首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Mcm2-7 proteins are generally considered to function as a heterohexameric complex, providing helicase activity for the elongation step of DNA replication. These proteins are loaded onto replication origins in M-G1 phase in a process termed licensing or pre-replicative complex formation. It is likely that Mcm2-7 proteins are loaded onto chromatin simultaneously as a pre-formed hexamer although some studies suggest that subcomplexes are recruited sequentially. To analyze this process in fission yeast, we have compared the levels and chromatin binding of Mcm2-7 proteins during the fission yeast cell cycle. Mcm subunits are present at approximately 1 x 10(4) molecules/cell and are bound with approximately equal stoichiometry on chromatin in G1/S phase cells. Using a single cell assay, we have correlated the timing of chromatin association of individual Mcm subunits with progression through mitosis. This showed that Mcm2, 4 and 7 associate with chromatin at about the same stage of anaphase, suggesting that licensing involves the simultaneous binding of these subunits. We also examined Mcm2-7 chromatin association when cells enter a G0-like quiescent state. Chromatin binding is lost in this transition in a process that does not require DNA replication or the selective degradation of specific subunits.  相似文献   

2.
3.
In all eukaryotes, the heterohexameric MCM2-7 complex functions as the main replicative helicase during S phase. During early G1 phase, it is recruited onto chromatin in a sequence of reactions called pre-replication complex (pre-RC) formation or DNA licensing. This process is ATP-dependent and at least two different chromatin-bound ATPase activities are required besides several others essential, but not enzymatically active, proteins. Although functionally conserved during evolution, pre-RC formation and the way the MCM2-7 helicase is loaded onto DNA are more complex in metazoans than in single-cell eukaryotes. Recently, we characterized a new essential factor for pre-RC assembly and DNA licensing, the vertebrate-specific MCM9 protein that contains not only an ATPase but also a helicase domain. MCM9 adds another layer of complexity to how vertebrates achieve and regulate the loading of the MCM2-7 helicase and DNA replication.  相似文献   

4.
In late mitosis and G1, Mcm2-7 are assembled onto replication origins to license them for initiation in the upcoming S phase. After initiation, Mcm2-7 provide helicase activity to unwind DNA at the replication fork. Here we examine the structure of Mcm2-7 on chromatin in Xenopus egg extracts. We show that prior to replication initiation, Mcm2-7 is present at licensed replication origins in a complex with a molecular mass close to double that of the Mcm2-7 hexamer. This complex has approximately stoichiometric quantities of the 6 Mcm2-7 proteins and we conclude that it consists of a double heterohexamer. This provides a configuration potentially capable of initiating a pair of bidirectional replication forks in S phase. We also show that after initiation, Mcm2-7 associate with Cdc45 and GINS to form a relatively stable CMG (Cdc45-MCM-GINS) complex. The CMG proteins also associate less strongly with other replication proteins, consistent with the idea that a single CMG complex forms the core of the replisome.  相似文献   

5.
The precise duplication of the eukaryotic genome is accomplished by carefully coordinating the loading and activation of the replicative DNA helicase so that each replication origin is unwound and assembles functional bi-directional replisomes just once in each cell cycle. The essential Minichromosome Maintenance 2-7 (Mcm2-7) proteins, comprising the core of the replicative DNA helicase, are first loaded at replication origins in an inactive form. The helicase is then activated by recruitment of the Cdc45 and GINS proteins into a holo-helicase known as CMG (Cdc45, Mcm2-7, GINS). These steps are regulated by multiple mechanisms to ensure that Mcm2-7 loading can only occur during G1 phase, whilst activation of Mcm2-7 cannot occur during G1 phase. Here we review recent progress in understanding these critical reactions focusing on the mechanism of helicase loading and activation.  相似文献   

6.
BACKGROUND: In the budding yeast Saccharomyces cerevisiae, the cyclin-dependent kinases of the Clb/Cdc28 family restrict the initiation of DNA replication to once per cell cycle by preventing the re-assembly of pre-replicative complexes (pre-RCs) at replication origins that have already initiated replication. This assembly involves the Cdc6-dependent loading of six minichromosome maintenance (Mcm) proteins, Mcm2-7, onto origins. How Clb/Cdc28 kinases prevent pre-RC assembly is not understood. RESULTS: In living cells, the Mcm proteins were found to colocalize in a cell-cycle-regulated manner. Mcm2-4, 6 and 7 were concentrated in the nucleus in G1 phase, gradually exported to the cytoplasm during S phase, and excluded from the nucleus by G2 and M phase. Tagging any single Mcm protein with the SV40 nuclear localization signal made all Mcm proteins constitutively nuclear. In the absence of functional Cdc6, Clb/Cdc28 kinases were necessary and sufficient for efficient net nuclear export of a fusion protein between Mcm7 and the green fluorescent protein (Mcm7-GFP), whereas inactivation of these kinases at the end of mitosis coincided with the net nuclear import of Mcm7-GFP. In contrast, in the presence of functional Cdc6, which loads Mcm proteins onto chromatin, S-phase progression as well as Clb/Cdc28 kinases was required for Mcm-GFP export. CONCLUSIONS: We propose that Clb/Cdc28 kinases prevent pre-RC reassembly in part by promoting the net nuclear export of Mcm proteins. We further propose that Mcm proteins become refractory to this regulation when they load onto chromatin and must be dislodged by DNA replication before they can be exported. Such an arrangement could ensure that Mcm proteins complete their replication function before they are removed from the nucleus.  相似文献   

7.
Accurate DNA replication requires a complex interplay of many regulatory proteins at replication origins. The CMG (Cdc45·Mcm2-7·GINS) complex, which is composed of Cdc45, Mcm2-7, and the GINS (Go-Ichi-Ni-San) complex consisting of Sld5 and Psf1 to Psf3, is recruited by Cdc6 and Cdt1 onto origins bound by the heterohexameric origin recognition complex (ORC) and functions as a replicative helicase. Trypanosoma brucei, an early branched microbial eukaryote, appears to express an archaea-like ORC consisting of a single Orc1/Cdc6-like protein. However, unlike archaea, trypanosomes possess components of the eukaryote-like CMG complex, but whether they form an active helicase complex, associate with the ORC, and regulate DNA replication remains unknown. Here, we demonstrated that the CMG complex is formed in vivo in trypanosomes and that Mcm2-7 helicase activity is activated by the association with Cdc45 and the GINS complex in vitro. Mcm2-7 and GINS proteins are confined to the nucleus throughout the cell cycle, whereas Cdc45 is exported out of the nucleus after DNA replication, indicating that nuclear exclusion of Cdc45 constitutes one mechanism for preventing DNA re-replication in trypanosomes. With the exception of Mcm4, Mcm6, and Psf1, knockdown of individual CMG genes inhibits DNA replication and cell proliferation. Finally, we identified a novel Orc1-like protein, Orc1b, as an additional component of the ORC and showed that both Orc1b and Orc1/Cdc6 associate with Mcm2-7 via interactions with Mcm3. All together, we identified the Cdc45·Mcm2-7·GINS complex as the replicative helicase that interacts with two Orc1-like proteins in the unusual origin recognition complex in trypanosomes.  相似文献   

8.
Previous experiments in Xenopus egg extracts identified what appeared to be two independently assembled prereplication complexes (pre-RCs) for DNA replication: the stepwise assembly of ORC, Cdc6, and Mcm onto chromatin, and the FFA-1-mediated recruitment of RPA into foci on chromatin. We have investigated whether both of these pre-RCs can be detected in Chinese hamster ovary (CHO) cells. Early- and late-replicating chromosomal domains were pulse-labeled with halogenated nucleotides and prelabeled cells were synchronized at various times during the following G1-phase. The recruitment of Mcm2 and RPA to these domains was examined in relation to the formation of a nuclear envelope, specification of the dihydrofolate reductase (DHFR) replication origin and entry into S-phase. Mcm2 was loaded gradually and cumulatively onto both early- and late-replicating chromatin from late telophase throughout G1-phase. During S-phase, detectable Mcm2 was rapidly excluded from PCNA-containing active replication forks. By contrast, detergent-resistant RPA foci were undetectable until the onset of S-phase, when RPA joined only the earliest-firing replicons. During S-phase, RPA was present with PCNA specifically at active replication forks. Together, our data are consistent with a role for Mcm proteins, but not RPA, in the formation of mammalian pre-RCs during early G1-phase.  相似文献   

9.
Mcm10 (Dna43) is an essential protein for chromosomal DNA replication in Saccharomyces cerevisiae. Recently, we identified a human Mcm10 homolog that interacts with the mammalian Orc2 and Mcm2-7 complex. We additionally demonstrated that human Mcm10 binds nuclease-resistant nuclear structures during S phase and dissociates from them in G(2) phase. In this study, we have further characterized the subcellular localization, modification, and expression levels of human Mcm10 protein throughout the cell cycle. Human Mcm10 protein decreased in late M phase, remained low during G(1) phase, started to accumulate, and bound chromatin at the onset of S phase. Proteasome inhibitors stabilized Mcm10 levels, suggesting that proteolysis is involved in the down-regulation of the protein in late M/G(1) phase. Dissociation of Mcm10 from chromatin in G(2)/M phase was concomitant with alterations in the electrophoretic mobility of the protein. Treatment with lambda phosphatase revealed that mobility shifts were due to hyperphosphorylation. These results indicate that human Mcm10 is regulated by proteolysis and phosphorylation in a cell cycle-dependent manner. It is further suggested that mammalian Mcm10 is involved in S phase progression, and not the formation of a prereplicative complex, as previously proposed from data on the S. cerevisiae protein.  相似文献   

10.
Deregulation of cyclin E expression has been associated with a broad spectrum of human malignancies. Analysis of DNA replication in cells constitutively expressing cyclin E at levels similar to those observed in a subset of tumor-derived cell lines indicates that initiation of replication and possibly fork movement are severely impaired. Such cells show a specific defect in loading of initiator proteins Mcm4, Mcm7, and to a lesser degree, Mcm2 onto chromatin during telophase and early G1 when Mcm2-7 are normally recruited to license origins of replication. Because minichromosome maintenance complex proteins are thought to function as a heterohexamer, loading of Mcm2-, Mcm4-, and Mcm7-depleted complexes is likely to underlie the S phase defects observed in cyclin E-deregulated cells, consistent with a role for minichromosome maintenance complex proteins in initiation of replication and fork movement. Cyclin E-mediated impairment of DNA replication provides a potential mechanism for chromosome instability observed as a consequence of cyclin E deregulation.  相似文献   

11.
Dpb11 is required for the initiation of DNA replication in budding yeast. Dpb11 binds to S-phase cyclin-dependent kinase-phosphorylated Sld2 and Sld3 to form a ternary complex during S phase. The replication fork helicase in eukaryotes is composed of Cdc45, Mcm2-7, and GINS. We show here, using purified proteins from budding yeast, that Dpb11 alone binds to Mcm2-7 and that Dpb11 also competes with GINS for binding to Mcm2-7. Furthermore, Dpb11 binds directly to single-stranded DNA (ssDNA), and ssDNA inhibits the Dpb11 interaction with Mcm2-7. We also found that Dpb11 can recruit Cdc45 to Mcm2-7. We identified a mutant of the BRCT4 motif of Dpb11 that remains bound to Mcm2-7 in the presence of ssDNA (dpb11-m1,m2,m3,m5), and this mutant exhibits a DNA replication defect when expressed in budding yeast cells. Expression of this mutant results in increased interaction between Dpb11 and Mcm2-7 during S phase, impaired GINS interaction with Mcm2-7 during S phase, and decreased replication protein A (RPA) interaction with origin DNA during S phase. We propose a model in which Dpb11 first recruits Cdc45 to Mcm2-7. Dpb11, although bound to Cdc45·Mcm2-7, can block the interaction between GINS and Mcm2-7. Upon extrusion of ssDNA from the central channel of Mcm2-7, Dpb11 dissociates from Mcm2-7, and Dpb11 binds to ssDNA, thereby allowing GINS to bind to Cdc45·Mcm2-7. Finally, we propose that Dpb11 functions with Sld2 and Sld3 to help control the assembly of the replication fork helicase.  相似文献   

12.
To investigate the events leading to initiation of DNA replication in mammalian chromosomes, the time when hamster origin recognition complexes (ORCs) became functional was related to the time when Orc1, Orc2 and Mcm3 proteins became stably bound to hamster chromatin. Functional ORCs, defined as those able to initiate DNA replication, were absent during mitosis and early G(1) phase, and reappeared as cells progressed through G(1) phase. Immunoblotting analysis revealed that hamster Orc1 and Orc2 proteins were present in nuclei at equivalent concentrations throughout the cell cycle, but only Orc2 was stably bound to chromatin. Orc1 and Mcm3 were easily eluted from chromatin during mitosis and early G(1) phase, but became stably bound during mid-G(1) phase, concomitant with the appearance of a functional pre-replication complex at a hamster replication origin. Since hamster Orc proteins are closely related to their human and mouse homologs, the unexpected behavior of hamster Orc1 provides a novel mechanism in mammals for delaying assembly of pre-replication complexes until mitosis is complete and a nuclear structure has formed.  相似文献   

13.
Using a cytological assay to monitor the successive chromatin association of replication proteins leading to replication initiation, we have investigated the function of fission yeast Cdc23/Mcm10 in DNA replication. Inactivation of Cdc23 before replication initiation using tight degron mutations has no effect on Mcm2 chromatin association, and thus pre-replicative complex (pre-RC) formation, although Cdc45 chromatin binding is blocked. Inactivating Cdc23 during an S phase block after Cdc45 has bound causes a small reduction in Cdc45 chromatin binding, and replication does not terminate in the absence of Mcm10 function. These observations show that Cdc23/Mcm10 function is conserved between fission yeast and Xenopus, where in vitro analysis has indicated a similar requirement for Cdc45 binding, but apparently not compared with Saccharomyces cerevisiae, where Mcm10 is needed for Mcm2 chromatin binding. However, unlike the situation in Xenopus, where Mcm10 chromatin binding is dependent on Mcm2-7, we show that the fission yeast protein is bound to chromatin throughout the cell cycle in growing cells, and only displaced from chromatin during quiescence. On return to growth, Cdc23 chromatin binding is rapidly reestablished independently from pre-RC formation, suggesting that chromatin association of Cdc23 provides a link between proliferation and competence to execute DNA replication.  相似文献   

14.
Feng L  Hu Y  Wang B  Wu L  Jong A 《DNA and cell biology》2000,19(7):447-457
Saccharomyces cerevisiae Cdc6 plays an essential role in establishing and maintaining the prereplicative complex (pre-RC) by interacting with the origin recognition complex (ORC) and associating with chromatin origins. These interactions are required to load minichromosome maintenance proteins (MCMs) and other initiator proteins onto replication origins. Although the temperature-sensitive cdc6 mutant, cdc6-1, has been widely used for these studies, the molecular mechanism of the cdc6-1 mutation has been unclear. In this study, we have identified a base substitution at Gly260-->Asp, near the CDC-NTP motif. Using a chromatin immunoprecipitation assay (CHIP), we found that cdc6-1 fails to load Mcm5 onto the replication origins. Chromatin fractions were used to study Mcm5 binding in both the wildtype and mutant background. These studies indicated that Cdc6 is also involved in unloading Mcm5 from chromatin. Specifically, the cdc6-1 mutation protein, cdc6(G260D), which failed to load Mcm5 onto replication origins, also failed to unload the Mcm5 protein. Furthermore, the overexpression of wildtype CDC6 accelerated the unloading of Mcm5 from chromatin fractions. In the absence of functional Cdc6, the Mcm5 protein showed nonorigin binding to chromatin with the cell cycle arrested at the G1S phase transition. Our results suggested that the cdc6(G260D) mutant protein fails to assemble an operational replicative complex and that wildtype Cdc6 plays a role in preventing re-replication by controlling the unloading the MCMs from chromatin origins.  相似文献   

15.
The minichromosome maintenance protein 10 (Mcm10) is an evolutionarily conserved factor that is essential for replication initiation and elongation. Mcm10 is part of the eukaryotic replication fork and interacts with a variety of proteins, including the Mcm2-7 helicase and DNA polymerase alpha/primase complexes. A motif search revealed a match to the proliferating cell nuclear antigen (PCNA)-interacting protein (PIP) box in Mcm10. Here, we demonstrate a direct interaction between Mcm10 and PCNA that is alleviated by mutations in conserved residues of the PIP box. Interestingly, only the diubiquitinated form of Mcm10 binds to PCNA. Diubiquitination of Mcm10 is cell cycle regulated; it first appears in late G(1) and persists throughout S phase. During this time, diubiquitinated Mcm10 is associated with chromatin, suggesting a direct role in DNA replication. Surprisingly, a Y245A substitution in the PIP box of Mcm10 that inhibits the interaction with PCNA abolishes cell proliferation. This severe-growth phenotype, which has not been observed for analogous mutations in other PCNA-interacting proteins, is rescued by a compensatory mutation in PCNA that restores interaction with Mcm10-Y245A. Taken together, our results suggest that diubiquitinated Mcm10 interacts with PCNA to facilitate an essential step in DNA elongation.  相似文献   

16.
In late mitosis and early G1, replication origins are licensed for subsequent use by loading complexes of the minichromosome maintenance proteins 2-7 (Mcm2-7). The number of Mcm2-7 complexes loaded onto DNA greatly exceeds the number of replication origins used during S phase, but the function of the excess Mcm2-7 is unknown. Using Xenopus laevis egg extracts, we show that these excess Mcm2-7 complexes license additional dormant origins that do not fire during unperturbed S phases because of suppression by a caffeine-sensitive checkpoint pathway. Use of these additional origins can allow complete genome replication in the presence of replication inhibitors. These results suggest that metazoan replication origins are actually comprised of several candidate origins, most of which normally remain dormant unless cells experience replicative stress. Consistent with this model, using Caenorhabditis elegans, we show that partial RNAi-based knockdown of MCMs that has no observable effect under normal conditions causes lethality upon treatment with low, otherwise nontoxic, levels of the replication inhibitor hydroxyurea.  相似文献   

17.
The initiation of eukaryotic DNA replication is a highly regulated process conserved from yeast to human. The past decade has seen significant advances in understanding how the CMG (Cdc45‐MCM‐GINS) replicative helicase is loaded onto DNA. However, very little was known on how this complex is removed from chromatin at the end of S phase. Two papers in a recent issue of Science 1 2 show that in yeast and in Xenopus, the CMG complex is unloaded at replication termination sites by an active mechanism involving the polyubiquitylation of Mcm7.  相似文献   

18.
Mcm10 (Dna43) is an essential protein for the initiation of DNA replication in Saccharomyces cerevisiae. Recently, we identified a human Mcm10 homolog and found that it is regulated by proteolysis and phosphorylation in a cell cycle-dependent manner and that it binds chromatin exclusively during the S phase of the cell cycle. However, the precise roles that Mcm10 plays are still unknown. To study the localization dynamics of human Mcm10, we established HeLa cell lines expressing green fluorescent protein (GFP)-tagged Mcm10. From early to mid-S phase, GFP-Mcm10 appeared in discrete nuclear foci. In early S phase, several hundred foci appeared throughout the nucleus. In mid-S phase, the foci appeared at the nuclear periphery and nucleolar regions. In the late S and G phases, GFP-Mcm10 was localized to nucleoli. Although (2)the distributions of GFP-Mcm10 during the S phase resembled those of replication foci, GFP-Mcm10 foci did not colocalize with sites of DNA synthesis in most cases. Furthermore, the transition of GFP-Mcm10 distribution patterns preceded changes in replication foci patterns or proliferating cell nuclear antigen foci patterns by 30-60 min. These results suggest that human Mcm10 is temporarily recruited to the replication sites 30-60 min before they replicate and that it dissociates from chromatin after the activation of the prereplication complex.  相似文献   

19.
We have previously shown that replication of fission yeast chromosomes is initiated in distinct regions. Analyses of autonomous replicating sequences have suggested that regions required for replication are very different from those in budding yeast. Here, we present evidence that fission yeast replication origins are specifically associated with proteins that participate in initiation of replication. Most Orp1p, a putative subunit of the fission yeast origin recognition complex (ORC), was found to be associated with chromatin-enriched insoluble components throughout the cell cycle. In contrast, the minichromosome maintenance (Mcm) proteins, SpMcm2p and SpMcm6p, encoded by the nda1(+)/cdc19(+) and mis5(+) genes, respectively, were associated with chromatin DNA only during the G(1) and S phases. Immunostaining of spread nuclei showed SpMcm6p to be localized at discrete foci on chromatin during the G(1) and S phases. A chromatin immunoprecipitation assay demonstrated that Orp1p was preferentially localized at the ars2004 and ars3002 origins of the chromosome throughout the cell cycle, while SpMcm6p was associated with these origins only in the G(1) and S phases. Both Orp1p and SpMcm6p were associated with a 1-kb region that contains elements required for autonomous replication of ars2004. The results suggest that the fission yeast ORC specifically interacts with chromosomal replication origins and that Mcm proteins are loaded onto the origins to play a role in initiation of replication.  相似文献   

20.
In Saccharomyces cerevisiae, replication origins are activated with characteristic timing during S phase. S-phase cyclin-dependent kinases (S-CDKs) and Cdc7p-Dbf4p kinase are required for origin activation throughout S phase. The activation of S-CDKs leads to association of Cdc45p with chromatin, raising the possibility that Cdc45p defines the assembly of a new complex at each origin. Here we show that both Cdc45p and replication protein A (RPA) bind to Mcm2p at the G(1)-S transition in an S-CDK-dependent manner. During S phase, Cdc45p associates with different replication origins at specific times. The origin associations of Cdc45p and RPA are mutually dependent, and both S-CDKs and Cdc7p-Dbf4p are required for efficient binding of Cdc45p to origins. These findings suggest that S-CDKs and Cdc7p-Dbf4p promote loading of Cdc45p and RPA onto a preformed prereplication complex at each origin with preprogrammed timing. The ARS1 association of Mcm2p, but not that of the origin recognition complex, is diminished by disruption of the B2 element of ARS1, a potential origin DNA-unwinding element. Cdc45p is required for recruiting DNA polymerase alpha onto chromatin, and it associates with Mcm2p, RPA, and DNA polymerase epsilon only during S phase. These results suggest that the complex containing Cdc45p, RPA, and MCMs is involved in origin unwinding and assembly of replication forks at each origin.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号