首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Phosphoglucomutase (PGM, EC 2.7.5.1) is one of the enzymes constituting the carbohydrate synthesis pathway in higher plants. It catalyzes the reversible conversion of glucose 6-phosphate (Glc6P) to glucose 1-phosphate (Glc1P). Previously, metabolic turnover analysis using (13)CO(2) in tobacco leaves demonstrated that conversion of Glc6P to Glc1P may limit carbon flow into carbohydrate synthesis. In order to assess the effects of PGM, Arabidopsis thaliana cytosolic or plastidial PGM was expressed under the control of cauliflower mosaic virus 35S promoter in tobacco plants (Nicotiana tabacum cv. Xanthi) and phenotypic analysis was performed. The transgenic plants expressing Arabidopsis plastidial PGM showed 3.5-8.2-fold higher PGM activity than that of wild-type, and leaf starch and sucrose contents increased 2.3-3.2-fold and 1.3-1.4-fold, respectively over wild-type levels. In vivo(13)C-labeling experiments indicated that photosynthetically fixed carbon in the transgenic plants could be converted faster to Glc1P and adenosine 5'-diphosphate glucose than in wild-type, suggesting that elevation of plastidial PGM activity should accelerate conversion of Glc6P to Glc1P in chloroplasts and increase carbon flow into starch. On the other hand, transgenic plants expressing Arabidopsis cytosolic PGM showed a 2.1-3.4-fold increase in PGM activity over wild-type and a decrease of leaf starch content, but no change in sucrose content. These results suggest that plastidial PGM limits photosynthetic carbon flow into starch.  相似文献   

3.
4.
5.
The role of transporters in supplying energy to plant plastids   总被引:1,自引:0,他引:1  
The energy status of plant cells strongly depends on the energy metabolism in chloroplasts and mitochondria, which are capable of generating ATP either by photosynthetic or oxidative phosphorylation, respectively. Another energy-rich metabolite inside plastids is the glycolytic intermediate phosphoenolpyruvate (PEP). However, chloroplasts and most non-green plastids lack the ability to generate PEP via a complete glycolytic pathway. Hence, PEP import mediated by the plastidic PEP/phosphate translocator or PEP provided by the plastidic enolase are vital for plant growth and development. In contrast to chloroplasts, metabolism in non-green plastids (amyloplasts) of starch-storing tissues strongly depends on both the import of ATP mediated by the plastidic nucleotide transporter NTT and of carbon (glucose 6-phosphate, Glc6P) mediated by the plastidic Glc6P/phosphate translocator (GPT). Both transporters have been shown to co-limit starch biosynthesis in potato plants. In addition, non-photosynthetic plastids as well as chloroplasts during the night rely on the import of energy in the form of ATP via the NTT. During energy starvation such as prolonged darkness, chloroplasts strongly depend on the supply of ATP which can be provided by lipid respiration, a process involving chloroplasts, peroxisomes, and mitochondria and the transport of intermediates, i.e. fatty acids, ATP, citrate, and oxaloacetate across their membranes. The role of transporters involved in the provision of energy-rich metabolites and in pathways supplying plastids with metabolic energy is summarized here.  相似文献   

6.
Chloroplasts or chromoplasts were purified from sweet-pepper (Capsicum annuum L. cv. Yolo Wonder) fruits and analysed with respect to their enzymic equipment, the transport properties across the envelope membrane, and for the presence of a functional oxidative pentose-phosphate pathway (OPPP). It was demonstrated that both types of plastid contain enzyme activities that allow glycolysis and OPPP. During the developmental conversion from chloroplasts to chromoplasts the activities of enzymes catalysing potentially rate-limiting reactions in glycolysis increased considerably. Most enzyme activities involved in the plastidic OPPP stayed constant or decreased during ripening, but transaldolase activity increased by more than 500%. To analyse whether pepper fruit chromoplasts are able to use exogenously supplied carbohydrates for the OPPP we measured the rate of 14CO2 release after application of radioactively labelled precursors. Isolated pepper fruit chromoplasts used exogenously supplied [U14C]glucose- 6-phosphate (Glc6P) as a precursor for the OPPP. The metabolic flux through this pathway was stimulated by the presence of additional compounds which require reducing equivalents for further conversion, e.g. nitrite, or 2-oxoglutarate plus glutamine. The [14C]Glc6P-driven OPPP in isolated chromoplasts exhibited saturation with rising concentrations of Glc6P, reaching highest rates at an external concentration of about 2 mM. Exogenously given [U14C]glucose 1-phosphate (Glc1P)′ did not lead to a release of 14CO2, indicating that this hexose phosphate is not taken up into the intact plastid. Using a proteoliposome system in which the envelope membrane proteins from sweet-pepper chromoplasts were functionally reconstituted we demonstrated that Glc6P is transported in counter-exchange with inorganic phosphate (Pi) or other phosphorylated intermediates. The Glc6P was taken up into proteoliposomes with an apparent K m of 0.34 mM. Surprisingly, in contrast to tomato fruit plastids, isolated chromoplasts from sweet-pepper fruits do not possess a phosphate translocator allowing the uptake of Glc1P. Rising exogenous concentrations of dihydroxyacetone phosphate strongly inhibited the metabolic flux through the OPPP. This observation is discussed with respect to the presence of two phosphate translocator proteins in the envelope of sweet-pepper chromoplasts and with respect to possible metabolic changes occurring in heterotrophic tissues during development. Received: 24 April 1997 / Accepted: 16 June 1997  相似文献   

7.
Maltose is the major form of carbon exported from the chloroplast at night   总被引:14,自引:0,他引:14  
Weise SE  Weber AP  Sharkey TD 《Planta》2004,218(3):474-482
Transitory starch is formed in chloroplasts during the day and broken down at night. We investigated carbon export from chloroplasts resulting from transitory-starch breakdown. Starch-filled chloroplasts from spinach (Spinacia oleracea L. cv. Nordic IV) were isolated 1 h after the beginning of the dark period and incubated for 2.5 h, followed by centrifugation through silicone oil. Exported products were measured in the incubation medium to avoid measuring compounds retained inside the chloroplasts. Maltose and glucose made up 85% of the total exported products and were exported at rates of 626 and 309 nmol C mg–1 chlorophyll h–1, respectively. Net export of phosphorylated products was less than 5% and higher maltodextrins were not detected. Maltose levels in leaves of bean (Phaseolus vulgaris L. cv. Linden), spinach, and Arabidopsis thaliana (L.) Heynh. were low in the light and high in the dark. Maltose levels remained low and unchanged during the light/dark cycle in two starch-deficient Arabidopsis mutants, stf1, deficient in plastid phosphoglucomutase, and pgi, deficient in plastid phosphoglucoisomerase. Through the use of nonaqueous fractionation, we determined that maltose was distributed equally between the chloroplast and cytosolic fractions during darkness. In the light there was approximately 24% more maltose in the cytosol than the chloroplast. Taken together these data indicate that maltose is the major form of carbon exported from the chloroplast at night as a result of starch breakdown. We hypothesize that the hydrolytic pathway for transitory-starch degradation is the primary pathway used when starch is being converted to sucrose and that the phosphorolytic pathway provides carbon for other purposes.Abbreviations CAM crassulacean acid metabolism - Chl chlorophyll - DHAP dihydroxyacetone phosphate - FBPase fructose bisphosphatase - GAP glyceraldehyde-3-phosphate - G6P glucose 6-phosphate - PGA 3-phosphoglycerate - TPT triose phosphate translocator - WT wild type  相似文献   

8.
9.
The introduction of an antisense DNA into transgenic potato (Solanum tuberosum L.) plants decreased the expression of the chloroplast triose-phosphate translocator and lowered its activity by 20–30%. With plants propagated from tubers, the effect of the transformation on photosynthetic metabolism was analysed by measuring photosynthesis, the formation of leaf starch, and the total and subcellular metabolite contents in leaves. Although the transformants, in contrast to those propagated from cell cultures, did not differ from the wild-type plants in respect to rates of photosynthesis, plant appearance, growth and tuber production, their photosynthetic metabolism was found to be severely affected. The results show that the decrease in activity of the triose-phosphate translocator in the transformants caused a fourfold increase in the level of 3-phosphoglycerate and a corresponding decrease in inorganic phosphate in the stromal compartment, resulting in a large increase in the synthesis of starch. Whereas during a 12-h day period wild-type plants deposited 43% of their CO2 assimilate into starch, this value rose to 61–89% in the transformants. In contrast to the wild-type plants, where the rate of assimilate export from the leaves during the night period was about 75% of that during the day, the export rate from leaves of transformants appeared to be much higher during the night than during the day. As the mobilisation of starch occurs in part hydrolytically, resulting in the formation of glucose, the triose-phosphate translocator loses its exclusive function in the export of carbohydrates from the chloroplasts when the photoassimilates are temporarily deposited as starch. It appears that by directing the CO2 assimilates mainly into starch, the transformants compensate for the deficiency in triose-phosphate translocator activity in such a way that the productivity of the plants is not affected by the transformation.Abbreviations Chl chlorophyll - DHAP dihydroxyacetone phosphate - 3-PGA 3-phosphoglycerate - Rubisco ribulose,1,5-bisphosphate carboxylase/oxygenase - RuBP ribulose-1,5-bisphosphate - trioseP triose phosphate - WT wild type The able technical assistance of Mrs. K. Wildenberger and Mrs. A. Großpietsch is gratefully acknowledged. This work has been supported by the Bundesminister für Forschung und Technologie.  相似文献   

10.
Previous experiments have shown that carbohydrate partitioning in leaves of potato (Solanum tuberosum L.) plants can be modified by antisense repression of the triose phosphate translocator (TPT), favoring starch accumulation during the light period, or by leaf-specific antisense repression of ADP-glucose pyrophosphorylase (AGPase), reducing leaf starch content. These experiments showed that starch and sucrose synthesis can partially replace each other. To determine how leaf metabolism acclimates to an inhibition of both pathways, transgenic potato (S. tuberosum L. cv Desiree) plants, with a 30% reduction of the TPT achieved by antisense repression, were transformed with an antisense cDNA of the small subunit of AGPase, driven by the leaf-specific ST-LS1 promoter. These double-transformed plants were analyzed with respect to their carbohydrate metabolism, and starch accumulation was reduced in all lines of these plants. In one line with a 50% reduction of AGPase activity, the rate of CO2 assimilation was unaltered. In these plants the stromal level of triose phosphate was increased, enabling a high rate of triose phosphate export in spite of the reduction of the TPT protein by antisense repression. In a second line with a 95% reduction of AGPase activity, the amount of chlorophyll was significantly reduced as a consequence of the lowered triose phosphate utilization capacity.  相似文献   

11.
Many environmental and experimental conditions lead to accumulation of carbohydrates in photosynthetic tissues. This situation is typically associated with major changes in the mRNA and protein complement of the cell, including metabolic repression of photosynthetic gene expression, which can be induced by feeding carbohydrates directly to leaves. In this study we examined the carbohydrate transport properties of chloroplasts isolated from spinach (Spinacia oleracea L.) leaves fed with glucose for several days. These chloroplasts contain large quantities of starch, can perform photosynthetic 3-phosphoglycerate reduction, and surprisingly also have the ability to perform starch synthesis from exogenous glucose-6-phosphate (Glc-6-P) both in the light and in darkness, similarly to heterotrophic plastids. Glucose-1-phosphate does not act as an exogenous precursor for starch synthesis. Light, ATP, and 3-phosphoglyceric acid stimulate Glc-6-P-dependent starch synthesis. Short-term uptake experiments indicate that a novel Glc-6-P-translocator capacity is present in the envelope membrane, exhibiting an apparent Km of 0.54 mM and a Vmax of 2.9 [mu]mol Glc-6-P mg-1 chlorophyll h-1. Similar results were obtained with chloroplasts isolated from glucose-fed potato leaves and from water-stressed spinach leaves. The generally held view that sugar phosphates transported by chloroplasts are confined to triose phosphates is not supported by these results. A physiological role for a Glc-6-P translocator in green plastids is presented with reference to the source/sink function of the leaf.  相似文献   

12.
磷酸丙糖转运器(tnose phosphate/phosphatetranslocator,TPT)是源、库间光合产物分配的第一调控部位,研究TPT的特性及其对同化物分配的调节,对于提高光合作用同化物利用效率有着重要意义.我们首先采用Percoll密度梯度离心从小麦(Triticum aestivum L.)叶片中分离制备了完整性达91%以上、具有较高纯度的完整叶绿体.利用TPT不可逆抑制剂[H3]2-DIDS标记和SDS-PAGE,以及小麦TPT抗体进行Western blotting分析,证明TPT蛋白仅存在于叶绿体被膜中,约占被膜总蛋白的15%,其分子量为35 kD,而在液泡膜和线粒体膜上不存在.采用硅油离心法研究TPT对磷酸二羟丙酮(dihydroxyacetone phosphate,DHAP)、磷酸烯醇式丙酮酸(phosphoenolpyruvate,PEP)、葡萄糖-6-磷酸(glucose-6-phosphate,G6P)与Pi的反向运输动力学的结果表明,DHAP/Pi的最大运输活性最高,PEP/Pi次之,G6P/Pi最低.TPT与这些运输底物的Km值由小至大,分别为DHAP、Pi、PEP和G6P,证明TPT的最适运输底物为DHAP.用DIDS处理时,TPT对DHAP运输活性的抑制达95%.TPT运输活性受到抑制时,可导致叶绿体内大量积累淀粉.TPT在调控小麦叶绿体同化产物的分配中起着重要作用,在保证卡尔文循环正常运转的前提下,通过TPT外运到胞质中参与蔗糖合成和其他代谢活动的磷酸丙糖(triose phosphate,TP)约占93.6%,而用于叶绿体内合成淀粉的TP仅占6.4%.生理条件下其功能是高效率地把大部分光合同化产物TP及时运出叶绿体到胞质中,用于合成蔗糖并运输到其他库器官的需要.  相似文献   

13.
Barnes SA  Knight JS  Gray JC 《Plant physiology》1994,106(3):1123-1129
Tobacco plants (Nicotiana tabacum L.) transformed with sense and antisense constructs of a cDNA encoding the tobacco phosphate-triose phosphate-3-phosphoglycerate translocator (phosphate translocator) were shown to contain altered amounts of phosphate translocator mRNA and protein. Phosphate translocator activity in intact chloroplasts isolated from transformed plants showed a 15-fold variation, from 20% of the wild-type activity in antisense transformants to 300% of the wild-type activity in sense transformants. However, the maximal rates of photosynthesis and the rates of photosynthetic carbon assimilation in ambient CO2 showed no consistent differences between transformants. Starch content was decreased by 20% and total soluble sugars were increased by 20% in leaves of antisense transformants compared to sense transformants. The 40% decrease in the ratio of starch to total soluble sugars in antisense transformants relative to sense transformants indicates that distribution of assimilate between starch and sugar had been altered. However, the amount of sucrose in the leaves was unchanged. The changes in total soluble sugars were accounted for completely by changes in glucose and fructose, suggesting the existence of a homeostatic mechanism for maintaining sucrose concentrations in the leaves at the expense of glucose and fructose.  相似文献   

14.
Stitt M  Heldt HW 《Plant physiology》1981,68(3):755-761
Starch breakdown with rates above 10 μatom carbon per mg chlorophyll per hour has been monitored in spinach chloroplasts and compares favorably with the rates in whole leaves. Intact starch-loaded chloroplasts were prepared from protoplasts to avoid rupture during mechanical homogenization and rapid centrifugation. Particular attention was paid to the identification of all the products of starch degradation and to measuring the actual rates of their accumulation. The products of starch breakdown included triose phosphate, 3-phosphoglycerate, CO2, glucose, and some maltose. Comparison of the rates of metabolism of added glucose and of the conversion of starch to phosphorylated intermediates showed that starch phosphorolysis was the major pathway leading to phosphorylated endproducts. From the results, the relative contribution of phosphorolysis and hydrolysis to starch breakdown and the contribution of glycolysis and the oxidative pentose phosphate cycle can be estimated. Phosphate has a large influence on the metabolism of the chloroplast in the dark.  相似文献   

15.
Isolated amyloplasts from cauliflower (Brassica oleracea L. var botrytis) buds are able to export orthophosphate unidirectionally into the incubation medium. This orthophosphate transport appears to be protein-mediated, as indicated by the following observations: (i) low temperature and the presence of inhibitors of protein-mediated transport reduced the rate of orthophosphate export, and (ii) the rate of orthophosphate export became saturated with rising internal substrate concentrations. Micromolar concentrations of 4,4′-diisothiocyano-2,2′-stilbene disulphonic acid inhibited the rate of unidirectional orthophosphate export, thus indicating the involvement of the amyloplastic glucose-6-phosphate (Glc6P)translocator in the unidirectional export of orthophosphate. The effect of rising concentrations of orthophosphate upon the activity of ADP glucose pyrophosphorylase in desalted extracts was determined. Orthophosphate given in concentrations similar to those measured in the amyloplastic stroma under conditions of steady-state rates of Glc6P-dependent starch synthesis inhibited the activity of ADP-glucose pyrophosphorylase significantly. However, even under strong limiting substrate conditions the residual activity was sufficient to catalyze the flux of carbon into starch. The maximal rates of orthophosphate transport (in the counter-exchange mode) by isolated spinach (Spinacia oleracea L.) chloroplasts and by isolated cauliflower-bud amyloplasts were also determined. These rates were compared with the maximal rates of undirectional orthophosphate export by these plastids. From these measurements we can conclude that, compared with spinach chloroplasts, isolated amyloplasts of cauliflower exhibit a fivefold greater ratio of unidirectional orthophosphate transport to maximal rate of orthophosphate transport in the counter-exchange mode compared to spinach chloroplasts. The determined rate of maximal unidirectional orthophosphate export is sufficient to catalyze the release of additional inorganic phosphate liberated in the amyloplastic stroma during the process of Glc6P-dependent starch synthesis.  相似文献   

16.
17.
Intact etioplasts with an intactness of 85% and with a cytosolic and a mitochondrial contamination of less than 10% were isolated from 8-d-old dark-grown barley (Hordeum vulgare) leaves. These plastids contained starch equivalent to 21.5 μmol of glucose per mg protein. From various likely precursors applied to isolated etioplasts, only dihydroxyacetone phosphate (DHAP) had significant effects on metabolite levels and on the internal ATP/ADP ratio. The concentration dependence of DHAP uptake exhibited saturation characteristics with half saturation at 0.36 mm DHAP and a maximal velocity of 6.6 μmol mg−1 of protein h−1. The transport was significantly inhibited by inorganic phosphate, pyridoxal-5′-phosphate, and 4,4′-diisothiocyano-2,2′-stilbenedisulfonate. The rate of glucose-6-phosphate uptake was much lower and not saturable up to a concentration of 10 mm. Exogenously applied [14C]DHAP was incorporated into starch at a rate of 0.14 μmol of DHAP mg−1 of protein h−1. Enzyme activities required to convert DHAP into starch were found to be present in etioplasts. Furthermore, enzymes generating ATP from DHAP for ADPglucose synthesis were also detected. Finally, a scheme is presented suggesting DHAP uptake to serve both as carbon skeleton and as energy source for starch synthesis, mediated by a translocator with properties similar to those of the triose phosphate translocator from chloroplasts.  相似文献   

18.
In this study, we measured the total pool sizes of key cellular metabolites from nitrogen-limited cells of Selenastrum minutum before and during ammonium assimilation in the light. This was carried out to identify the sites at which N assimilation is acting to regulate carbon metabolism. Over 120 seconds following NH4+ addition we found that: (a) N accumulated in glutamine while glutamate and α-ketoglutarate levels fell; (b) ATP levels declined within 5 seconds and recovered within 30 seconds of NH4+ addition; (c) ratios of pyruvate/phosphoenolpyruvate, malate/phosphoenolpyruvate, Glc-1-P/Glc-6-P and Fru-1,6-bisphosphate/Fru-6-P increased; and (d) as previously seen, photosynthetic carbon fixation was inhibited. Further, we monitored starch degradation during N assimilation over a longer time course and found that starch breakdown occurred at a rate of about 110 micromoles glucose per milligram chlorophyll per hour. The results are consistent with N assimilation occurring through glutamine synthetase/glutamate synthase at the expense of carbon previously stored as starch. They also indicate that regulation of several enzymes is involved in the shift in metabolism from photosynthetic carbon assimilation to carbohydrate oxidation during N assimilation. It seems likely that pyruvate kinase, phosphoenolpyruvate carboxylase, and starch degradation are all activated, whereas key Calvin cycle enzyme(s) are inactivated within seconds of NH4+ addition to N-limited S. minutum cells. The rapid changes in glutamate and triose phosphate, recently shown to be regulators of cytosolic pyruvate kinase, are consistent with them contributing to the short-term activation of this enzyme.  相似文献   

19.
Amyloplasts have been isolated from tubers of potato plants (Solarium tuberosum. cv. Desirée). As it is difficult to isolate amyloplasts that have a high starch content, we used transformed plants in which the content of starch was reduced. This was achieved by decreasing the activity of ADP-glucose pyrophosphorylase by antisense techniques (Müller-Röber et al., 1992, EMBO. 11, 1229–1238). In the isolated plastids the activity of glutamine-oxoglutarate-aminotransferase (glutamate synthase, EC 2.6.1.53) was dependent upon the intactness of the plastids. For the supply of redox equivalents the addition of glucose-6-phosphate (Glc6P) was required. Glucose-1-phosphate (Glc1P) did not support glutamate synthesis. Plastids were treated with Triton X-100 and the solubilized proteins reconstituted into liposomes. Transport measurements with these liposomes revealed that inorganic phosphate (Pi), dihydroxyacetone phosphate (DHAP), 3-phosphoglycerate and Glc6P are transported in a counter-exchange mode. Transport of phosphoenolpyruvate was low and Glc1P was virtually not transported in exchange for Pi. Kinetic constants were determined for the Pi/Pi and Glc6P/Pi counter exchanges. For comparison, proteins of mitochondria from potato tubers and pea leaves were reconstituted into liposomes. As expected, the Pi/Pi exchange across the mitochondrial membrane was not affected by DHAP and Glc6P. Kinetic constants of the Pi/Pi counter exchange were determined for potato tuber mitochondria.Abbreviations DHAP dihydroxyacetone phosphate - Glc1P glucose-1-phosphate - Glc6P glucose-6-phosphate - PEP Phosphoenolpyruvate - 3-PGA 3-phosphoglycerate - Pi inorganic phosphate - Tricine N-[2-hydroxy-1,1-bis(hydroxymethyl)-ethyl] glycine This work was supported by Deutsche Forschungsgemeinschaft.  相似文献   

20.
The metabolic pathways in photosynthesis are modelled as an interconnected series of chemical reactions representing the electron transfer system, the carbon reduction cycle and starch and sucrose synthesis according to the model of Laisk and Walker [Proc R Soc Lond 227, 281–302 (1986)]. The model is formulated as a set of non-linear differential equations using mass-action kinetics, and stimulated for transient behaviour using an interactive simulation language. The model responses to switched light demonstrate the existence of oscillatory behaviour, similar to that found experimentally in O2 evolution and chlorophyll fluorescence, and explain known transient behaviour. The model is also used to investigate the source of oscillatory behaviour in the phosphate translocator, and other transient phenomena associated with the cyclic electron transfer system.Abbreviations PQ plastoquinone - PQH2 plastoquinol - PCred reduced plastocyanin - PCox oxidised plastocyanin - Pi ortho (inorganic) phosphate in chloroplasts - Pio inorganic orthophosphate in cytosol - TP triose phosphate - Ru5P ribulose-5-phosphate - RuBP ribulose bisphosphate - PGA phosphoglyceric acid - HP hexose phosphate - HPo hexose phosphate-total sugar phosphate in cytoplasm - S starch - SU sucrose  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号