首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
During asymmetric cell division in Drosophila sensory organ precursors (SOPs), the Numb protein segregates into one of the two daughter cells, in which it inhibits Notch signalling to specify pIIb cell fate. We show here that Numb acts in SOP cells by inducing the endocytosis of Sanpodo, a four-pass transmembrane protein that has previously been shown to regulate Notch signalling in the central nervous system. In sanpodo mutants, SOP cells divide symmetrically into two pIIb cells. We show that Sanpodo is cortical in pIIa, but colocalizes with Notch and Delta in Rab5- and Rab7-positive endocytic vesicles in pIIb. Sanpodo endocytosis requires alpha-Adaptin, a Numb-binding partner involved in clathrin-mediated endocytosis. In numb or alpha-adaptin mutants, Sanpodo is not endocytosed. Surprisingly, this defect is observed already before and during mitosis, which suggests that Numb not only acts in pIIb, but also regulates endocytosis throughout the cell cycle. Numb binds to Sanpodo by means of its phosphotyrosine-binding domain, a region that is essential for Numb function. Our results establish numb- and alpha-adaptin-dependent endocytosis of Sanpodo as the mechanism by which Notch is regulated during external sensory organ development.  相似文献   

2.
In Drosophila, Notch signaling regulates binary fate decisions at each asymmetric division in sensory organ lineages. Following division of the sensory organ precursor cell (pI), Notch is activated in one daughter cell (pIIa) and inhibited in the other (pIIb). We report that the E3 ubiquitin ligase Neuralized localizes asymmetrically in the dividing pI cell and unequally segregates into the pIIb cell, like the Notch inhibitor Numb. Furthermore, Neuralized upregulates endocytosis of the Notch ligand Delta in the pIIb cell and acts in the pIIb cell to promote activation of Notch in the pIIa cell. Thus, Neuralized is a conserved regulator of Notch signaling that acts as a cell fate determinant. Polarization of the pI cell directs the unequal segregation of both Neuralized and Numb. We propose that coordinated upregulation of ligand activity by Neuralized and inhibition of receptor activity by Numb results in a robust bias in Notch signaling.  相似文献   

3.
In Drosophila melanogaster, external sensory organs develop from a single sensory organ precursor (SOP). The SOP divides asymmetrically to generate daughter cells, whose fates are governed by differential Notch activation. Here we show that the clathrin adaptor AP-1 complex, localized at the trans Golgi network and in recycling endosomes, acts as a negative regulator of Notch signaling. Inactivation of AP-1 causes ligand-dependent activation of Notch, leading to a fate transformation within sensory organs. Loss of AP-1 affects neither cell polarity nor the unequal segregation of the cell fate determinants Numb and Neuralized. Instead, it causes apical accumulation of the Notch activator Sanpodo and stabilization of both Sanpodo and Notch at the interface between SOP daughter cells, where DE-cadherin is localized. Endocytosis-recycling assays reveal that AP-1 acts in recycling endosomes to prevent internalized Spdo from recycling toward adherens junctions. Because AP-1 does not prevent endocytosis and recycling of the Notch ligand Delta, our data indicate that the DE-cadherin junctional domain may act as a launching pad through which endocytosed Notch ligand is trafficked for signaling.  相似文献   

4.
The Notch signaling pathway plays essential roles in both animal development and human disease. Regulation of Notch receptor levels in membrane compartments has been shown to affect signaling in a variety of contexts. Here we used steady-state and pulse-labeling techniques to follow Notch receptors in sensory organ precursor cells in Drosophila. We find that the endosomal adaptor protein Numb regulates levels of Notch receptor trafficking to Rab7-labeled late endosomes but not early endosomes. Using an assay we developed that labels different pools of Notch receptors as they move through the endocytic system, we show that Numb specifically suppresses a recycled Notch receptor subpopulation and that excess Notch signaling in numb mutants requires the recycling endosome GTPase Rab11 activity. Our data therefore suggest that Numb controls the balance between Notch receptor recycling and receptor targeting to late endosomes to regulate signaling output after asymmetric cell division in Drosophila neural progenitors.  相似文献   

5.
In Drosophila, asymmetric division occurs during proliferation of neural precursors of the central and peripheral nervous system (PNS), where a membrane-associated protein, Numb, is asymmetrically localized during cell division and is segregated to one of the two daughter cells (the pIIb cell) after mitosis. numb has been shown genetically to function as an antagonist of Notch signaling and also as a negative regulator of the membrane localization of Sanpodo, a four-pass transmembrane protein required for Notch signaling during asymmetric cell division in the CNS. Previously, we identified lethal giant larvae (lgl) as a gene required for numb-mediated inhibition of Notch in the adult PNS. In this study we show that Sanpodo is expressed in asymmetrically dividing precursor cells of the PNS and that Sanpodo internalization in the pIIb cell is dependent cytoskeletally associated Lgl. Lgl specifically regulates internalization of Sanpodo, likely through endocytosis, but is not required for the endocytosis Delta, which is a required step in the Notch-mediated cell fate decision during asymmetric cell division. Conversely, the E3 ubiquitin ligase neuralized is required for both Delta endocytosis and the internalization of Sanpodo. This study identifies a hitherto unreported role for Lgl as a regulator of Sanpodo during asymmetric cell division in the adult PNS.  相似文献   

6.
Asymmetric division of sensory organ precursors (SOPs) in Drosophila generates different cell types of the mature sensory organ. In a genetic screen designed to identify novel players in this process, we have isolated a mutation in Drosophila sec15, which encodes a component of the exocyst, an evolutionarily conserved complex implicated in intracellular vesicle transport. sec15(-) sensory organs contain extra neurons at the expense of support cells, a phenotype consistent with loss of Notch signaling. A vesicular compartment containing Notch, Sanpodo, and endocytosed Delta accumulates in basal areas of mutant SOPs. Based on the dynamic traffic of Sec15, its colocalization with the recycling endosomal marker Rab11, and the aberrant distribution of Rab11 in sec15 clones, we propose that a defect in Delta recycling causes cell fate transformation in sec15(-) sensory lineages. Our data indicate that Sec15 mediates a specific vesicle trafficking event to ensure proper neuronal fate specification in Drosophila.  相似文献   

7.
Asymmetric distribution of fate determinants is a fundamental mechanism underlying the acquisition of distinct cell fates during asymmetric division. In Drosophila neuroblasts, the apical DmPar6/DaPKC complex inhibits Lethal giant larvae (Lgl) to promote the basal localization of fate determinants. In contrast, in the sensory precursor (pI) cells that divide asymmetrically with a planar polarity, Lgl inhibits Notch signaling in the anterior pI daughter cell, pIIb, by a yet-unknown mechanism. We show here that Lgl promotes the cortical recruitment of Partner of Numb (Pon) and regulates the asymmetric distribution of the fate determinants Numb and Neuralized during the pI cell division. Analysis of Pon-GFP and Histone2B-mRFP distribution in two-color movies confirmed that Lgl regulates Pon localization. Moreover, posterior DaPKC restricts Lgl function to the anterior cortex at mitosis. Thus, Lgl functions similarly in neuroblasts and in pI cells. We also show that Lgl promotes the acquisition of the pIIb cell fate by inhibiting the plasma membrane localization of Sanpodo and thereby preventing the activation of Notch signaling in the anterior pI daughter cell. Thus, Lgl regulates cell fate by controlling Pon cortical localization, asymmetric localization of Numb and Neuralized, and plasma-membrane localization of Sandopo.  相似文献   

8.
Notch signaling governs binary cell fate determination in asymmetrically dividing cells. Through a forward genetic screen we identified the fly homologue of Eps15 homology domain containing protein-binding protein 1 (dEHBP1) as a novel regulator of Notch signaling in asymmetrically dividing cells. dEHBP1 is enriched basally and at the actin-rich interface of pII cells of the external mechanosensory organs, where Notch signaling occurs. Loss of function of dEHBP1 leads to up-regulation of Sanpodo, a regulator of Notch signaling, and aberrant trafficking of the Notch ligand, Delta. Furthermore, Sec15 and Rab11, which have been previously shown to regulate the localization of Delta, physically interact with dEHBP1. We propose that dEHBP1 functions as an adaptor molecule for the exocytosis and recycling of Delta, thereby affecting cell fate decisions in asymmetrically dividing cells.  相似文献   

9.
During Drosophila external sensory organ development, one sensory organ precursor (SOP) arises from a proneural cluster, and undergoes asymmetrical cell divisions to produce an external sensory (es) organ made up of different types of daughter cells. We show that phyllopod (phyl), previously identified to be essential for R7 photoreceptor differentiation, is required in two stages of es organ development: the formation of SOP cells and cell fate specification of SOP progeny. Loss-of-function mutations in phyl result in failure of SOP formation, which leads to missing bristles in adult flies. At a later stage of es organ development, phyl mutations cause the first cell division of the SOP lineage to generate two identical daughters, leading to the fate transformation of neurons and sheath cells to hair cells and socket cells. Conversely, misexpression of phyl promotes ectopic SOP formation, and causes opposite fate transformation in SOP daughter cells. Thus, phyl functions as a genetic switch in specifying the fate of the SOP cells and their progeny. We further show that seven in absentia (sina), another gene required for R7 cell fate differentiation, is also involved in es organ development. Genetic interactions among phyl, sina and tramtrack (ttk) suggest that phyl and sina function in bristle development by antagonizing ttk activity, and ttk acts downstream of phyl. It has been shown previously that Notch (N) mutations induce formation of supernumerary SOP cells, and transformation from hair and socket cells to neurons. We further demonstrate that phyl acts epistatically to N. phyl is expressed specifically in SOP cells and other neural precursors, and its mRNA level is negatively regulated by N signaling. Thus, these analyses demonstrate that phyl acts downstream of N signaling in controlling cell fates in es organ development.  相似文献   

10.
The tumor suppressor genes lethal giant larvae (lgl) and discs large (dlg) act together to maintain the apical basal polarity of epithelial cells in the Drosophila embryo. Neuroblasts that delaminate from the embryonic epithelium require lgl to promote formation of a basal Numb and Prospero crescent, which will be asymmetrically segregated to the basal daughter cell upon division to specify cell fate. Sensory organ precursors (SOPs) also segregate Numb asymmetrically at cell division. Numb functions to inhibit Notch signaling and to specify the fates of progenies of the SOP that constitute the cellular components of the adult sensory organ. We report here that, in contrast to the embryonic neuroblast, lgl is not required for asymmetric localization of Numb in the dividing SOP. Nevertheless, mosaic analysis reveals that lgl is required for cell fate specification within the SOP lineage; SOPs lacking Lgl fail to specify internal neurons and glia. Epistasis studies suggest that Lgl acts to inhibit Notch signaling by functioning downstream or in parallel with Numb. These findings uncover a previously unknown function of Lgl in the inhibition of Notch and reveal different modes of action by which Lgl can influence cell fate in the neuroblast and SOP lineages.  相似文献   

11.
D. F. Lyman  B. Yedvobnick 《Genetics》1995,141(4):1491-1505
The neurogenic Notch locus of Drosophila encodes a receptor necessary for cell fate decisions within equivalence groups, such as proneural clusters. Specification of alternate fates within clusters results from inhibitory communication among cells having comparable neural fate potential. Genetically, Hairless (H) acts as an antagonist of most neurogenic genes and may insulate neural precursor cells from inhibition. H function is required for commitment to the bristle sensory organ precursor (SOP) cell fate and for daughter cell fates. Using Notch gain-of-function alleles and conditional expression of an activated Notch transgene, we show that enhanced signaling produces H-like loss-of-function phenotypes by suppressing bristle SOP cell specification or by causing an H-like transformation of sensillum daughter cell fates. Furthermore, adults carrying Notch gain of function and H alleles exhibit synergistic enhancement of mutant phenotypes. Over-expression of an H(+) transgene product suppressed virtually all phenotypes generated by Notch gain-of-function genotypes. Phenotypes resulting from over-expression of the H(+) transgene were blocked by the Notch gain-of-function products, indicating a balance between Notch and H activity. The results suggest that H insulates SOP cells from inhibition and indicate that H activity is suppressed by Notch signaling.  相似文献   

12.
Drosophila sensory organ precursor (SOP) cells undergo several rounds of asymmetric cell division to generate the four different cell types that make up external sensory organs. Establishment of different fates among daughter cells of the SOP relies on differential regulation of the Notch pathway. Here, we identify the protein Lethal (2) giant discs (Lgd) as a critical regulator of Notch signaling in the SOP lineage. We show that lgd encodes a conserved C2 domain protein that binds to phospholipids present on early endosomes. When Lgd function is compromised, Notch and other transmembrane proteins accumulate in enlarged early endosomal compartments. These enlarged endosomes are positive for Rab5 and Hrs, a protein involved in trafficking into the degradative pathway. Our experiments suggest that Lgd is a critical regulator of endocytosis that is not present in yeast and acts in the degradative pathway after Hrs.  相似文献   

13.
Vesicular trafficking plays a key role in tuning the activity of Notch signaling. Here, we describe a novel and conserved Rab geranylgeranyltransferase (RabGGT)-α–like subunit that is required for Notch signaling-mediated lateral inhibition and cell fate determination of external sensory organs. This protein is encoded by tempura, and its loss affects the secretion of Scabrous and Delta, two proteins required for proper Notch signaling. We show that Tempura forms a heretofore uncharacterized RabGGT complex that geranylgeranylates Rab1 and Rab11. This geranylgeranylation is required for their proper subcellular localization. A partial dysfunction of Rab1 affects Scabrous and Delta in the secretory pathway. In addition, a partial loss Rab11 affects trafficking of Delta. In summary, Tempura functions as a new geranylgeranyltransferase that regulates the subcellular localization of Rab1 and Rab11, which in turn regulate trafficking of Scabrous and Delta, thereby affecting Notch signaling.  相似文献   

14.
The members of the family of Rab11 small GTPases are critical regulators of the plasma membrane vesicle recycling system. While previous studies have determined that the Golgi apparatus disperses during mitosis and reorganizes after cytokinesis, the fate of the recycling system during the cell cycle is more obscure. We have now studied in MDCK cells the fate during mitosis of an apical recycling system cargo, the polymeric IgA receptor (pIgAR), and regulators of the recycling system, Rab11a and its interacting proteins myosin Vb, Rab11-FIP1, Rab11-FIP2 and pp75/Rip11. Rab11a, pIgAR and myosin Vb containing vesicles dispersed into diffuse puncta in the cytosol during prophase and then became clustered near the spindle poles after metaphase, increasing in intensity throughout telophase. A similar pattern was observed for Rab11-FIP1 and Rab11-FIP2. However, Rab11-FIP1 lost colocalization with other recycling system markers during late prophase, relocating to the pericentriolar material. During telophase, Rab11-FIP1 returned to recycling system vesicles. Western blot analysis indicated that both Rab11a and pIgAR remained associated with membrane vesicles throughout the cell cycle. This behavior of the Rab11a-containing apical recycling endosome system during division was distinct from that of the Golgi apparatus. These results indicate that critical components of the apical recycling system remain associated on vesicles throughout the cell cycle and may provide a means for rapid re-establishment of plasma membrane components after mitosis.  相似文献   

15.
16.
Notch signaling requires ligand internalization by the signal sending cells. Two endocytic proteins, epsin and auxilin, are essential for ligand internalization and signaling. Epsin promotes clathrin-coated vesicle formation, and auxilin uncoats clathrin from newly internalized vesicles. Two hypotheses have been advanced to explain the requirement for ligand endocytosis. One idea is that after ligand/receptor binding, ligand endocytosis leads to receptor activation by pulling on the receptor, which either exposes a cleavage site on the extracellular domain, or dissociates two receptor subunits. Alternatively, ligand internalization prior to receptor binding, followed by trafficking through an endosomal pathway and recycling to the plasma membrane may enable ligand activation. Activation could mean ligand modification or ligand transcytosis to a membrane environment conducive to signaling. A key piece of evidence supporting the recycling model is the requirement in signaling cells for Rab11, which encodes a GTPase critical for endosomal recycling. Here, we use Drosophila Rab11 and auxilin mutants to test the ligand recycling hypothesis. First, we find that Rab11 is dispensable for several Notch signaling events in the eye disc. Second, we find that Drosophila female germline cells, the one cell type known to signal without clathrin, also do not require auxilin to signal. Third, we find that much of the requirement for auxilin in Notch signaling was bypassed by overexpression of both clathrin heavy chain and epsin. Thus, the main role of auxilin in Notch signaling is not to produce uncoated ligand-containing vesicles, but to maintain the pool of free clathrin. Taken together, these results argue strongly that at least in some cell types, the primary function of Notch ligand endocytosis is not for ligand recycling.  相似文献   

17.
Kanwar R  Fortini ME 《Cell》2008,133(5):852-863
Activity of the big brain (bib) gene influences Notch signaling during Drosophila nervous system development. We demonstrate that Bib, which belongs to the aquaporin family of channel proteins, is required for endosome maturation in Drosophila epithelial cells. In the absence of Bib, early endosomes arrest and form abnormal clusters, and cells exhibit reduced acidification of endocytic trafficking organelles. Bib acts downstream of Hrs in early endosome morphogenesis and regulates biogenesis of endocytic compartments prior to the formation of Rab7-containing late endosomes. Abnormal endosome morphology caused by loss of Bib is accompanied by overaccumulation of Notch, Delta, and other signaling molecules as well as reduced intracellular trafficking of Notch to nuclei. Analysis of several endosomal trafficking mutants reveals a correlation between endosomal acidification and levels of Notch signaling. Our findings reveal an unprecedented role for an aquaporin in endosome maturation, trafficking, and acidification.  相似文献   

18.
Delta/Notch signalling is of major importance for embryonic development and adult life. While endocytosis is often viewed as a way to down-regulate biological signals, ligand and receptor internalization are essential for Notch activation. The development of Drosophila mecanosensory bristles is a powerful model to study Delta/Notch signalling. Following the asymmetric division of bristle precursor cells, Delta ligands and Notch receptors traffic differently in the two daughter cells, leading to directional signal activation. Recent evidence suggests that in addition to differential ligand endocytosis after division, a subpopulation of multivesicular endosomes ensures the directional transport of Delta/Notch already during asymmetric cell division. Biochemical analysis suggests that different phases of endocytic Delta trafficking exert complementary but distinct actions required for ligand recycling, ligand/receptor interaction and ligand-mediated receptor activation, respectively. Finally, novel data suggest that different endosomal compartments may act as Delta/Notch signalling platforms. In this review, we discuss the implications of these novel findings for our cell biological understanding of Delta/Notch signalling.  相似文献   

19.
20.
Cytokinesis is the final step of cell division and leads to the physical separation of the daughter cells. After the ingression of a cleavage membrane furrow that pinches the mother cell, future daughter cells spend much of the cytokinesis phase connected by an intercellular bridge. Rab proteins are major regulators of intracellular transport in eukaryotes, and here, we report an essential role for human Rab35 in both the stability of the bridge and its final abscission. We find that Rab35, whose function in membrane traffic was unknown, is localized to the plasma membrane and endocytic compartments and controls a fast endocytic recycling pathway. Consistent with a key requirement for Rab35-regulated recycling during cell division, inhibition of Rab35 function leads to the accumulation of endocytic markers on numerous cytoplasmic vacuoles in cells that failed cytokinesis. Moreover, Rab35 is involved in the intercellular bridge localization of two molecules essential for the postfurrowing steps of cytokinesis: the phosphatidylinositol 4,5-bis phosphate (PIP2) lipid and the septin SEPT2. We propose that the Rab35-regulated pathway plays an essential role during the terminal steps of cytokinesis by controlling septin and PIP2 subcellular distribution during cell division.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号