首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Thin-section and critical-point-dried fracture-labeled preparations are used to determine the distribution and partition of glycophorin- associated wheat germ agglutinin (WGA) binding sites over protoplasmic and exoplasmic faces of freeze-fractured human erythrocyte membranes. Most wheat germ agglutinin binding sites are found over exoplasmic faces. Label is sparse over the protoplasmic faces. These results contrast with previous observations of the partition of band 3 component where biochemical analysis and fracture-label of concanavalin A (Con A) binding sites show preferential partition of this transmembrane protein with the protoplasmic face. Presence of characteristic proportions of WGA and Con A binding sites over each fracture face is interpreted to indicate the operation of a stochastic process during freeze-fracture. This process appears modulated by the relative expression of each transmembrane protein at either surface as well as by their association to components of the erythrocyte membrane skeleton.  相似文献   

2.
《The Journal of cell biology》1983,97(5):1356-1364
We used fracture-label and surface labeling techniques to characterize the distribution and topology of wheat germ agglutinin (WGA) receptors in the plasma membrane of boar sperm heads. We show that freeze- fracture results in preferential, but not exclusive, partition of WGA- binding sites with the outer (exoplasmic) half of the plasma membrane. Labeling of the inner (protoplasmic) half of the membrane is significant, and is denser over the areas that overlie the acrosome. Exoplasmic membrane halves are uniformly labeled. Analysis of freeze- fracture replicas revealed that the distribution of intramembrane particles over protoplasmic faces parallels that of WGA-binding sites as observed by fracture-label. Coating of intact spermatozoa with cationized ferritin results in drastic reduction of the labeling of both protoplasmic and exoplasmic membrane halves. Labeling of sperm cells lysed by short hypotonic shock fails to reveal the presence of WGA-binding sites at the inner surface of the plasma membrane. We conclude that: (a) all WGA-binding glycoconjugates are exposed at the outer surface of the membrane; (b) some of these glycoconjugates correspond to transmembrane glycoproteins that, on fracture, partition with the inner half of the membrane; (c) these transmembrane proteins are accumulated in the region of the plasma membrane that overlies the acrosome; and (d) parallel distribution of intramembrane particles and WGA-binding glycoproteins provides renewed support for the view of particles as the morphological counterpart of integral membrane proteins.  相似文献   

3.
Fracture-label, a method that permits the cytochemical characterization of faces produced by freezefracture, was used to determine the partition and distribution of a glycolipid on membrane fracture faces of Acanthamoeba castellanii cells. After treatment with concanavalin A (Con A), the glycolipid (a lipophosphonoglycan, LPG) was labeled with colloidal gold coated with horseradish peroxidase. The label was abundant over exoplasmic fracture faces (face E) of plasma membranes, but absent from protoplasmic fracture faces (face P). We conclude that, in A. castellanii, glycolipid molecules are restricted to the outer half of the plasma membrane. This conclusion is confirmed by experiments with cells disrupted by freezing and thawing, where access of label to the cell interior did not result in labeling of the inner surface. Our results establish the exclusive localization of a glycolipid to the outer half of a plasma membrane. Fracture-label is proposed as a new technique to investigate the distribution and partition of glycolipids in plasma and intracellular membrane halves.  相似文献   

4.
The actin-binding proteins, spectrin and dystrophin, are key components of the plasma membrane-associated cytoskeleton of the cardiac muscle cell. From confocal immunofluorescence studies, the distribution of spectrin appears to overlap with that of dystrophin, but the precise functional differentiation, molecular distributions and spatial relationship of these two cytoskeletal systems remain unclear. Freeze-fracture replica immuno-electron microscopy, in parallel with immunofluorescence/confocal microscopy, were applied to examine at high resolution the spatial relationships between the spectrin and dystrophin membrane-associated cytoskeleton systems in cardiac muscle. Application of freeze-fracture replica cytochemistry, with single and double immunogold labeling, permitted simultaneous examination of the organization of spectrin and dystrophin in en-face views of the plasma membrane at high resolution. In contrast to the close spatial relationship previously demonstrated for dystrophin and β-dystroglycan, no association between the gold label marking dystrophin and that marking spectrin was observed. Our freeze-fracture cytochemical results suggest that the two membrane skeletal networks formed by dystrophin and spectrin in cardiac muscle are independently organized, implying that whatever overlap of function (e.g., in structural support to the plasma membrane) may exist between them, the two systems may each have additional distinctive roles.  相似文献   

5.
6.
Membrane scaffolding complexes are key features of many cell types, serving as specialized links between the extracellular matrix and the actin cytoskeleton. An important scaffold in skeletal muscle is the dystrophin-associated protein complex. One of the proteins bound directly to dystrophin is syntrophin, a modular protein comprised entirely of interaction motifs, including PDZ (protein domain named for PSD-95, discs large, ZO-1) and pleckstrin homology (PH) domains. In skeletal muscle, the syntrophin PDZ domain recruits sodium channels and signaling molecules, such as neuronal nitric oxide synthase, to the dystrophin complex. In epithelia, we identified a variation of the dystrophin complex, in which syntrophin, and the dystrophin homologues, utrophin and dystrobrevin, are restricted to the basolateral membrane. We used exogenously expressed green fluorescent protein (GFP)-tagged fusion proteins to determine which domains of syntrophin are responsible for its polarized localization. GFP-tagged full-length syntrophin targeted to the basolateral membrane, but individual domains remained in the cytoplasm. In contrast, the second PH domain tandemly linked to a highly conserved, COOH-terminal region was sufficient for basolateral membrane targeting and association with utrophin. The results suggest an interaction between syntrophin and utrophin that leaves the PDZ domain of syntrophin available to recruit additional proteins to the epithelial basolateral membrane. The assembly of multiprotein signaling complexes at sites of membrane specialization may be a widespread function of dystrophin-related protein complexes.  相似文献   

7.
Summary Membranes were isolated from the main electric organ of Electrophorus electricus and studied by means of cytochemistry and freezefracture. The membrane fractions consisted of vesicles inside-in as determined by localization of anionic sites using colloidal iron and cationized ferritin particles. The anionic sites were not homogeneously distributed on the surface of the vesicle. Freeze-fracture showed the presence of intramembranous particles associated with either protoplasmic (P) or extracellular (E) faces of the membrane. Regions of the membrane without particles were observed. The results are discussed in relation to the existence of association between intramembranous particles and membrane receptors.For all correspondence  相似文献   

8.
Sindbis virus-infected baby hamster kidney cells were analyzed by thin section fracture-label. Specific immunolabel with antiviral glycoprotein antibodies or with conventional lectin label (wheat germ agglutinin) were used in conjunction with colloidal gold-conjugated protein A or ovomucoid, respectively. In addition, intact infected cells were analyzed with both labeling procedures. Experiments with Sindbis infected-chick embryo fibroblast cells were carried out as controls. Viral transmembrane glycoproteins appeared present in freeze-fractured inner and outer nuclear membrane, endoplasmic reticulum, Golgi stacks and vesicles, and plasma membranes; a clear preferential partition with the exoplasmic faces of all intracellular membranes was observed. By contrast, at the plasma membrane level, Sindbis glycoproteins were found to partition preferentially with the protoplasmic face. It seems likely that this protoplasmic partition is related to the binding with the nucleocapsid that takes place during the budding of the virus. At the cell surface, viral glycoproteins always appeared clustered and were predominantly associated with budding figures: moreover, large portions of the plasma membrane were devoid of both glycoproteins and budding viruses.  相似文献   

9.
Label-fracture and fracture-label membrane immunocytochemistry are used to analyze the surface distribution, dynamics and partition on fracture of CD3 and CD4 antigens of human T lymphocytes. Redistribution of the antigens, induced by treatment at 37 degrees C with specific monoclonal antibodies, results in patching and capping of the labeling as observed in label-fractured specimens. Examination of platinum/carbon replicas of freeze-fractured plasma membranes of antibody-treated cells does not reveal recognizable domains of intramembrane particles. However, in cells where the aggregation of intramembrane particles is induced by incubation with glycerol, colloidal gold-labeled CD3 and CD4 molecules are seen confined to particulate domains of the membrane. Therefore, the lack of visible aggregation of intramembrane particles in patched or capped regions of the membrane implies that migration of CD3 and CD4 antigens with concentration in domains of the membrane is achieved contemporaneously with export of other non-capped integral membrane proteins from the same regions, in a process of diffusional equilibrium. Examination of fracture-labeled specimens shows that CD4 molecules partition on fracture with the inner protoplasmic face of the plasma membrane. This partition illustrates the transmembrane attitude of the antigen molecule and is a probable consequence of interaction of the protein with other components of the membrane or with the cytoskeleton.  相似文献   

10.
In muscle, dystrophin anchors a complex of proteins at the cell surface which includes alpha-dystroglycan, beta-dystroglycan, syntrophins and dystrobrevins. Mutations in the dystrophin gene lead to muscular dystrophy and mental retardation. In contrast to muscle, little is known about the localization and the molecular interactions of dystrophin and dystrophin associated proteins (DAPs) in brain. In the present study, we show that alpha-dystroglycan and dystrophin are localized to large neurones in cerebral cortex, hippocampus, cerebellum and spinal cord. Furthermore, we show that dystroglycan is a member of three distinct dystrophin-containing complexes. Two of these complexes contain syntrophin and both dystrophin and syntrophin are enriched in post-synaptic densities. These data suggest that dystrophin and DAPs may have a role in the organization of CNS synapses. Interestingly, the enrichment for syntrophin in post-synaptic densities is not affected in mice mutant for all dystrophin isoforms. Thus in the brain, unlike in muscle, the association of syntrophin with dystrophin is not crucial for the DAP complex which suggests that it may be associated with other proteins.  相似文献   

11.
Mechanical function of dystrophin in muscle cells   总被引:12,自引:1,他引:11       下载免费PDF全文
We have directly measured the contribution of dystrophin to the cortical stiffness of living muscle cells and have demonstrated that lack of dystrophin causes a substantial reduction in stiffness. The inferred molecular structure of dystrophin, its preferential localization underlying the cell surface, and the apparent fragility of muscle cells which lack this protein suggest that dystrophin stabilizes the sarcolemma and protects the myofiber from disruption during contraction. Lacking dystrophin, the muscle cells of persons with Duchenne muscular dystrophy (DMD) are abnormally vulnerable. These facts suggest that muscle cells with dystrophin should be stiffer than similar cells which lack this protein. We have tested this hypothesis by measuring the local stiffness of the membrane skeleton of myotubes cultured from mdx mice and normal controls. Like humans with DMD mdx mice lack dystrophin due to an x-linked mutation and provide a good model for the human disease. Deformability was measured as the resistance to indentation of a small area of the cell surface (to a depth of 1 micron) by a glass probe 1 micron in radius. The stiffness of the membrane skeleton was evaluated as the increment of force (mdyne) per micron of indentation. Normal myotubes with an average stiffness value of 1.23 +/- 0.04 (SE) mdyne/micron were about fourfold stiffer than myotubes cultured from mdx mice (0.34 +/- 0.014 mdyne/micron). We verified by immunofluorescence that both normal and mdx myotubes, which were at a similar developmental stage, expressed sarcomeric myosin, and that dystrophin was detected, diffusely distributed, only in normal, not in mdx myotubes. These results confirm that dystrophin and its associated proteins can reinforce the myotube membrane skeleton by increasing its stiffness and that dystrophin function and, therefore, the efficiency of therapeutic restoration of dystrophin can be assayed through its mechanical effects on muscle cells.  相似文献   

12.
《FEBS letters》1998,441(2):337-341
The Dp71 dystrophin isoform has recently been shown to localize to actin filament bundles in early myogenesis. We have identified an actin binding motif within Dp71 that is not found in other dystrophin isoforms. Actin overlay assays and transfection of COS-7 cells with fusion proteins of wild type and mutated Flag epitope-tagged Dp71 demonstrate that this motif is necessary and sufficient to direct localization of Dp71 to actin stress fibers. Furthermore, this localization is independent of alternative splicing which alters the C-terminus of the protein. The identification of an actin binding site suggests Dp71 may function to anchor membrane receptors to the cytoskeleton.  相似文献   

13.
Summary Dystrophin, the protein product of the Duchenne muscular dystrophy (DMD) gene, is deficient in patients with DMD and in mdx mice. It is immunocytochemically localized in skeletal muscle sarcolemma. However, little is known about the three-dimensional ultrastructural localization of dystrophin and its relationship with other cytoskeletal proteins. We found that dystrophin is localized irregularly, just underneath the plasma membrane in normal cultured mouse myotubes, by using the quick-freezing and deep-etching (QF-DE) method; it was found to be closely linked to actin-like filaments (8–10 nm in diameter), most of which were decorated with myosin subfragment 1, and was attached to the cytoplasmic side of the plasma membrane. These results suggest that dystrophin might play an important role in the preservation of cell membrane stability by connecting actin cytoskeletons with the cytoplasmic side of the plasma membrane.  相似文献   

14.
Membrane halves of boar sperm flagella were produced by freeze-fracture and labeled in situ with concanavalin A and wheat germ agglutinin; the lectins were visualized with protein-gold complexes. Concanavalin A and wheat germ agglutinin binding sites partition with both protoplasmic and exoplasmic halves of the membrane. A high density of lectin marking was found on protoplasmic membrane halves; we conclude that the label corresponds to transmembrane glycoproteins that, on freeze-fracture, are dragged across the outer (exoplasmic) half of the phospholipid bilayer. Our demonstration of numerous transmembrane proteins in sperm flagella offers the structural setting for previous models on flagellar surface motility that postulate accessibility of motile membrane components to the submembranous cytoskeleton.  相似文献   

15.
Sarcolemmal vesicles with right-side-out configuration were prepared from normal fresh human and rabbit skeletal muscle bundles by incubation in 140 mM KCl solution containing collagenase. The vesicles were used to examine the association of dystrophin, the protein product of the Duchenne muscular dystrophy gene, with the sarcolemma. Western blot analysis, indirect immunofluorescence, and immunoperoxidase staining using specific antibodies raised against the N-terminal and the C-terminal domains show that dystrophin remains associated with the membrane of sarcolemmal vesicles. Indirect immunofluorescence microscopy using permeabilized and unpermeabilized vesicles indicated that both the N-terminus and the C-terminus of dystrophin are localized to the cytoplasmic surface of the sarcolemma. These results suggest that dystrophin has much stronger attachment to the surface membrane than it has to the internal domain of skeletal muscle fibers. Sarcolemmal vesicles thus represent a new system for studying the function of dystrophin and the molecular basis of its association with the sarcolemma.  相似文献   

16.
The subcellular localization of dystrophin and vinculin was investigated in cardiac muscle fibers and fibers of the conduction system of the chicken ventricle by immunofluorescence confocal microscopy. In ventricular cardiac muscle fibers, strong staining with antibody against dystrophin appeared as regularly arranged transverse striations at the sarcolemmal surface, and faint but uniform staining was seen in narrow strips between these striations. In fibers of the ventricular conduction system, the sarcolemma was stained uniformly with this antibody, but strong staining was found as regular striations in many areas and as scattered patches in other areas of the sarcolemma. These intensely stained striations and scattered patches of dystrophin were colocalized with those of vinculin. Because dystrophin striations were located at the level of Z bands of the underlying myofibrils, they were regarded as the concentration of this protein at costameres together with vinculin. In fibers of the conduction system, myofibrils were close to the sarcolemma where dystrophin and vinculin assumed a striated pattern, at some distance from the cell membrane where these proteins exhibited a patchy distribution, and distant from the sarcolemma where dystrophin was uniformly distributed. These data suggest that the distribution patterns of dystrophin reflect the degree of association between the sarcolemma and underlying myofibrils.  相似文献   

17.
Duchenne and Becker muscular dystrophies (DMD and BMD) are two allelic recessive X-linked disorders. Molecular deletions of various regions of the dystrophin gene are the main mutations detected in DMD and BMD patients. Molecular study of DMD and BMD DNA are instrumental to understand the pathological molecular mechanisms and the function of the protein. We describe here dystrophin and its interaction with a glycoprotein complex and we then focus on two particular patients with partial deletions of the dystrophin gene: 1) a typical Becker patient, who shows an intragenic deletion disrupting the reading frame. We describe in this case alternative splicings restoring the reading frame, which might explain the mild clinical phenotype of this patient, 2) a deletion of the distal part of the DMD gene coding for the carboxyterminal domain of the dystrophin in a young patient. The normal localization of dystrophin at the inner face of the plasma membrane in the muscle of this patient suggests that the last domain of this protein is not sufficient to anchor dystrophin at the membrane.  相似文献   

18.
We use a highly specific and sensitive antibody to further characterize the distribution of dystrophin in skeletal, cardiac, and smooth muscle. No evidence for localization other than at the cell surface is apparent in skeletal muscle and no 427-kD dystrophin labeling was detected in sciatic nerve. An elevated concentration of dystrophin appears at the myotendinous junction and the neuromuscular junction, labeling in the latter being more intense specifically in the troughs of the synaptic folds. In cardiac muscle the distribution of dystrophin is limited to the surface plasma membrane but is notably absent from the membrane that overlays adherens junctions of the intercalated disks. In smooth muscle, the plasma membrane labeling is considerably less abundant than in cardiac or skeletal muscle and is found in areas of membrane underlain by membranous vesicles. As in cardiac muscle, smooth muscle dystrophin seems to be excluded from membrane above densities that mark adherens junctions. Dystrophin appears as a doublet on Western blots of skeletal and cardiac muscle, and as a single band of lower abundance in smooth muscle that corresponds most closely in molecular weight to the upper band of the striated muscle doublet. The lower band of the doublet in striated muscle appears to lack a portion of the carboxyl terminus and may represent a dystrophin isoform. Isoform differences and the presence of dystrophin on different specialized membrane surfaces imply multiple functional roles for the dystrophin protein.  相似文献   

19.
Costameres are cellular sites of mechanotransduction in heart and skeletal muscle where dystrophin and its membrane-spanning partner dystroglycan distribute intracellular contractile forces into the surrounding extracellular matrix. Resolution of a functional costamere interactome is still limited but likely to be critical for understanding forms of muscular dystrophy and cardiomyopathy. Dystrophin binds a set of membrane-associated proteins (the dystrophin-glycoprotein complex) as well as γ-actin and microtubules and also is required to align sarcolemmal microtubules with costameres. Ankyrin-B binds to dystrophin, dynactin-4, and microtubules and is required for sarcolemmal association of these proteins as well as dystroglycan. We report here that ankyrin-B interactions with β2 spectrin and dynactin-4 are required for localization of dystrophin, dystroglycan, and microtubules at costameres as well as protection of muscle from exercise-induced injury. Knockdown of dynactin-4 in adult mouse skeletal muscle phenocopied depletion of ankyrin-B and resulted in loss of sarcolemmal dystrophin, dystroglycan, and microtubules. Moreover, mutations of ankyrin-B and of dynactin-4 that selectively impaired binary interactions between these proteins resulted in loss of their costamere-localizing activity and increased muscle fiber fragility as a result of loss of costamere-associated dystrophin and dystroglycan. In addition, costamere-association of dynactin-4 did not require dystrophin but did depend on β2 spectrin and ankyrin-B, whereas costamere association of ankyrin-B required β2 spectrin. Together, these results are consistent with a functional hierarchy beginning with β2 spectrin recruitment of ankyrin-B to costameres. Ankyrin-B then interacts with dynactin-4 and dystrophin, whereas dynactin-4 collaborates with dystrophin in coordinating costamere-aligned microtubules.  相似文献   

20.
We have compared in the same cell type the surface distribution and partition in freeze-fractured plasma membranes of Sindbis virus glycoproteins in three different situations: (i) in permanently transformed cells that express the glycoproteins as the only viral product; (ii) in cells in which prebound viruses were forced to fuse with the plasma membrane by low pH treatment; (iii) in virus-infected cells. We report here that the viral proteins expressed on the surface of transfected cells show a uniform and unclustered distribution; conversely, in Sindbis virus-infected cells they appear clustered, regionally distributed, and always associated with budding viruses (i.e., interacting with the nucleocapsid on the cytosolic side of the membrane). Furthermore, the viral proteins expressed on transfected cells or implanted by low pH-mediated fusion partition during freeze-fracture with the exoplasmic faces of the cell plasma membranes, whereas an opposite partition is observed in infected cells. These results strongly suggest that in infected cells the clustering and the partition with the protoplasmic faces of the plasma membrane depend only on the strong "anchorage" of the glycoproteins to the nucleocapsid.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号