首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The gross protein structure, the microenvironment of the iron-sulfur cluster, and the effect of neutral salts on the molecular structure of spinach ferredoxin were studied by CD and absorption spectroscopy in the alkaline pH range. In the pH range of 7-11, the existence of reversible isomerization which consisted of at least two proton dissociation processes was indicated by the statical CD and absorption spectra. The CD changes in the visible and far-UV regions were dramatic upon elevation of the pH from neutral to alkaline, indicating a significant alteration of the microenvironment of the cluster and a decrease in the ordered secondary structures. The absorption change in the visible region due to pH elevation was small but clearly observed with a high signal-to-noise ratio. The numbers of protons involved in the respective processes and the apparent pK values obtained from the pH-dependence of the CD changes were in good agreement with those obtained from the pH-dependence of the absorption changes in the visible region. In addition, the rate constants obtained from the time courses of the CD and absorption changes agreed with one another. By the addition of 1 M NaCl, the CD and absorption spectra at alkaline pH were reversed almost to those at neutral pH without significant pH change. On the other hand, above pH 11, ferredoxin was found to be irreversibly denatured. Based on analyses of the statical CD and absorption spectra and of the time courses of the CD changes, the probable mechanism of the isomerization was considered to be as follows: (Formula: see text) where H stands for a proton, N-form for native ferredoxin at neutral pH, N*-form for alkaline ferredoxin below pH 11 which still has the iron-sulfur cluster but with disordered secondary structures of the polypeptide chain, and D-form for completely denatured ferredoxin above pH 11. These results lead to the conclusions that (1) the interaction between the protein moiety and the iron-sulfur cluster is essential for maintaining the native ferredoxin structure, and (2) neutral salts protect the polypeptide chain from unfolding through electrostatic interaction with the ionized side chains, resulting in the stabilization of ferredoxin.  相似文献   

2.
The ferredoxin-dependent nitrate reductase from the cyanobacterium Synechococcus sp. PCC 7942 has been shown to form a high-affinity complex with ferredoxin at low ionic strength. This complex, detected by changes in both the absorbance and circular dichroism (CD) spectra, did not form at high ionic strength. When reduced ferredoxin served as the electron donor for the reduction of nitrate to nitrite, the activity of the enzyme declined markedly as the ionic strength increased. In contrast, the activity of the enzyme with reduced methyl viologen (a non-physiological electron donor) was independent of ionic strength. These results suggest that an electrostatically stabilized complex between Synechococcus nitrate reductase and ferredoxin plays an important role in the mechanism of nitrate reduction catalyzed by this enzyme. Treatment of Synechococcus nitrate reductase with either an arginine-modifying reagent or a lysine-modifying reagent inhibited the ferredoxin-dependent activity of the enzyme but did not affect the methyl viologen-dependent activity. Treatment with these reagents also resulted in a large decrease in the affinity of the enzyme for ferredoxin. Formation of a nitrate reductase complex with ferredoxin prior to treatment with either reagent protected the enzyme against loss of ferredoxin-dependent activity. These results suggest that lysine and arginine residues are present at the ferredoxin-binding site of Synechococcus nitrate reductase. Results of experiments using site-specific, charge reversal variants of the ferredoxin from the cyanobacterium Anabaena sp. PCC 7119 as an electron donor to nitrate reductase were consistent with a role for negatively charged residues on ferredoxin in the interaction with Synechococcus nitrate reductase.  相似文献   

3.
A mutant of Synechocystis PCC 6803, deficient in psaE, assembles photosystem I reaction centers without the PsaE subunit. Under conditions of acceptor-side rate-limited photoreduction assays in vitro (with 15 microM plastocyanin included), using 100 nM ferredoxin:NADP(+) reductase (FNR) and either Synechocystis flavodoxin or spinach ferredoxin, lower rates of NADP(+) photoreduction were measured when PsaE-deficient membranes were used, as compared to the wild type. This effect of the psaE mutation proved to be due to a decrease of the apparent affinity of the photoreduction assay system for the reductase. In the psaE mutant, the relative petH (encoding FNR) expression level was found to be significantly increased, providing a possible explanation for the lack of a phenotype (i.e., a decrease in growth rate) that was expected from the lower rate of linear electron transport in the mutant. A kinetic model was constructed in order to simulate the electron transfer from reduced plastocyanin to NADP(+), and test for possible causes for the observed change in affinity for FNR. The numerical simulations predict that the altered reduction kinetics of ferredoxin, determined for the psaE mutant [Barth, P., et al., (1998) Biochemistry 37, 16233-16241], do not significantly influence the rate of linear electron transport to NADP(+). Rather, a change in the dissociation constant of ferredoxin for FNR does affect the saturation profile for FNR. We therefore propose that the PsaE-dependent transient ternary complex PSI/ferredoxin/FNR is formed during linear electron transport. Using the yeast two-hybrid system, however, no direct interaction could be demonstrated in vivo between FNR and PsaE fusion proteins.  相似文献   

4.
Masateru Shin 《BBA》1973,292(1):13-19
Complex formation by ferredoxin-NADP+ reductase (NADPH:ferredoxin oxidoreductase, EC 1.6.99.4) with ferredoxin was measured by the independent methods based on the changes of circular dichroism, fluorescence intensity and the chromatographic behavior on a Sephadex G-75 column of the two proteins after mixing. Complex formation between the flavoprotein and NADP+ was also detected from the changes of various optical properties of the protein. These experiments suggested that the optical changes accompanying the complex formation were due to a change of the chromophore group in ferredoxin-NADP+ reductase, but not due to that of ferredoxin.  相似文献   

5.
Peter Böger 《Planta》1971,99(4):319-338
Summary Transhydrogenase and diaphorase activity of ferredoxin-NADP reductase are enhanced by plant ferredoxins. This stimulation is specific; ferredoxin cannot be replaced by sulfhydryl compounds such as cysteine or dithiothreitol, the apoprotein of ferredoxin or Fe2+, Fe3+ ions.The effect is particularly obvious with the reductase from the heterokont algaBumilleriopsis filiformis Vischer.Reductase and ferredoxin form a complex in the molar ratio of 1:1, which is sensitive to high ionic strength. Under these conditions the complex is destroyed thus eliminating the enhancement by ferredoxin of both transhydrogenase and diaphorase activities. It is concluded that the effect is due to complex formation.Higher concentrations of NAD (>3 mM) and of NADPH (>0.01 mM) inhibit transhydrogenase activity without any effect on its enhancement by ferredoxin. A specific binding site on the reductase for ferredoxin is assumed for which NAD is a poor competitor. Only in the absence of ferredoxin does NAD seem to activate the reductase by occupying both the ferredoxin site and that of the pyridine nucleotides. Reaction kinetics (as a function of NAD concentration) therefore switch from a sigmoid shape when no ferredoxin is added to the normal hyperbolic shape in its presence. Kinetic studies further suggest a ping pong type reaction mechanism for the transhydrogenase and diaphorase reaction. A possible change of the underlying mechanism in the presence of ferredoxin is discussed.  相似文献   

6.
In the malaria parasite Plasmodium falciparum isoprenoid precursors are synthesised inside a plastid-like organelle (apicoplast) by the mevalonate independent 1-deoxy-d-xylulose-5-phosphate (DOXP) pathway. The last reaction step of the DOXP pathway is catalysed by the LytB enzyme which contains a [4Fe-4S] cluster. In this study, LytB of P. falciparum was shown to be catalytically active in the presence of an NADPH dependent electron transfer system comprising ferredoxin and ferredoxin-NADP(+) reductase. LytB and ferredoxin were found to form a stable protein complex. These data suggest that the ferredoxin/ferredoxin-NADP(+) reductase redox system serves as the physiological electron donor for LytB in the apicoplast of P. falciparum.  相似文献   

7.
Protein modulase and ferredoxin/thioredoxin reductase are soluble proteins that have been suggested to catalyze the light-dependent modulation of enzyme activity in the stromal compartment of the chloroplast. Protein modulase is active in vitro without additional ferredoxin and thioredoxin, whereas ferredoxin/thioredoxin reductase requires additional ferredoxin and thioredoxin. We hypothesize that protein modulase is a complex protein composed of ferredoxin/thioredoxin reductase, ferredoxin, and thioredoxin. In reconstituted chloroplast systems, antiserum directed against ferredoxin, at concentrations sufficient to inhibit the photoreduction of NADP, had no effect on light modulation. Antiserum directed against thioredoxin gave variable results: one batch of polyclonal antibodies inhibited light modulation, another was stimulatory, and another was without effect. These results suggest that the ferredoxin and thioredoxin active in light modulation are not free in solution. Furthermore, molecular sieve chromatography of stromal proteins results in the elution of four species that catalyze light modulation. Based on whether or not ferredoxin and/or thioredoxin must be added for activity, these four species have been tentatively identified as protein modulase, a complex of ferredoxin/thioredoxin reductase and ferredoxin, a complex of ferredoxin/thioredoxin reductase and thioredoxin, and ferredoxin/thioredoxin reductase. That is, the four correspond to all the possible combinations of ferredoxin, ferredoxin/thioredoxin reductase, and thioredoxin. We suggest that buffer ionic strength affects the interactions among these proteins and in part determines the fate of the protein modulase complex in vitro.  相似文献   

8.
Direct evidence of carotenoid/cyclodextrin inclusion complex formation was obtained for the water-soluble sodium salt of beta-caroten-8'-oic acid (IV) by using 1H NMR and UV-Vis absorption spectroscopy. It was shown that this carotenoid forms a stable 1:1 inclusion complex with beta-cyclodextrin (stability constant K11 approximately 1500 M(-1)). All other carotenoids under study in the presence of cyclodextrins (CDs) form large aggregates in aqueous solution as demonstrated by very broad absorption spectra and considerable change in color. By using the EPR spin trapping technique, the scavenging ability of IV toward OOH radicals was compared in DMSO and in the aqueous CD solution. A considerable decrease in PBN/OOH spin adduct yield was detected in the presence of uncomplexed IV because of a competing reaction of the carotenoid with OOH radical. No such decrease occurred in the presence of the IV/CD complex. Moreover, a small increase in spin adduct yield (pro-oxidant effect) is most likely due to the reaction of the carotenoid with Fe3+ to regenerate Fe2+, which in turn regenerates the OOH radical. Our data show that CD protects the carotenoid from reactive oxygen species. On the other hand, complexation with CD results in considerable decrease in antioxidant ability of the carotenoid.  相似文献   

9.
Bojko M  Kruk J  Wieckowski S 《Phytochemistry》2003,64(6):1055-1060
The effect of sodium cholate and other detergents (Triton X-100, sodium dodecyl sulphate, octyl glucoside, myristyltrimethylammonium bromide) on the reduction of plastoquinones (PQ) with a different length of the side-chain by spinach ferredoxin:NADP(+) oxidoreductase (FNR) in the presence of NADPH has been studied. Both NADPH oxidation and oxygen uptake due to plastosemiquinone autoxidation were highly stimulated only in the presence of sodium cholate among the used detergents. Sodium cholate at the concentration of 20 mM was found to be the most effective on both PQ-4 and PQ-9-mediated oxygen uptake. The FNR-dependent reduction of plastoquinones incorporated into sodium cholate micelles was stimulated by spinach ferredoxin but inhibited by Mg(2+) ions. It was concluded that the structure of sodium cholate micelles facilitates contact of plastoquinone molecules with the enzyme and creates favourable conditions for the reaction similar to those found in thylakoid membranes for PQ-9 reduction. The obtained results were discussed in terms of the function of FNR as a ferredoxin:plastoquinone reductase both in cyclic electron transport and chlororespiration.  相似文献   

10.
A competitive Brownian model for the interaction of ferredoxin, ferredoxin NADP+ reductase and hydrogenase has been built. In the model, molecules of three types of proteins are placed into a cubic reaction volume, where they move under Brownian and electrostatic forces created by neighboring molecules and the solution. It has been shown that the rate of ferredoxin binding with ferredoxin NADP+ reductase does not change at the pH range from 5.0 to 9.0. Thus, it may be suggested that regulation of ferredoxin NADP+ reductase activity is mediated by other processes. On the other hand, the rate of ferredoxin binding with hydrogenase in the model depends greatly on pH: if the pH value increases from 6.0 to 8.0 the rate increases by factor of three. The increase of the pH value in the stroma under illumination results in an increase of the rate of its interaction with ferredoxin, but decreases the level of protons that are the substrate for the reaction catalyzed by the protein. Thus, the rate of hydrogen production in the chloroplast stroma is low at low pH due to the reception of a small number of electrons by hydrogenase. When the pH increases, the number of electrons that are received by the enzyme from ferredoxin also increases; thus, the rate of hydrogen production increases as well.  相似文献   

11.
Summary Exposure of aqueous spinach ferredoxin solutions to X-rays results in a rapid and irreversible denaturation of the molecule. The denaturation is manifested by a decrease of the characteristic absorption of spinach ferredoxin at 320 and 416 nm, and by the concomitant liberation of ferric iron and hydrogen sulfide. The absorption decrease at 320 and 416 nm and the iron liberation are found to parallel the activity decrease in functioning as electron transfer factor in the noncyclic electron transport system in spinach chloroplasts.X-ray inactivated spinach ferredoxin does not contain iron or free SH-groups, and can be regarded as anapo-form of the native protein. This X-ray-inactivated apoprotein, however, showed a higher molar extinction coefficient at 275 nm than the apoferredoxin, and was not reconstitutable.Spinach ferredoxin was found to be even more radiosensitive than clostridial ferredoxin. AG- value of 1.25 for biological inactivation and iron liberation was found, as compared to aG- value of 0.8 for clostridial ferredoxin.  相似文献   

12.
Ferredoxin-NADP+ reductase and ferredoxin from the cyanobacterium Anabaena PCC 7119 have been covalently cross-linked by incubation with 1-ethyl-3-(3-dimethylaminopropyl) carbodiimide. The covalent adduct, which shows a molecular mass consistent with a 1:1 stoichiometry of the two proteins, maintains nearly 60% of the NADPH-cytochrome c reductase activity of the enzyme saturated with ferredoxin and this value is considerably higher than when equimolar amounts of both proteins are assayed. No ternary complexes with Anabaena flavodoxin or horse heart cytochrome c were formed, suggesting that the binding site on the enzyme is the same for ferredoxin and flavodoxin and that ferredoxin-NADP+ reductase and cytochrome c bind at a common site on ferredoxin. In the noncovalent complex, titrated at pH 7, the oxidation-reduction potential of ferredoxin becomes 15 mV more negative and that of ferredoxin-NADP+ reductase 27 mV more positive compared to the proteins alone. When covalently linked, the midpoint potential of the enzyme has a value similar to that in the noncovalent complex, while the ferredoxin potential is 20 mV more positive compared to ferredoxin alone. The changes in redox potentials have been used to estimate the dissociation constants for the interaction of the different redox forms of the proteins, based on the value of 1.21 microM calculated for the oxidized noncovalent complex.  相似文献   

13.
Potentiometric titrations employing an electrochemical thin-layer cell indicate that complex formation between ferredoxin and ferredoxin:NADP+ oxidoreductase alters the midpoint oxidation-reduction potentials of both proteins. The midpoint potential of ferredoxin in the complex becomes 22 ± 6 mV more negative compared to ferredoxin alone while the midpoint potential of ferredoxin:NADP+ oxidoreductase becomes 23 ± 4 mV more positive on complex formation.  相似文献   

14.
The contributions of ferredoxin, P-700, plastocyanin and the cytochromes c-554, and b-563 to single-turnover electron transfer in Photosystem (PS) I-enriched subchloroplast vesicles were deconvoluted by fitting the literature-derived spectra of these components to the observed absorption data at a series of wavelengths, according to a linear least-squares method. The obtained corresponding residuals showed that the applied component spectra were satisfactory. The deconvoluted signals of cytochromes c-554 and b-563 differed in some cases significantly from the classical dual-wavelength signals recording at 554–545 nm and 563–575 (or −572) nm, due to interference from other electron-transferring components. KCN, DNP-INT (2-iodo-6-isopropyl-3-methyl-2′,4,4′-trinitrodiphenyl ether), DBMIB (2,5-dibromo-3-methyl-6-isopropyl-p-benzo-quinone) and antimycin A all inhibited electron transfer, although antimycin and DBMIB inhibited only after a few turnovers of the cytochrome bf complex. Fast flash-induced reduction of cytochrome b-563 exclusively reflected oxidant-induced reduction. Fast electron flow from cytochrome c-554 to plastocyanin and P-700 resulted in an apparent rereduction of cytochrome c-554 that was slower than the reduction of cytochrome b-563. Model simulations indicate that under highly oxidizing conditions for the Rieske FeS centre and reducing conditions for cytochrome b-563, the semiquinone at the Qz site cannot only reduce cytochrome b-563, but can also oxidize cytochrome b-563 and reduce the Rieske FeS centre. The effect of 10 μM gramicidin D was evaluated in order to determine the contributions by electrochromic absorption changes around 518 nm. Gramicidin left electron transfer, monitored in the 550–600 nm range, unchanged. The gramicidin-sensitive (membrane potential-associated) signal at 518 nm differed from the signals recorded in the absence of gramicidin at 518 nm or 518–545 nm, due to spectral interference from electron-transferring components in the latter signals. KCN, DBMIB and antimycin A affected both the fast and slow components of the electrochromic signal, but did not proportionally affect the initial electron transfer from P-700 to ferredoxin (charge separation in PS I). Not only the slow (10–100 ms) component of the 518 nm absorption change, but also part of the fast (less than 1 ms) component appears to minitor electrogenic events in the cytochrome bf complex.  相似文献   

15.
Treatment of spinach ferredoxin with glycine ethyl ester in the presence of a water soluble carbodiimide resulted in the modification of 3-4 carboxyl groups and decreased the ability of ferredoxin to participate in NADP photoreduction by chloroplast membranes by about 80%. The ability of the modified ferredoxin to receive electrons from the reducing side of Photosystem I was relatively unaffected. These findings suggest that the modified ferredoxin is unable to interact with ferredoxin:NADP reductase. This has been verified by demonstration that the modified ferredoxin fails to produce difference spectra typical of a ferredoxin-ferredoxin:NADP reductase complex when added to ferredoxin:NADP reductase.  相似文献   

16.
Yan X  Khan S  Hase T  Emes MJ  Bowsher CG 《FEBS letters》2006,580(27):6509-6512
The photosynthetic proteins RuBiSCO, ferredoxin I and ferredoxin NADP(+)-oxidoreductase (pFNR) were efficiently imported into isolated pea chloroplasts but not into pea root plastids. By contrast non-photosynthetic ferredoxin III and heterotrophic FNR (hFNR) were efficiently imported into both isolated chloroplasts and root plastids. Chimeric ferredoxin I/III (transit peptide of ferredoxin I attached to the mature region of ferredoxin III) only imported into chloroplasts. Ferredoxin III/I (transit peptide of ferredoxin III attached to the mature region of ferredoxin I) imported into both chloroplasts and root plastids. This suggests that import depends on specific interactions between the transit peptide and the translocon apparatus.  相似文献   

17.
The trinitrophenylation of a single amino group of spinach ferredoxin abolishes its ability to inhibit the diaphorase activity of the flavoprotein, ferredoxin:NADP oxidoreductase (EC 1.6.7.1); in contrast, the ability of ferredoxin to participate in the ferredoxin-linked cytochrome c reductase activity catalyzed by the flavoprotein is unaffected. Comparison with previously published results [Davis, D. J., and San Pietro, A. (1977) Biochem. Biophys. Res. Commun.74, 33–40]indicates that the site of interaction between ferredoxin and the flavoprotein resulting in inhibition if diaphorase activity is responsible for the spectrally observable 1:1 complex between the two proteins and is identical to the site of ferredoxin involvement in NADP photoreduction. The role of ferredoxin in the ferredoxin-linked cytochrome c reductase activity of the flavoprotein has been reexamined under conditions were the entire electron-accepting system (rather than just the ferredoxin component) is rate limiting. The data support a mechanism by which ferredoxin can bind either to the flavoprotein or to cytochrome c, and the ferredoxin:cytochrome c complex serves as the true substrate for reduction by the flavoprotein. Furthermore, Chromatographic evidence is presented for the formation of complexes between ferredoxin and cytochrome c.  相似文献   

18.
The small inorganic complex Cr(CN)6(3-) is a clean inhibitor of the ferredoxin: NADP+ reductase-catalysed oxidation of reduced spinach ferredoxin by NADP+. Independent spectrophotometric measurements show that millimolar additions of Cr(CN)6(3-) to mixtures of ferredoxin and ferredoxin NADP+ reductase give a marked attenuation of the difference spectrum characteristic of ferredoxin-ferredoxin: NADP+ reductase complex formation. Since there is no evidence, from NMR studies, for significant binding of Cr(CN)6(3-) to ferredoxin, these results indicate that Cr(CN)6(3-) binds to ferredoxin: NADP+ reductase at a site which is crucial to its interaction with the electron-transfer protein. The effective kinetic binding constant for Cr(CN)6(3-), measured at low ferredoxin concentration, is 445 M-1 (ie Kdiss congruent to 2 mM) at 25 degrees, pH7.5, I = 0.10 M. With assumption of a simple electrostatic interaction, an enzyme domain with an effective charge of 3+/4+ is proposed.  相似文献   

19.
We investigated the expression of the T cell receptor (TCR)/CD3 complex on a CD4-positive human T cell lymphoma cell line treated with phorbol myristate acetate (PMA) and/or CA2+ ionophore using fluorescence flow cytometry and fluorescence microscopic analysis. PMA induced a significant decrease in the expression of the CD3 complex on the cell membranes. Fluorescence microscopy confirmed that the down regulation is due to internalization of the antigens. Ca2+ ionophore treatment had no effect on the internalization of the CD3 complex. Double staining revealed that the vesicles containing the internalized CD3 complex and those containing intra-cytoplasmic class I major histocompatibility complex antigen had similar distribution in the PMA-stimulated cells, implying coexistence of these two antigens in a cytoplasmic perinuclear distribution.  相似文献   

20.
The water-soluble carbodiimide, N-ethyl-3-(3-dimethylaminopropyl) carbodiimide (EDC) serves as an effective reagent for cross-linking spinach leaf ferredoxin and the ferredoxin-dependent spinach leaf enzyme, glutamate synthase. The cross-linked complex was functional in the absence of added ferredoxin, suggesting that ferredoxin is cross-linked to glutamate synthase at the physiological binding site on the enzyme for this iron-sulfur protein electron donor. The ferredoxin:glutamate synthase stoichiometry of the cross-linked complex was estimated to be 2:1. The absorbance spectrum of the oxidized, cross-linked complex was very similar to that of an electrostatically stabilized, noncovalent, 2:1 complex of the two proteins. An antibody raised against spinach NADP+ reductase, which recognizes a ferredoxin-binding site on glutamate synthase, does not recognize the cross-linked ferredoxin-glutamate synthase complex. This implies that the ferredoxin-binding sites on the two enzymes are structurally similar enough so that an antibody raised against one of these ferredoxin-dependent enzymes recognizes an epitope at the ferredoxin-binding site of the second enzyme. Cross-linking of ferredoxin to its binding site on glutamate synthase renders this epitope inaccessible to the antibody.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号