when the phenotype of an individual, and possibly its fitness, depends, at least in part, on the genes of its social partners. The effective result is that environmental sources of phenotypic variance can themselves evolve. Simple models have shown that IGEs can alter the rate and direction of evolution for traits involved in interactions. Here we expand the applicability of the theory of IGEs to evolution in metapopulations by including nonlinear interactions between individuals and population genetic structure. Although population subdivision alone generates some dramatic and nonintuitive evolutionary dynamics for interacting phenotypes, the combination of nonlinear interactions with subdivision reveals an even greater importance of IGEs. The presence of genetic structure links the evolution of interacting phenotypes and the traits that influence their expression ("effector traits") even in the absence of genetic correlations. When nonlinear social effects occur in subdivided populations, evolutionary response is altered and can even oppose the direction expected due to direct selection. Because population genetic structure allows for multilevel selection, we also investigate the role of IGEs in determining the response to individual and group selection. We find that nonlinear social effects can cause interference between levels of selection even when they act in the same direction. In some cases, interference can be so extreme that the actual evolutionary response to multilevel selection is opposite in direction to that predicted by summing selection at each level. This theoretical result confirms empirical data that show higher levels of selection cannot be ignored even when selection acts in the same direction at all levels.  相似文献   

10.
Efficient signalling requires coordination of signal form and receiver design. To maintain signal function, parallel changes in signaller and receiver traits are required. Genetic correlation and co-evolution among signal and response traits have been proposed to preserve signal function (i.e. coordination) during the evolution of mate recognition systems. Empirical studies have provided support for both mechanisms; however, there is debate regarding the interpretation of some of these studies. Tests for a genetic correlation typically hybridize divergent signalling systems and look at hybrid signal form and receiver design, or impose artificial selection on signal form and look for an indirect response to selection in receiver design. Some of the hybridization studies did not achieve reassortment of genes from the parental types, whereas some of the artificial selection studies incorporated random mating in their designs. As a result of these limitations, the hybridization studies cannot discriminate between genetic correlation and co-evolution with primarily additive genetic effects underlying signal and response traits. Similarly, the artificial selection experiments cannot discriminate between genetic correlation because of linkage disequilibrium and co-evolution. This study examined the mating preferences of male almond moths, Cadra cautella, before and after female moths were artificially selected (using a design incorporating assortative mating) for novel pheromone blend ratios. Our results demonstrate the absence of a genetic correlation between signal and response traits in the almond moth.  相似文献   

11.
The maintenance of heritable variation through social competition   总被引:1,自引:0,他引:1  
The paradoxical persistence of heritable variation for fitness-related traits is an evolutionary conundrum that remains a preeminent problem in evolutionary biology. Here we describe a simple mechanism in which social competition results in the evolutionary maintenance of heritable variation for fitness related traits. We demonstrate this mechanism using a genetic model with two primary assumptions: the expression of a trait depends upon success in social competition for limited resources; and competitive success of a genotype depends on the genotypes that it competes against. We find that such social competition generates heritable (additive) genetic variation for "competition-dependent" traits. This heritable variation is not eroded by continuous directional selection because, rather than leading to fixation of favored alleles, selection leads instead to allele frequency cycling due to the concerted coevolution of the social environment with the effects of alleles. Our results provide a mechanism for the maintenance of heritable variation in natural populations and suggest an area for research into the importance of competition in the genetic architecture of fitness related traits.  相似文献   

12.
Etges WJ 《Genetica》2002,116(2-3):151-166
Understanding the genetic bases of phenotypes associated with the earliest stages of divergence will reveal a great deal about species formation. I review a number of model systems, most involving plant–insect interactions, that have already revealed genetic aspects of incipient speciation. It is suggested that progress in understanding the causal forces driving mating signal evolution and incipient speciation will be expedited in model systems where; (1) ecological and evolutionary information is available, (2) different aspects of mating behaviors that function in mate and/or species recognition are known, (3) genetic analysis of single phenotypes is undertaken, (4) analysis of sexual selection and isolation is performed under natural conditions (or in the wild), and (5) comparative data from related species are available to assess phylogenetic trends.  相似文献   

13.
Urbanization is rapidly altering landscapes worldwide, changing environmental conditions, and creating novel selection pressures for many organisms. Local environmental conditions affect the expression and evolution of sexual signals and mating behaviors; changes in such traits have important evolutionary consequences because of their effect on reproduction. In this review, we synthesize research investigating how sexual communication is affected by the environmental changes associated with urbanization—including pollution from noise, light, and heavy metals, habitat fragmentation, impervious surfaces, urban heat islands, and changes in resources and predation. Urbanization often has negative effects on sexual communication through signal masking, altering condition‐dependent signal expression, and weakening female preferences. Though there are documented instances of seemingly adaptive shifts in trait expression, the ultimate impact on fitness is rarely tested. The field of urban evolution is still relatively young, and most work has tested whether differences occur in response to various aspects of urbanization. There is limited information available about whether these responses represent phenotypic plasticity or genetic changes, and the extent to which observed shifts in sexual communication affect reproductive fitness. Our understanding of how sexual selection operates in novel, urbanized environments would be bolstered by more studies that perform common garden studies and reciprocal transplants, and that simultaneously evaluate multiple environmental factors to tease out causal drivers of observed phenotypic shifts. Urbanization provides a unique testing ground for evolutionary biologists to study the interplay between ecology and sexual selection, and we suggest that more researchers take advantage of these natural experiments. Furthermore, understanding how sexual communication and mating systems differ between cities and rural areas can offer insights on how to mitigate negative, and accentuate positive, consequences of urban expansion on the biota, and provide new opportunities to underscore the relevance of evolutionary biology in the Anthropocene.  相似文献   

14.
Functional information means an encoded network of functions in living organisms from molecular signaling pathways to an organism’s behavior. It is represented by two components: code and an interpretation system, which together form a self-sustaining semantic closure. Semantic closure allows some freedom between components because small variations of the code are still interpretable. The interpretation system consists of inference rules that control the correspondence between the code and the function (phenotype) and determines the shape of the fitness landscape. The utility factor operates at multiple time scales: short-term selection drives evolution towards higher survival and reproduction rate within a given fitness landscape, and long-term selection favors those fitness landscapes that support adaptability and lead to evolutionary expansion of certain lineages. Inference rules make short-term selection possible by shaping the fitness landscape and defining possible directions of evolution, but they are under control of the long-term selection of lineages. Communication normally occurs within a set of agents with compatible interpretation systems, which I call communication system. Functional information cannot be directly transferred between communication systems with incompatible inference rules. Each biological species is a genetic communication system that carries unique functional information together with inference rules that determine evolutionary directions and constraints. This view of the relation between utility and inference can resolve the conflict between realism/positivism and pragmatism. Realism overemphasizes the role of inference in evolution of human knowledge because it assumes that logic is embedded in reality. Pragmatism substitutes usefulness for truth and therefore ignores the advantage of inference. The proposed concept of evolutionary pragmatism rejects the idea that logic is embedded in reality; instead, inference rules are constructed within each communication system to represent reality, and they evolve towards higher adaptability on a long time scale.  相似文献   

15.
Evolution at multiple gene positions is complicated. Direct selection on one gene disturbs the evolutionary dynamics of associated genes. Recent years have seen the development of a multilocus methodology for modeling evolution at arbitrary numbers of gene positions with arbitrary dominance and epistatic relations, mode of inheritance, genetic linkage, and recombination. We show that the approach is conceptually analogous to social evolutionary methodology, which focuses on selection acting on associated individuals. In doing so, we (1) make explicit the links between the multilocus methodology and the foundations of social evolution theory, namely, Price's theorem and Hamilton's rule; (2) relate the multilocus approach to levels-of-selection and neighbor-modulated-fitness approaches in social evolution; (3) highlight the equivalence between genetical hitchhiking and kin selection; (4) demonstrate that the multilocus methodology allows for social evolutionary analyses involving coevolution of multiple traits and genetical associations between nonrelatives, including individuals of different species; (5) show that this methodology helps solve problems of dynamic sufficiency in social evolution theory; (6) form links between invasion criteria in multilocus systems and Hamilton's rule of kin selection; (7) illustrate the generality and exactness of Hamilton's rule, which has previously been described as an approximate, heuristic result.  相似文献   

16.
Social plasticity is a ubiquitous feature of animal behaviour. Animals must adjust the expression of their social behaviour to the nuances of daily social life and to the transitions between life‐history stages, and the ability to do so affects their Darwinian fitness. Here, an integrative framework is proposed for understanding the proximate mechanisms and ultimate consequences of social plasticity. According to this framework, social plasticity is achieved by rewiring or by biochemically switching nodes of the neural network underlying social behaviour in response to perceived social information. Therefore, at the molecular level, it depends on the social regulation of gene expression, so that different brain genomic and epigenetic states correspond to different behavioural responses and the switches between states are orchestrated by signalling pathways that interface the social environment and the genotype. At the evolutionary scale, social plasticity can be seen as an adaptive trait that can be under positive selection when changes in the environment outpace the rate of genetic evolutionary change. In cases when social plasticity is too costly or incomplete, behavioural consistency can emerge by directional selection that recruits gene modules corresponding to favoured behavioural states in that environment. As a result of this integrative approach, how knowledge of the proximate mechanisms underlying social plasticity is crucial to understanding its costs, limits and evolutionary consequences is shown, thereby highlighting the fact that proximate mechanisms contribute to the dynamics of selection. The role of teleosts as a premier model to study social plasticity is also highlighted, given the diversity and plasticity that this group exhibits in terms of social behaviour. Finally, the proposed integrative framework to social plasticity also illustrates how reciprocal causation analysis of biological phenomena (i.e. considering the interaction between proximate factors and evolutionary explanations) can be a more useful approach than the traditional proximate–ultimate dichotomy, according to which evolutionary processes can be understood without knowledge on proximate causes, thereby black‐boxing developmental and physiological mechanisms.  相似文献   

17.
To predict evolutionary responses of warning signals under selection, we need to determine the inheritance pattern of the signals, and how they are genetically correlated with other traits contributing to fitness. Furthermore, protective coloration often undergoes remarkable changes within an individual's lifecycle, requiring us to quantify the genetic constraints of adaptive coloration across all the relevant life stages. Based on a 12 generation pedigree with > 11,000 individuals of the wood tiger moth (Arctia plantaginis), we show that high primary defense as a larva (large warning signal) results in weaker defenses as adult (less efficient warning color), due to the negative genetic correlation between the efficacy of larval and adult warning coloration. However, production of effective warning coloration as a larva did not incur any life‐history costs and was positively genetically correlated with reproductive output. These results provide novel insights into the evolutionary constraints on protective coloration in animals, and explain the maintenance of variation in the signal expression despite the strong directional selection by predators. By analyzing the genetic and environmental effects on warning signal and life‐history traits in all relevant life stages, we can accurately determine the mechanisms shaping the evolutionary responses of phenotypic traits under different selection environments.  相似文献   

18.
Social interactions have a powerful effect on the evolutionary process. Recent attempts to synthesize models of social selection with equations for indirect genetic effects (McGlothlin et al. 2010) provide a broad theoretical base from which to study selection and evolutionary response in the context of social interactions. However, this framework concludes that social selection will lead to evolution only if the traits carried by social partners are nonrandomly associated. I suggest this conclusion is incomplete, and that traits that do not covary between social partners can nevertheless lead to evolution via interactive effects on fitness. Such effects occur when there are functional interactions between traits, and as an example I use the interplay in water striders (Gerridae) between grasping appendages carried by males and spines by females. Functional interactive effects between traits can be incorporated into both the equations for social selection and the general model of social evolution proposed by McGlothlin et al. These expanded equations would accommodate adaptive coevolution in social interactions, integrate the quantitative genetic approach to social evolution with game theoretical approaches, and stimulate some new questions about the process of social evolution.  相似文献   

19.
Social selection and indirect genetic effects (IGEs) are established concepts in both behavioural ecology and evolutionary genetics. While IGEs describe effects of an individual’s genotype on phenotypes of social partners (and may thus affect their fitness indirectly), the concept of social selection assumes that a given phenotype in one individual affects the fitness of other individuals directly. Although different frameworks, both have been used to investigate the evolution of social traits, such as cooperative behaviour. Despite their similarities (both concepts consider interactions among individuals), they differ in the type of interaction. It remains unclear whether the two concepts make the same predictions about evolutionary trajectories or not. To address this question, we investigate four possible scenarios of social interactions and compare the effects of IGEs and social selection for trait evolution in a multi-trait multi-member model. We show that the two mechanisms can yield similar evolutionary outcomes and that both can create selection pressure at the group level. However, the effect of IGEs can be stronger due to the possibility of feedback loops. Finally, we demonstrate that IGEs, but not social selection gradients, may lead to differences in the direction of evolutionary response between genotypes and phenotypes.  相似文献   

20.
The influence of phenotypic effects of genetic mutations on molecular evolution is not well understood. Neutral and nearly neutral theories of molecular evolution predict a negative relationship between the evolutionary rate of proteins and their functional importance; nevertheless empirical studies seeking relationships between evolutionary rate and the phenotypic role of proteins have not produced conclusive results. In particular, previous studies have not found the expected negative correlation between evolutionary rate and gene pleiotropy. Here, we studied the effect of gene pleiotropy and the phenotypic size of mutations on the evolutionary rate of genes in a geometrical model, in which gene pleiotropy was characterized by n molecular phenotypes that affect organismal fitness. For a nearly neutral process, we found a negative relationship between evolutionary rate and mutation size but pleiotropy did not affect the evolutionary rate. Further, for a selection model, where most of the substitutions were fixed by natural selection in a randomly fluctuating environment, we also found a negative relationship between evolutionary rate and mutation size, but interestingly, gene pleiotropy increased the evolutionary rate as √n. These findings may explain part of the disagreement between empirical data and traditional expectations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号