首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The genetic transfer of antigen receptors provides a means to rapidly generate autologous tumor-reactive T lymphocytes. However, recognition of tumor antigens by cytotoxic T cells is only one step towards effective cancer immunotherapy. Other crucial biological prerequisites must be fulfilled to expand tumor-reactive T cells that retain a functional phenotype, including in vivo cytolytic activity and the ability to travel to tumor sites without prematurely succumbing to apoptosis. We show that these requirements are met by expanding peripheral blood T cells genetically targeted to the CD19 antigen in the presence of CD80 and interleukin-15 (IL-15). T cells expanded in the presence of IL-15 uniquely persist in tumor-bearing severe combined immunodeficiency (SCID)-Beige mice and eradicate disseminated intramedullary tumors. Their anti-tumor activity is further enhanced by in vivo co-stimulation. In addition, transduced T cells from patients with chronic lymphocytic leukemia (CLL) effectively lyse autologous tumor cells. These findings strongly support the clinical feasibility of this therapeutic strategy.  相似文献   

2.
Dendritic cells (DCs) are potent APCs and attractive vectors for cancer immunotherapy. Using the B16 melanoma, a poorly immunogenic experimental tumor that expresses low levels of MHC class I products, we investigated whether DCs loaded ex vivo with apoptotic tumor cells could elicit combined CD4(+) and CD8(+) T cell dependent, long term immunity following injection into mice. The bone marrow-derived DCs underwent maturation during overnight coculture with apoptotic melanoma cells. Following injection, DCs migrated to the draining lymph nodes comparably to control DCs at a level corresponding to approximately 0.5% of the injected inoculum. Mice vaccinated with tumor-loaded DCs were protected against an intracutaneous challenge with B16, with 80% of the mice remaining tumor-free 12 wk after challenge. CD4(+) and CD8(+) T cells were efficiently primed in vaccinated animals, as evidenced by IFN-gamma secretion after in vitro stimulation with DCs loaded with apoptotic B16 or DCs pulsed with the naturally expressed melanoma Ag, tyrosinase-related protein 2. In addition, B16 melanoma cells were recognized by immune CD8(+) T cells in vitro, and cytolytic activity against tyrosinase-related protein 2(180-188)-pulsed target cells was observed in vivo. When either CD4(+) or CD8(+) T cells were depleted at the time of challenge, the protection was completely abrogated. Mice receiving a tumor challenge 10 wk after vaccination were also protected, consistent with the induction of tumor-specific memory. Therefore, DCs loaded with cells undergoing apoptotic death can prime melanoma-specific helper and CTLs and provide long term protection against a poorly immunogenic tumor in mice.  相似文献   

3.
Due to their dual binding capacity, bispecific antibodies (bsAb) can be used to cross-link cytotoxic effector cells with malignant targets and may thereby improve adoptive immunotherapy. In this study, the development and preclinical testing of the quadroma-derived bsAb HD37xT5.16 of the specificity CD19xCD5 is reported. Effector cells used were a population of ex vivo expanded and activated T cells called cytokine-induced killer (CIK) cells expressing CD5. When combined with CIK cells, the cytolytic potency of HD37xT5.16 against CD19 positive B cell lymphoma lines was comparable to that observed with a previously described CD19xCD3 bsAb. Further on, we could demonstrate that bsAb CD19xCD5, in contrast to its CD3-binding counterpart, does not induce proliferation of resting T cells and causes only little activation-induced cell death. Therefore, this novel bsAb binding effector T cells via CD5 may be particularly useful in combination with adoptive transfer of ex vivo activated T cells, e.g., in the setting of adoptive immunotherapy after allogeneic stem cell transplantation. The in vitro studies outlined here support the experimental use of bsAb HD37xT5.16 in preclinical in vivo models for evaluation of its safety and efficacy profile. Freddy Tita-Nwa and Gerhard Moldenhauer contributed equally to the study and share first authorship.  相似文献   

4.
A major goal of immunotherapy for cancer is the activation of T cell responses against tumor-associated antigens (TAAs). One important strategy for improving antitumor immunity is vaccination with peptide variants of TAAs. Understanding the mechanisms underlying the expansion of T cells that respond to the native tumor antigen is an important step in developing effective peptide-variant vaccines. Using an immunogenic mouse colon cancer model, we compare the binding properties and the TCR genes expressed by T cells elicited by peptide variants that elicit variable antitumor immunity directly ex vivo. The steady-state affinity of the natural tumor antigen for the T cells responding to effective peptide vaccines was higher relative to ineffective peptides, consistent with their improved function. Ex vivo analysis showed that T cells responding to the effective peptides expressed a CDR3β motif, which was also shared by T cells responding to the natural antigen and not those responding to the less effective peptide vaccines. Importantly, these data demonstrate that peptide vaccines can expand T cells that naturally respond to tumor antigens, resulting in more effective antitumor immunity. Future immunotherapies may require similar stringent analysis of the responding T cells to select optimal peptides as vaccine candidates.  相似文献   

5.
Carcinoembryonic antigen (CEACAM5) is commonly overexpressed in human colon cancer. Several antigenic peptides recognized by cytolytic CD8+ T-cells have been identified and used in colon cancer phase-I vaccination clinical trials. The HLA-A*0201-binding CEA694–702 peptide was recently isolated from acid eluted MHC-I associated peptides from a human colon tumor cell line. However, the immunogenicity of this peptide in humans remains unknown. We found that the peptide CEA694–702 binds weakly to HLA-A*0201 molecules and is ineffective at inducing specific CD8+ T-cell responses in healthy donors. Immunogenic-altered peptide ligands with increased affinity for HLA-A*0201 were identified. Importantly, the elicited cytolytic T lymphocyte (CTL) lines and clones cross-reacted with the wild-type CEA694–702 peptide. Tumor cells expressing CEA were recognized in a peptide and HLA-A*0201 restricted fashion, but high-CEA expression levels appear to be required for CTL recognition. Finally, CEA-specific T-cell precursors could be readily expanded by in vitro stimulation of peripheral blood mononuclear cell (PBMC) from colon cancer patients with altered CEA peptide. However, the CEA-specific CD8+ T-cell clones derived from cancer patients revealed low-functional avidity and impaired tumor-cell recognition. Together, using T-cells to demonstrate the processing and presentation of the peptide CEA694-702, we were able to corroborate its presentation by tumor cells. However, the low avidity of the specific CTLs generated from cancer patients as well as the high-antigen expression levels required for CTL recognition pose serious concerns for the use of CEA694-702 in cancer immunotherapy.  相似文献   

6.
The immune correlates of protection in human immunodeficiency virus type 1 (HIV-1) infection remain poorly defined, particularly the contribution of CD4(+) T cells. Here we explore the effector functions of HIV-1-specific CD4(+) T cells. We demonstrate HIV-1 p24-specific CD4(+)-T-cell cytolytic activity in peripheral blood mononuclear cells directly ex vivo and after enrichment by antigen-specific stimulation. We further show that in a rare long-term nonprogressor, both an HIV-1-specific CD4(+)-T-cell clone and CD4(+) T cells directly ex vivo exert potent suppression of HIV-1 replication. Suppression of viral replication was dependent on cell-cell contact between the effector CD4(+) T cells and the target cells. While the antiviral effector activity of CD8(+) T cells has been well documented, these results strongly suggest that HIV-1-specific CD4(+) T cells are capable of directly contributing to antiviral immunity.  相似文献   

7.
Naive T cells can be tolerized in the periphery by diverse mechanisms. However, the extent to which memory T cells are susceptible to tolerance induction is less well defined. Vaccination of mice with a minimal CTL epitope derived from human adenovirus type 5 E1A in IFA s.c. readily tolerizes naive as well as recently activated CD8(+) T cells due to the overwhelming systemic and persistent presence of the peptide. We have now studied the effect of this peptide on established memory cells, which were induced at least 50 days before by virus vaccination. Memory cells did not undergo peripheral deletion and kept their ability to produce IFN-gamma as well as their cytolytic activity in response to Ag directly ex vivo. However, memory CTL responses in virus vaccinated mice injected with peptide ceased to control tumor outgrowth. Interestingly, functional capacities were regained when T cells were transferred to an Ag-free environment in vivo as determined by their ability to reject an otherwise lethal tumor challenge. Together, these findings indicate that memory CTL responses can be functionally incapacitated, but are not, in contrast to naive or recently activated T cells, irreversibly tolerized by persistent systemic Ag, as memory T cells quickly regain effector function upon disappearance of the Ag.  相似文献   

8.
Adoptive cell transfer (ACT) using ex vivo-expanded anti-tumor T cells such as tumor-infiltrated lymphocytes or genetically engineered T cells potently eradicates established tumors. However, these two approaches possess obvious limitations. Therefore, we established a novel methodology using total tumor RNA (ttRNA) to prime dendritic cells (DC) as a platform for the ex vivo generation of anti-tumor T cells. We evaluated the antigen-specific expansion and recognition of T cells generated by the ttRNA–DC–T platform, and directly modulated the differentiation status of these ex vivo-expanded T cells with a cytokine cocktail. Furthermore, we evaluated the persistence and in vivo anti-tumor efficacy of these T cells through murine xenograft and syngeneic tumor models. During ex vivo culture, IL-2 preferentially expanded CD4 subset, while IL-7 enabled homeostatic proliferation from the original precursors. T cells tended to lose CD62L during ex vivo culture using IL-2; however, IL-12 could maintain high levels of CD62L by increasing expression on effector T cells (Tem). In addition, we validated that OVA RNA–DC only selectively expanded T cells in an antigen-specific manner. A cytokine cocktail excluding the use of IL-2 greatly increased CD62Lhigh T cells which specifically recognized tumor cells, engrafted better in a xenograft model and exhibited superior anti-tumor activities in a syngeneic intracranial model. ACT using the ex vivo ttRNA–DC–T platform in conjunction with a cytokine cocktail generated potent CD62Lhigh anti-tumor T cells and imposes a novel T cell-based therapeutic with the potential to treat brain tumors and other cancers.  相似文献   

9.
Peptide vaccination is an immunotherapeutic strategy being pursued as a method of enhancing Ag-specific antitumor responses. To date, most studies have focused on the use of MHC class I-restricted peptides, and have not shown a correlation between Ag-specific CD8(+) T cell expansion and the generation of protective immune responses. We investigated the effects of CD4-directed peptide vaccination on the ability of CD8(+) T cells to mount protective antitumor responses in the DUC18/CMS5 tumor model system. To accomplish this, we extended the amino acid sequence of the known MHC class I-restricted DUC18 rejection epitope from CMS5 to allow binding to MHC class II molecules. Immunization with this peptide (tumor-derived extracellular signal-regulated kinase-II (tERK-II)) induced Ag-specific CD4(+) T cell effector function, but did not directly prime CD8(+) T cells. Approximately 31% of BALB/c mice immunized with tERK-II were protected from subsequent tumor challenge in a CD40-dependent manner. Priming of endogenous CD8(+) T cells in immunized mice was detected only after CMS5 challenge. Heightened CD4(+) Th cell function in response to tERK II vaccination allowed a 12-fold reduction in the number of adoptively transferred CD8(+) DUC18 T cells needed to protect recipients against tumor challenge as compared with previous studies using unimmunized mice. Furthermore, tERK-II immunization led to a more rapid and transient expansion of transferred DUC18 T cells than was seen in unimmunized mice. These findings illustrate that CD4-directed peptide vaccination augments antitumor immunity, but that the number of tumor-specific precursor CD8(+) T cells will ultimately dictate the success of immunotherapy.  相似文献   

10.
Vaccines that incorporate peptide mimics of tumor antigens, or mimotope vaccines, are commonly used in cancer immunotherapy and function by eliciting increased numbers of T cells that cross-react with the native tumor antigen. Unfortunately, they often elicit T cells that do not cross-react with or that have low affinity for the tumor antigen. Using a high affinity tumor-specific T cell clone, we identified a panel of mimotope vaccines for the dominant peptide antigen from a mouse colon tumor that elicits a range of tumor protection following vaccination. The TCR from this high affinity T cell clone was rarely identified in ex vivo evaluation of tumor-specific T cells elicited by mimotope vaccination. Conversely, a low affinity clone found in the tumor and following immunization was frequently identified. Using peptide libraries, we determined if this frequently identified TCR improved the discovery of efficacious mimotopes. We demonstrated that the representative TCR identified more protective mimotopes than the high affinity TCR. These results suggest that targeting a dominant fraction of tumor-specific T cells generates potent immunity and that consideration of the available T cell repertoire is necessary for targeted T cell therapy. These results have important implications when optimizing mimotope vaccines for cancer immunotherapy.  相似文献   

11.
Cell-based active immunotherapy for cancer is a promising novel strategy, with the first dendritic cell (DC) vaccine achieving regulatory approval for clinical use last year. Manufacturing remains arduous, especially for DC vaccines, and the prospect of using cell-based immunotherapy in the adjuvant setting or in combination with chemotherapy remains largely untested. Here, we used a comparative oncology approach to test the safety and potential efficacy of tumor RNA-loaded, CD40-activated B cells in privately owned dogs presenting with non-Hodgkin's lymphoma (NHL), a clinical scenario that represents not only a major problem in veterinary medicine but also a bona fide spontaneous animal model for the human condition. When administered to NHL dogs in remission after induction chemotherapy, CD40-B cells electroporated ex vivo with autologous tumor RNA safely stimulated immunity in vivo. Although chemotherapy plus CD40-B vaccination did not improve time-to-progression or lymphoma-specific survival compared to dogs treated with chemotherapy alone, vaccination potentiated the effects of salvage therapy and improved the rate of durable second remissions as well as subsequent lymphoma-specific survival following salvage therapy. Several of these relapsed dogs are now long-term survivors and free of disease for more than a year. Overall, these clinical and immunological results suggest that cell-based CD40 cancer vaccination is safe and synergizes with chemotherapy to improve clinical outcome in canine NHL. More broadly, our findings underscore the unique value of clinical investigations in tumor-bearing companion animals.  相似文献   

12.
Therapeutic vaccinations used to induce CTLs and treat firmly established tumors are generally ineffective. To understand the mechanisms underlying the failure of therapeutic vaccinations, we investigated the fate of tumor-specific CD8+ T cells in tumor-bearing mice with or without vaccinations. Our data demonstrate that tumor-specific CD8+ T cells are activated at the early stage of tumor growth, tumor-specific CTL response reaches a maximal level during progressive tumor growth, and tumor-specific CD8+ T cells lose cytolytic function at the late stage of tumor growth. The early stage therapeutic vaccination induces efficient antitumor activity by amplifying the CTL response, whereas the late-stage therapeutic vaccination is invalid due to tumor-induced dysfunction of CD8+ T cells. However, at the late stage, tumor-specific CD8+ T cells are still present in the periphery. These tumor-specific CD8+ T cells lose cytolytic activity, but retain IFN-gamma secretion function. In contrast to in vitro cultured tumor cells, in vivo growing tumor cells are more resistant to tumor-specific CTL killing, despite an increase of tumor Ag gene expression. Both tumor-induced CD8+ T cell dysfunction at the late stage and immune evasion developed by in vivo growing tumor cells contribute to an eventual inefficacy of therapeutic vaccinations. Our study suggests that it is important to design a vaccination regimen according to the stages of tumor growth and the functional states of tumor-specific CD8+ T cells.  相似文献   

13.
In mice, vaccination with high peptide doses generates higher frequencies of specific CD8+ T cells, but with lower avidity compared to vaccination with lower peptide doses. To investigate the impact of peptide dose on CD8+ T cell responses in humans, melanoma patients were vaccinated with 0.1 or 0.5?mg Melan-A/MART-1 peptide, mixed with CpG 7909 and Incomplete Freund's adjuvant. Neither the kinetics nor the amplitude of the Melan-A-specific CD8+ T cell responses differed between the two vaccination groups. Also, CD8+ T cell differentiation and cytokine production ex vivo were similar in the two groups. Interestingly, after low peptide dose vaccination, Melan-A-specific CD8+ T cells showed enhanced degranulation upon peptide stimulation, as assessed by CD107a upregulation and perforin release ex vivo. In accordance, CD8+ T cell clones derived from low peptide dose-vaccinated patients showed significantly increased degranulation and stronger cytotoxicity. In parallel, Melan-A-specific CD8+ T cells and clones from low peptide dose-vaccinated patients expressed lower CD8 levels, despite similar or even stronger binding to tetramers. Furthermore, CD8+ T cell clones from low peptide dose-vaccinated patients bound CD8 binding-deficient tetramers more efficiently, suggesting that they may express higher affinity TCRs. We conclude that low peptide dose vaccination generated CD8+ T cell responses with stronger cytotoxicity and lower CD8 dependence.  相似文献   

14.
Despite major progress in T lymphocyte analysis in melanoma patients, TCR repertoire selection and kinetics in response to tumor Ags remain largely unexplored. In this study, using a novel ex vivo molecular-based approach at the single-cell level, we identified a single, naturally primed T cell clone that dominated the human CD8(+) T cell response to the Melan-A/MART-1 Ag. The dominant clone expressed a high-avidity TCR to cognate tumor Ag, efficiently killed tumor cells, and prevailed in the differentiated effector-memory T lymphocyte compartment. TCR sequencing also revealed that this particular clone arose at least 1 year before vaccination, displayed long-term persistence, and efficient homing to metastases. Remarkably, during concomitant vaccination over 3.5 years, the frequency of the pre-existing clone progressively increased, reaching up to 2.5% of the circulating CD8 pool while its effector functions were enhanced. In parallel, the disease stabilized, but subsequently progressed with loss of Melan-A expression by melanoma cells. Collectively, combined ex vivo analysis of T cell differentiation and clonality revealed for the first time a strong expansion of a tumor Ag-specific human T cell clone, comparable to protective virus-specific T cells. The observed successful boosting by peptide vaccination support further development of immunotherapy by including strategies to overcome immune escape.  相似文献   

15.
The development of protocols for the ex vivo generation of dendritic cells (DCs) has led to intensive research of their potential use in immunotherapy. Accumulating results show the efficacy of this treatment on melanomas which are highly immunogenic. However, its efficacy remains unclear in other tumors. In this study, allogeneic gastric cancer cell–DC hybrids were used to determine the efficacy of this type of immunotherapy in gastric cancer. Fusion cells of DC and allogeneic gastric cancer cells were generated by polyethylene glycol (PEG) and electrofusion. These hybrids were used to induce tumor associated antigen (TAA) specific cytotoxic T lymphocytes (CTLs). The DCs were successfully fused with the allogeneic gastric cancer cells resulting in hybrid cells. These hybrid cells were functional as antigen-presenting cell because they induced allogeneic CD4+ T cells proliferation. CD8+ T cells stimulated by the MKN-45-DC hybrid cells were able to kill MKN-45 when used for immunization. The CTLs killed another gastric cancer cell line, MKN-1, as well as a melanoma cell line, 888mel, suggesting the recognition of a shared tumor antigen. MKN-45 specific CTLs can recognize carcinoembryonic antigen (CEA), indicating that the killing is due to tumor antigens as well as alloantigens. This approach suggests the possible use of allogeneic gastric cancer cell–DC hybrids in DC based immunotherapy for gastric cancer treatment.  相似文献   

16.
Both the magnitude and function of vaccine-induced HIV-specific CD8+ CTLs are likely to be important in the outcome of infection. We hypothesized that rapid cytolysis by CTLs may facilitate control of viral challenge. Release kinetics of the cytolytic effector molecules granzyme B and perforin, as well as the expression of the degranulation marker CD107a and IFN-gamma were simultaneously studied in SIV Gag(164-172) KP9-specific CD8+ T cells from Mane-A*10+ pigtail macaques. Macaques were vaccinated with either prime-boost poxvirus vector vaccines or live-attenuated SIV vaccines. Prime-boost vaccination induced Gag-specific CTLs capable of only slow (after 3 h) production of IFN-gamma and with limited (<5%) degranulation and granzyme B release. Vaccination with live-attenuated SIV resulted in a rapid cytolytic profile of SIV-specific CTLs with rapid (<0.5 h) and robust (>50% of tetramer-positive CD8+ T cells) degranulation and granzyme B release. The cytolytic phenotype following live-attenuated SIV vaccinations were similar to that associated with the partial resolution of viremia following SIV(mac251) challenge of prime-boost-vaccinated macaques, albeit with less IFN-gamma expression. High proportions of KP9-specific T cells expressed the costimulatory molecule CD28 when they exhibited a rapid cytolytic phenotype. The delayed cytolytic phenotype exhibited by standard vector-based vaccine-induced CTLs may limit the ability of T cell-based HIV vaccines to rapidly control acute infection following a pathogenic lentiviral exposure.  相似文献   

17.
The ubiquitin ligase Cbl-b is an established regulator of T cell immune response thresholds. We recently showed that adoptive cell transfer (ACT) of cblb(-/-) CD8(+) T cells enhances dendritic cell (DC) immunization-mediated anti-tumor effects in immune-competent recipients. However, translation of cblb targeting to clinically applicable concepts requires that inhibition of cblb activity be transient and reversible. Here we provide experimental evidence that inhibition of cblb using chemically synthesized siRNA has such potential. Silencing cblb expression by ex vivo siRNA transfection of polyclonal CD8(+) T cells prior to ACT increased T cell tumor infiltration, significantly delayed tumor outgrowth, and increased survival rates of tumor-bearing mice. As shown by ex vivo recall assays, cblb silencing resulted in significant augmentation of intratumoral T cell cytokine response. ACT of cblb-silenced polyclonal CD8(+) T cells combined with DC-based tumor vaccines predominantly mediated anti-tumor immune responses, whereas no signs of autoimmunity could be detected. Importantly, CBLB silencing in human CD8(+) T cells mirrored the effects observed for cblb-silenced and cblb-deficient murine T cells. Our data validate the concept of enhanced anti-tumor immunity by repetitive ACT of ex vivo cblb siRNA-silenced hyper-reactive CD8(+) T cells as add-on adjuvant therapy to augment the efficacy of existing cancer immunotherapy regimens in clinical practice.  相似文献   

18.
Effective antitumor immunotherapy requires the identification of suitable target Ags. Interestingly, many of the tumor Ags used in clinical trials are present in preparations of secreted tumor vesicles (exosomes). In this study, we compared T cell responses elicited by murine MCA101 fibrosarcoma tumors expressing a model Ag at different localizations within the tumor cell in association with secreted vesicles (exosomes), as a nonsecreted cell-associated protein, or as secreted soluble protein. Remarkably, we demonstrated that only the tumor-secreting vesicle-bound Ag elicited a strong Ag-specific CD8(+) T cell response, CD4(+) T cell help, Ag-specific Abs, and a decrease in the percentage of immunosuppressive regulatory T cells in the tumor. Moreover, in a therapeutic tumor model of cryoablation, only in tumors secreting vesicle-bound Ag could Ag-specific CD8(+) T cells still be detected up to 16 d after therapy. We concluded that the localization of an Ag within the tumor codetermines whether a robust immunostimulatory response is elicited. In vivo, vesicle-bound Ag clearly skews toward a more immunogenic phenotype, whereas soluble or cell-associated Ag expression cannot prevent or even delay outgrowth and results in tumor tolerance. This may explain why particular immunotherapies based on these vesicle-bound tumor Ags are potentially successful. Therefore, we conclude that this study may have significant implications in the discovery of new tumor Ags suitable for immunotherapy and that their location should be taken into account to ensure a strong antitumor immune response.  相似文献   

19.
Tumor cell vaccines have been successful at inducing immunity in naïve mice, but only in a few reports has vaccination alone induced regression of established tumors and, generally, only when they are very small. Clinically, vaccinations alone may not be able to cause regression of established human cancers, which tend to be weakly immunogenic. We hypothesized that pharmacologic ex vivo amplification of a vaccination-induced immune response with subsequent adoptive immunotherapy (AIT) to tumor-bearing animals would be more effective in treatment of these animals than vaccination alone. The 4T1 and 4T07 mammary carcinomas are derived from the same parental cell line, but 4T1 is much less immunogenic and more aggressive than 4T07. Vaccination with either 4T1, 4T1-IL-2, or 4T07-IL-2 was not effective as treatment for established 4T1 tumors. However, 4T1 or 4T07-IL-2-vaccine-sensitized draining lymph node (DLN) cells, activated ex vivo with bryostatin 1 and ionomycin and expanded in culture, induced complete tumor regressions when adoptively transferred to 4T1 tumor-bearing animals. This was effective against small tumors as well as more advanced tumors, 10 days after tumor cell inoculation. Furthermore, as would be required for this approach to be used clinically, vaccine-DLN cells obtained from mice with established progressive 4T1 tumors (inoculated 10 days before vaccination) also induced regression of 4T1 tumors in an adoptive host. In none of these experiments was exogenous IL-2 required to induce tumor regression. The response to tumor cell vaccine can be amplified by ex vivo pharmacologic activation of sensitized T cells, which can then cure an established, weakly immunogenic and highly aggressive tumor that was resistant to vaccination alone.  相似文献   

20.
Glucocorticoid-induced TNF receptor family related protein (GITR) is a member of the TNFR superfamily. Previous studies have shown that in vivo administration of a GITR agonistic Ab (DTA-1) is able to overcome tolerance and induce tumor rejection in several murine syngeneic tumor models. However, little is known about the in vivo targets and the mechanisms of how this tolerance is overcome in a tumor-bearing host, nor is much known about how the immune network is regulated to achieve this antitumor response. In this study, we demonstrate that the in vivo ligation of GITR on CD4(+) effector T cells renders them refractory to suppression by regulatory T (T(reg)) cells in the CT26 tumor-bearing mouse. GITR engagement on T(reg) cells does not appear to directly abrogate their suppressive function; rather, it increases the expansion of T(reg) cells and promotes IL-10 production, a cytokine important for their suppressive function. Moreover, CD4(+) effector T cells play a crucial role in mediating DTA-1-induced immune activation and expansion of CD8(+), NK, and B cells in the tumor-draining lymph nodes. This includes increased CD69 expression on all of these subsets. In addition, NK and tumor-specific CD8(+) T cells are generated that are cytolytic, which show increased intracellular IFN-gamma production and CD107a mobilization, the latter a hallmark of cytolytic activities that lead to tumor killing.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号