首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Ascorbate–glutathione systems were studied during desiccation of recalcitrant seeds of the silver maple (Acer saccharinum L.). The desiccated seeds gradually lost their germination capacity and this was strongly correlated with an increase in electrolyte leakage from seeds. Simultaneously the increase of reactive oxygen species (ROS) (superoxide radical – O2 and hydrogen peroxide – H2O2) production was observed. The results indicate that remarkable changes in the concentrations and redox status of ascorbate and glutathione occur in embryo axes and cotyledons. After shedding, concentrations of ascorbic acid (ASA) and the reduced form of glutathione (GSH) are higher in embryo axes than in cotyledons and their redox status is high in both embryo parts. Cotyledons in freshly shed seeds are devoid of GSH. At the first stages of desiccation, up to a level of 43% of moisture content, ASA content in embryo axes and GSH content in cotyledons increased. Below this level of moisture content, the antioxidant contents as well as their redox status rapidly decreased. The enzymes of the ascorbate–glutathione pathway: ascorbate peroxidase (APX) (EC 1.11.1.11), monodehydroascorbate reductase (MR) (EC 1.6.5.4), dehydroascorbate reductase (DHAR) (EC 1.8.5.1) and glutathione reductase (GR) (EC 1.6.4.2) increased their activity during desiccation, but mainly in embryonic axes. The changes are probably required for counteracting the production of ROS during desiccation. The relationship between ascorbate and glutathione metabolism and their relevance during desiccation of recalcitrant Acer saccharinum seeds is discussed.  相似文献   

2.
In this study of embryo development in Phaseolus vulgaris L., we found that immature embryonic axes placed in culture show a growth lag before germinating. The length of this lag phase varies according to axis age at excision, but is not affected by transfer to fresh medium, alteration of sucrose concentration between 0.5 and 2%, or whether the culture medium is liquid or agar-solidified. The lag phase was shortened by both actinomycin D and cordycepin treatment, and by treatment with 10-5 to 10-6 M benzyladenine. The effect of abscisic acid (ABA) varied with concentration: below a certain level, it had no effect on the lag phase, but above that level it inhibited, germination. This threshold concentration was 10-7 M for 20-d-old axes but increased to 10-5 M by the time the axes were 32 to 34 d old. To determine whether the axes were continuing their embryonic development during the lag phase, we tested them for desiccation-tolerance and for synthesis of phaseolin, a seed storage protein which is specific for embryos of P. vulgaris. The ability to germinate after rapid desiccation was acquired by axes at 26 d past anthesis; when axes younger than this were placed in culture, they developed desiccation-tolerance during the lag phase of growth, indicating that they were continuing embryonic maturation. Phaseolin was present in isolated axes, although at lower levels than in cotyledons. It accumulated during axis development in parallel with total protein, staying at about 1% of total protein content. When isolated immature axes were pulsed with 3H-or 14C-amino acids, they incorporated label into phaseolin, shown by precipitation with anti-phaseolin antibody. Isolated axes from mature seeds, however, did not synthesize detectable amounts of phaseolin. Immature axes cultured in vitro for a period of one to several days continued synthesizing phaseolin until the day prior to visible germination. Treatment of cultured axes with ABA increased the amount of precursor amino acids incorporated into protein, but had a small or no effect on the relative proportion of phaseolin synthesized. We conclude that P. vulgaris axes in culture continue to develop embryonically for a period of time which seems to be under intrinisc control by the axis. This contrasts with precocious germanation, a pattern of embryo behavior seen in many other species. When such embryos are excised from seeds while immature and placed in culture, they switch promptly from embryo development into germination. If ABA or water stress is responsible for preventing precocious germination, it may be that a high level of ABA is maintained or synthesized internally by embryonic axes of Phaseolus, while in other embryos the maternal environment supplies ABA and/or causes water stress.Abbreviations ABA Abscisic acid - BA benzyladenine  相似文献   

3.
4.
Seeds of Acer pseudoplatanus L. are usually considered to show only testa-imposed dormancy, but a transient embryo dormancy has also been identified at the time of fruit dispersal. Even embryos that did not show full dormancy at this stage possessed low germinative vigour. Removal of embryo dormancy and the development of increased germination potential did not require the low temperatures necessary for the removal of testa-imposed dormancy in this species. Germination rates of embryos from freshly harvested or briefly stored fruits were accelerated by removal of cotyledonary tissue, the most rapid responses occurring in isolated embryonic axes following complete removal of both cotyledons. Longer storage reduced this effect because of the increases in germinative vigour of whole embryos. Abscisic acid (ABA) reinforced embryo dormancy in embryos from freshly harvested or briefly stored fruits and also reduced germination rates in similarly derived isolated embryonic axes. This response to ABA also became progressively less marked as the storage period was extended. Loss of embryo dormancy was correlated with a reduction in endogenous abscisic acid levels in both whole embryos and cotyledons, suggesting that endogenous ABA contributes to the regulation of embryo dormancy in these seeds. There are no indications, however, that endogenous ABA is directly implicated in the low temperature processes associated with the removal of testa-imposed dormancy. The relevance of embryo dormancy in the intact seed of A. pseudoplatanus is discussed.  相似文献   

5.
The main storage compound in lupin seeds is protein, whose content can reach up to 45–50 % of dry matter. However, seeds of some lupin species can also contain quite a large amount of storage lipid. The range of lipid content in lupin seeds is from about 6 to about 20 % of dry matter. Storage lipid in developing seeds is synthesized mainly from sugars delivered by mother plants. During seed germination, one of the main end-products of storage lipid breakdown is also sugars. Thus, the sugar level in tissues is considered an important regulatory agent, during both lipid accumulation and lipid breakdown. Generally, in developing legume seeds, there is a strong negative relation between accumulation of storage protein and storage lipid. Results obtained in developing lupin cotyledons cultured in vitro pointed to the possibility of a positive relation between protein and lipid accumulation. Such a positive effect could be caused by nitrate. During lupin seed germination and seedling development, the utilization of storage lipid is enhanced under sugar deficiency conditions in tissues and is controlled at the gene expression level. However, under sugar starvation conditions, autophagy is significantly enhanced, and it can cause disturbances in storage lipid breakdown. The hypothesis of pexophagy, i.e., autophagic degradation of peroxisomes under sugar starvation conditions during lupin seed germination, has been taken into consideration. The flow of lipid-derived carbon skeletons to amino acids was discovered in germinating lupin seeds, and this process is clearly more intense in sucrose-fed embryo axes. At least four alternative or mutually complementary pathways of carbon flow from storage lipid to amino acids in germinating lupin seeds are postulated. The different strategies of storage compound breakdown during lupin seed germination are also discussed.  相似文献   

6.
Y. Choi  J. Jeong 《Plant cell reports》2002,20(12):1112-1116
. In most plants, somatic embryos tend to germinate prematurely, a process that is detrimental to controlled plant production and the conservation of artificial seeds. We investigated the dormancy characteristics of Siberian ginseng somatic embryos induced simply by a high sucrose treatment, a treatment that enables the long-term conservation of artificial seeds following encapsulation and provides embryos with an enhanced resistance to dehydration. Early-cotyledonary stage somatic embryos were mass-produced by means of bioreactor culture. These embryos were then plated on medium supplemented with various levels of sucrose (1%, 3%, 6% or 9%) and allowed to mature. Subsequent germination of these embryos following the maturation period depended significantly on the sucrose level. At concentrations of 9% sucrose, none of the somatic embryos germinated after maturation, and none were recovered after being transferred to half-strength MS medium containing 2% sucrose. Gibberellic acid treatment was necessary to induce germination; other growth regulators such as auxins and cytokinins did not induce a response. Endogenous abscisic acid content in somatic embryos matured at 9% sucrose (487.8 ng/g FW) was approximately double that found in those matured at 3% sucrose (258.4 ng/g FW). This indicates induced dormancy in embryos under high osmotic stress. Alginate encapsulation of embryos facilitated the artificial induction of dormancy to extend the conservation period without germination. The induction of dormancy strengthened resistance to dehydration after the embryos were desiccated to 15% of their normal water content. Reduced chances of embryo survival during long-term desiccation were distinctly delayed in dormant embryos. These results indicate that the induction of dormancy in embryos is a promising application for synthetic seed production.  相似文献   

7.
8.
The hormonal mechanisms involved in palm seed germination are not fully understood. To better understand how germination is regulated in Arecaceae, we used macaw palm (Acrocomia aculeata (Jacq.) Lodd. Ex Mart.) seed as a model. Endogenous hormone concentrations, tocopherol and tocotrienol and lipid peroxidation during germination were studied separately in the embryo and endosperm. Evaluations were performed in dry (D), imbibed (I), germinated (G) and non‐germinated (NG) seeds treated (+GA3) or not treated (control) with gibberellins (GA). With GA3 treatment, seeds germinated faster and to a higher percentage than control seeds. The +GA3 treatment increased total bioactive GA in the embryo during germination relative to the control. Abscisic acid (ABA) concentrations decreased gradually from D to G in both tissues. Embryos of G seeds had a lower ABA content than NG seeds in both treatments. The GA/ABA ratio in the embryo was significantly higher in G than NG seeds. The +GA3 treatment did not significantly affect the GA/ABA ratio in either treatment. Cytokinin content increased from dry to germinated seeds. Jasmonic acid (JA) increased and 1‐aminocyclopropane‐1‐carboylic acid (ACC) decreased after imbibition. In addition, α‐tocopherol and α‐tocotrienol decreased, while lipid peroxidation increased in the embryo during germination. We conclude that germination in macaw palm seed involves reductions in ABA content and, consequently, increased GA/ABA in the embryo. Furthermore, the imbibition process generates oxidative stress (as observed by changes in vitamin E and MDA).  相似文献   

9.
顽拗性黄皮种子脱水过程中活性氧清除酶活性的变化   总被引:1,自引:0,他引:1  
以正常性种子花生为对照,研究了顽拗性黄皮种子脱水过程中活性氧清除酶、膜脂过氧化作用以及电解质渗漏率的变化。随着含水量的下降,黄皮胚的电解质渗漏率和膜脂过氧化产物丙二醛(MDA)含量均显著增加;当黄皮胚含水量下降至40%后,SOD活性开始急剧下降,而POD和CAT活性在胚含水量下降过程中呈现出缓慢下降的趋势。花生胚在含水量从45%降至14%的过程中,电解质渗漏率没有明显增加,MDA含量只有少量增加;当含水量降至14%后,电解质渗漏率出现少量增加。花生胚脱水初期,活性氧清除酶活性明显增加,并在整个脱水过程中维持较高的水平。以上结果表明顽拗性种子黄皮的脱水敏感性与活性氧清除酶相对活性变化有关。脱水引起黄皮胚活性氧清除酶活性降低,活性氧清除能力下降,膜脂过氧化作用加强,膜透性增大。黄皮胚的膜系统可能是脱水伤害的靶位之一。  相似文献   

10.
Deep dormancy of apple (Malus domestica Borkh.) seeds is terminated by a 3-month-long cold stratification. It is expressed by rapid germination of seeds and undisturbed growth of seedlings. However, stimulation of germination of isolated apple embryos is also observed after applying inhibitors of cytochrome c oxidase: nitric oxide (NO) or hydrogen cyanide (HCN) during the first 3–6 h of imbibition of dormant embryos. The aim of this work was to compare the effect of yet another toxic gaseous molecule carbon monoxide (CO) with the effects of HCN and NO on germination of apple embryos and growth and development of young seedlings. We demonstrated that stimulation of germination after short-term pre-treatment with HCN, NO or CO was accompanied by enhanced NO emission from the embryo axes during their elongation. Moreover, similarly high NO production from non-dormant embryos, after cold stratification, was detected. Therefore, we propose that NO may act as signaling molecule in apple embryo dormancy break.  相似文献   

11.
Changes in ascorbate and glutathione contents and the activities and isoenzyme patterns of enzymes of the ascorbate-glutathione cycle were investigated in embryo axes and cotyledons of germinating lupine (Lupinus luteus L.) seeds. Ascorbate content was not significantly affected over the initial 12 h of imbibition in embryo axes, but afterwards increased, with the most rapid accumulation coinciding with radicle emergence. A somewhat similar trend was observed for glutathione with significant increase in embryo axes shortly before radicle protrusion followed by decline in the next hours. In cotyledons the ascorbate pool rose gradually during germination but the amount of glutathione showed fluctuations during a whole germination period. The activity of ascorbate peroxidase (APX) rose progressively in embryo axes, while activities of dehydroascorbate reductase (DHAR) and glutathione reductase (GR) showed transient increase during germination. New isoforms of APX and GR were synthesized, suggesting that they play a relevant role during germination. All analyzed enzymes were already present in dry seeds which allowed them to be active immediately after imbibition.  相似文献   

12.
Accelerated ageing is an accurate test indicator of seed vigor and storability that helps to understand the mechanisms of cellular and biochemical deterioration that occur during seed ageing. This study was carried out to elucidate the mechanisms of ageing in macaw palm embryos. Seeds were artificially aged during 4, 8 and 12 days at 45 °C and 100% relative humidity. After ageing, seeds were tested for viability (tetrazolium), electrical conductivity, lipid peroxidation (MDA) and hydrogen peroxide (H2O2) content. Part of the aged seeds was imbibed for 8 days and then determined the hydrogen peroxide content and the activity of antioxidant system enzymes (superoxide dismutase, catalase and glutathione reductase). Ageing reduced the embryo viability from 8 days of treatment and increased malondialdehyde content (MDA) and solute leakage. Hence, membrane permeability correlated with both loss of viability and lipid peroxidation. Imbibition after ageing significantly increased H2O2 content along with superoxide dismutase activity. Catalase activity was significantly higher than control in embryos aged from 8 days and imbibed, and glutathione reductase activity did not change. Our results suggest that macaw palm seed deterioration during accelerated ageing is closely related to lipid peroxidation, and that enzymatic antioxidant system is not completely efficient in reducing reactive oxygen species after imbibition, a critical phase to germination. Moreover, accelerated ageing test can be used as a reliable model to understand the mechanisms involved in palm seeds deterioration.  相似文献   

13.
The aim of this study was to investigate whether there is a relationship between hydration of the embryo axes and cotyledons and the resumption of the oxidative metabolism in both organs of germinating seeds of pea (Pisum sativum L. cv. Piast). Nuclear magnetic resonance (1H-NMR) spectroscopy and imaging were used to study temporal and spatial water uptake and distribution in pea seeds. The observations revealed that water penetrates into the seed through the hilum, micropyle and embryo axes, and cotyledons hydrate to different extents. Thus, inhomogeneous water distribution may influence the resumption of oxidative metabolism. Electron paramagnetic resonance (EPR) measurements showed that seed germination was accompanied by the generation of free radicals with g1 and g2 values of 2.0032 and 2.0052, respectively. The values of spectroscopic splitting coefficients suggest that they are quinone radicals. The highest content of free radicals was observed in embryo axes immediately after emergence of the radicle. Glutathione content decreased during the entire germination period in both embryo axes and cotyledons. A different profile was observed for ascorbate, with significant increases in embryo axes, coinciding with radicle protrusion. Electrophoretic analysis showed that superoxide dismutase (SOD, EC 1.15.1.1), catalase (CAT, EC 1.11.1.6), ascorbate peroxidase (APX, EC 1.11.1.11), dehydroascorbate reductase (DHAR, EC 1.8.5.1) and glutathione reductase (GR, EC 1.6.4.2) were present in dry seeds and were activated later during germination, especially in embryo axes. The presence of all antioxidative enzymes as well as low molecular antioxidants in dry seeds allowed the antioxidative machinery to be active as soon as the enzymes were reactivated by seed imbibition. The observed changes in free radical levels, antioxidant contents and enzymatic activities in embryo axes and cotyledons appear to be more closely related to metabolic and developmental processes associated with preparation for germination, and do not correspond directly to the hydration of the tissues.  相似文献   

14.
Research of the regulatory function of sucrose in storage lipid breakdown was conducted on isolated embryo axes, excised cotyledons and whole seedlings of three lupine species grown in vitro on medium with 60 mM sucrose or without the sugar. Lack of sucrose in the medium caused significant increase in total lipid content in yellow, white and Andean lupine isolated embryo axes but in Andean lupine seedling cotyledons and excised cotyledons, lipid level was clearly lower in carbohydrates deficient conditions. Sucrose caused no significant effect on fatty acids spectra. The main fatty acid in yellow lupine seeds was linoleic acid, in white lupine oleic acid and in Andean lupine both oleic and linoleic acids. The main phospholipid in organs of three lupine species was phosphatidylcholine. In sugar-deficient conditions, content of phosphatidylcholine and some others phospholipids was decreased. The peculiar features of regulation by sugars of storage lipid breakdown in germinating lupine seeds and induction of autophagy in young carbohydrate starved embryo axes is discussed.  相似文献   

15.
Sacred lotus (Nelumbo nucifera Gaertn. ‘Tielian’) seed is long-lived and extremely tolerant of high temperature. Water content of lotus and maize seeds was 0.103 and 0.129 g H2O [g DW] ?1, respectively. Water content, germination percentage and fresh weight of seedlings produced by surviving seeds gradually decreased with increasing treatment time at 100℃. Germination percentage of maize (Zea mays L. ‘Huangbaogu’) seeds was zero after they were treated at 100℃ for 15 min and that of lotus seeds was 13.5% following the treatment at 100℃ for 24 h. The time in which 50% of lotus and maize seeds were killed by 100℃ was about 14.5 h and 6 min, respectively. With increasing treatment time at 100℃, relative electrolyte leakage of lotus axes increased significantly, and total chlorophyll content of lotus axes markedly decreased. When treatment time at 100℃ was less than 12 h, subcellular structure of lotus hypocotyls remained fully intact. When treatment time at 100℃ was more than 12 h, plasmoly-sis gradually occurred, endoplasmic reticulum became unclear, nuclei and nucleoli broke down, most of mitochondria swelled, lipid granules accumulated at the cell periphery, and organelles and plas-molemma collapsed. Malondialdehyde (MDA) content of lotus axes and cotyledons decreased during 0-12 h of the treatment at 100℃ and then increased. By contrast, the MDA content of maize embryos and endosperms increased during 5-10 min of the treatment at 100℃ and then decreased slightly. For lotus seeds: (1) activities of superoxide dismutase (SOD) and glutathione reductase (GR) of axes and cotyledons and of catalase (CAT) of axes increased during the early phase of treatment at 100℃ and then decreased; and (2) activities of ascorbate peroxidase (APX) and dehydroascorbate reductase (DHAR) of axes and cotyledons and of CAT of cotyledons gradually decreased with increasing treat-ment time at 100℃. For maize seeds: (1) activities of SOD and DHAR of embryos and endosperms and of GR of embryos increased during the early phase of the treatment at 100℃ and then decreased; and (2) activities of APX and CAT of embryos and endosperms and of GR of endosperms rapidly decreased with increasing treatment time at 100℃. With decrease in seed germination, activities of SOD, APX, CAT, GR and DHAR of axes and cotyledons of lotus seeds decreased slowly, and those of embryos and endosperms of maize seeds decreased rapidly.  相似文献   

16.
对采自贵州毕节地区的11种植物的种子萌发特性进行了初步研究,结果表明:①盐肤木、火棘、化香、云贵金丝桃与白栎种子在4周之内能够萌发;除云贵鹅耳枥胚坏死之外(萌发实验前后对种子进行解剖),其他5种植物的种子都未萌发,处于不同的休眠状态。②盐肤木、化香、云贵金丝桃的种子光照时的萌发率远高于黑暗时的萌发率,具有显著差异,尤其是云贵金丝桃,因此3种植物种子均属于喜光性种子;而火棘与白栎种子有无光照都可以萌发,而且萌发率没显著差异,因此属于光不敏感或光中性种子。③盐肤木、云贵金丝桃的种子在30℃较高温条件下萌发最好;白栎、火棘种子在15℃、20℃低温条件下萌发更好;化香种子萌发温度既不能低于20℃也不能高于25℃。④刺异叶花椒种子吸水率高达85%,胚包埋在胚乳之中非常微小、未分化,因此可以初步判定属于形态休眠或者形态生理休眠;而平枝荀子、西域旌节花、云南旌节花种子吸水率都在20%以上,胚长/种子长都超多1/2,并且胚已发育完全,应属于生理休眠;小果蔷薇种子吸水率约27%,胚长/种子长都达2/3,并且通过对种子的解剖发现胚还未发育,应属于形态生理休眠。  相似文献   

17.
The embryo dormancy shown in freshly harvested samples of Acervelutinum seeds is weakly established and very short-lived.Loss of this embryo dormancy occurred during post-harvest fruitstorage at either 5 or 17 C. In contrast, the dormancy of intactfruits and seeds was overcome only during storage at the lowertemperature. Removal of the cotyledons from embryos of freshlyharvested fruits allowed more rapid germination of the embryonicaxes, indicating that the cotyledons exert an inhibitory effect,although the axes still retained a measure of innate dormancy.The inhibitory effect of the cotyledons became less marked withincreasing duration of fruit storage, this loss of inhibitoryeffect occurring at both storage temperatures. Applied ABA stronglysuppressed germinative capacity in intact embryos and isolatedembryonic axes from freshly harvested fruits, but when ABA wasapplied to embryos of fruits that had been stored for variousperiods at 5 or 17 C, the inhibitory effect was first weakenedand then lost with increased storage. Although dormancy in the seeds of A. velutinum may be describedas intermediate between testa-imposed dormancy and true dormancy,it is perhaps more properly included in the former category. Acer velutinum Boiss. var. vanvolxemii, abscisic acid, embryo dormancy, germination, seed storage, testa-imposed dormancy, tissue sensitivity  相似文献   

18.
Changes in the abscisic acid (ABA) levels in embryo axes of seeds, belonging to the orthodox (Norway maple — Acer platanoides L.) and recalcitrant (sycamore — Acer pseudoplatanus L.) categories, were investigated throughout maturation using an ELISA (enzyme-linked immunosorbent assay) test. Concentration of ABA in embryo axes substantially differed depending on species and sampling date. ABA was always higher in Norway maple except at the end of seed maturation when ABA content was similar in both species. During maturation ABA decreased in both species but the decline was more marked in Norway maple than in sycamore (11 vs. 3 fold). These species also differed in the pattern of ABA changes, which in sycamore embryo axes was very regular, while in Norway maple a sharp decrease was recorded after acquisition by the seeds of tolerance to desiccation. Dehydration of embryo axes of Norway maple caused a further significant decrease of ABA level. In contrast, in dehydrated sycamore embryo axes ABA content did not decrease, but slightly increased. The role of ABA in desiccation tolerance and dormancy of Norway maple and sycamore seeds is discussed.  相似文献   

19.
At harvest, sunflower (Helianthus annuus L.) seeds are dormant and unable to germinate at temperatures below 15 degrees C. Seed storage in the dry state, known as after-ripening, is associated with an alleviation of embryonic dormancy allowing subsequent germination at suboptimal temperatures. To identify the process by which dormancy is broken during after-ripening, we focused on the role of reactive oxygen species (ROS) in this phenomenon. After-ripening entailed a progressive accumulation of ROS, namely superoxide anions and hydrogen peroxide, in cells of embryonic axes. This accumulation, which was investigated at the cellular level by electron microscopy, occurred concomitantly with lipid peroxidation and oxidation (carbonylation) of specific embryo proteins. Incubation of dormant seeds for 3 h in the presence of hydrogen cyanide (a compound that breaks dormancy) or methylviologen (a ROS-generating compound) also released dormancy and caused the oxidation of a specific set of embryo proteins. From these observations, we propose a novel mechanism for seed dormancy alleviation. This mechanism involves ROS production and targeted changes in protein carbonylation patterns.  相似文献   

20.
The dark-germinating seeds of cucumber (Cucumis sativus L. cv.Saharanpur Long green) developed secondary dormancy when giventwo brief far-red light (FR) irradiations during a 4 d incubationin osmoticum at 20°C. Acetone treatment of seeds was foundnot only to break FR-induced dormancy but also to prevent itsdevelopment. The progressive effect of increasing the durationof treatment or the concentrations of acetone, as well as anappreciable activity of the latter, irrespective of its applicationto dry or hydrated seeds, is consistent with the Taylorson hypothesisof anaesthetic action at the membrane level. Contrary to thegeneral consensus that it is only the cells of the embryo whichrespond to an active dormancy-breaking factor, termination ofdormancy as well as prevention of its development by acetonein cucumber seeds was accompanied by a striking change in thepermeability of the cell membranes of the perisperm-endospermenvelope enclosing the embryo. This change in the permeabilityof the cell membranes brought about by acetone appeared to bepermanent in nature as it was not affected by hydration or dehydrationof the treated seeds. Key words: Acetone, anaesthetic substances, secondary seed dormancy, triphenyl tetrazolium chloride, benzyladenine, Evan's blue  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号