首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Dietary methionine restriction (MR) extends lifespan, an effect associated with reduction of body weight gain, and improvement of insulin sensitivity in mice and rats as a result of metabolic adaptations in liver, adipose tissue and skeletal muscle. To test whether MR confers resistance to adiposity and insulin resistance, C57BL/6J mice were fed a high fat diet (HFD) containing either 0.86% methionine (control fed; CF) or 0.12% methionine (methionine-restricted; MR). MR mice on HFD had lower body weight gain despite increased food intake and absorption efficiency compared to their CF counterparts. MR mice on HFD were more glucose tolerant and insulin sensitive with reduced accumulation of hepatic triglycerides. In plasma, MR mice on HFD had higher levels of adiponectin and FGF21 while leptin and IGF-1 levels were reduced. Hepatic gene expression showed the downregulation of Scd1 while Pparg, Atgl, Cd36, Jak2 and Fgf21 were upregulated in MR mice on HFD. Restriction of growth rate in MR mice on HFD was also associated with lower bone mass and increased plasma levels of the collagen degradation marker C-terminal telopeptide of type 1 collagen (CTX-1). It is concluded that MR mice on HFD are metabolically healthy compared to CF mice on HFD but have decreased bone mass. These effects could be associated with the observed increase in FGF21 levels.  相似文献   

2.
Obesity and adiposity greatly increase the risk for secondary conditions such as insulin resistance. Mice deficient in the enzyme stearoyl-CoA desaturase-1 (SCD1) are lean and protected from diet-induced obesity and insulin resistance. In order to determine the effect of SCD1 deficiency on various mouse models of obesity, we introduced a global deletion of the Scd1 gene into leptin-deficient ob/ob mice, leptin-resistant Agouti (Ay/a) mice, and high-fat diet-fed obese (DIO) mice. SCD1 deficiency lowered body weight, adiposity, hepatic lipid accumulation, and hepatic lipogenic gene expression in all three mouse models. However, glucose tolerance, insulin, and leptin sensitivity were improved by SCD1 deficiency only in Ay/a and DIO mice, but not ob/ob mice. These data uncouple the effects of SCD1 deficiency on weight loss from those on insulin sensitivity and suggest a beneficial effect of SCD1 inhibition on insulin sensitivity in obese mice that express a functional leptin gene.  相似文献   

3.
Reduced dietary methionine intake (0.17% methionine, MR) and calorie restriction (CR) prolong lifespan in male Fischer 344 rats. Although the mechanisms are unclear, both regimens feature lower body weight and reductions in adiposity. Reduced fat deposition in CR is linked to preservation of insulin responsiveness in older animals. These studies examine the relationship between insulin responsiveness and visceral fat in MR and test whether, despite lower food intake observed in MR animals, decreased visceral fat accretion and preservation of insulin sensitivity is not secondary to CR. Accordingly, rats pair fed (pf) control diet (0.86% methinone, CF) to match the food intake of MR for 80 weeks exhibit insulin, glucose, and leptin levels similar to control-fed animals and comparable amounts of visceral fat. Conversely, MR rats show significantly reduced visceral fat compared to CF and PF with concomitant decreases in basal insulin, glucose, and leptin, and increased adiponectin and triiodothyronine. Daily energy expenditure in MR animals significantly exceeds that of both PF and CF. In a separate cohort, insulin responses of older MR animals as measured by oral glucose challenge are similar to young animals. Longitudinal assessments of MR and CF through 112 weeks of age reveal that MR prevents age-associated increases in serum lipids. By 16 weeks, MR animals show a 40% reduction in insulin-like growth factor-1 (IGF-1) that is sustained throughout life; CF IGF-1 levels decline much later, beginning at 112 weeks. Collectively, the results indicate that MR reduces visceral fat and preserves insulin activity in aging rats independent of energy restriction.  相似文献   

4.
5.
Stearoyl-CoA desaturase 1 (SCD1) is a delta-9 fatty acid desaturase that catalyzes the synthesis of mono-unsaturated fatty acids (MUFA). SCD1 is a critical control point regulating hepatic lipid synthesis and β-oxidation. Scd1 KO mice are resistant to the development of diet-induced non-alcoholic fatty liver disease (NAFLD). Using a chronic-binge protocol of ethanol-mediated liver injury, we aimed to determine if these KO mice are also resistant to the development of alcoholic fatty liver disease (AFLD).Mice fed a low-fat diet (especially low in MUFA) containing 5% ethanol for 10 days, followed by a single ethanol (5 g/kg) gavage, developed severe liver injury manifesting as hepatic steatosis. This was associated with an increase in de novo lipogenesis and inflammation. Using this model, we show that Scd1 KO mice are resistant to the development of AFLD. Scd1 KO mice do not show accumulation of hepatic triglycerides, activation of de novo lipogenesis nor elevation of cytokines or other pro-inflammatory markers. Incubating HepG2 cells with a SCD1 inhibitor induced a similar resistance to the effect of ethanol, confirming a role for SCD1 activity in mediating ethanol-induced hepatic injury.Taken together, our study shows that SCD1 is a key player in the development of AFLD and associated deleterious effects, and suggests SCD1 inhibition as a therapeutic option for the treatment of this hepatic disease.  相似文献   

6.
Freshly isolated rat hepatocytes contained a high level (30–40 nmol/106 cells) of reduced glutathione (GSH) which decreased steadily upon incubation in an amino acid containing medium lacking cysteine and methionine. This decrease in GSH level was prevented, and turned into a slight increase, when either cysteine, N-acetylcysteine, or methionine was also present in the medium. The amino acid uptake into hepatocytes was more rapid with cysteine than with methionine. Cystine was not taken up, or taken up very slowly, by the cells and could not be used to prevent the decrease in GSH level which occurred in the absence of cysteine and methionine. The level of GSH in hepatocytes freshly isolated from rats pretreated with diethylmaleate was markedly decreased (to ~5 nmol/106 cells) but increased rapidly upon incubation of the cells in a medium containing amino acids including either cysteine, N-acetylcysteine, or methionine. Again, cysteine was taken up into the cells more rapidly than methionine. The rate of uptake of cysteine was moderately enhanced in hepatocytes with a lowered level of intracellular GSH as compared to cells with normal GSH concentration. Exclusion of glutamate and/or glycine from the medium did not markedly affect the rate of resynthesis of GSH by hepatocytes incubated in the presence of exogenously added cysteine or methionine. Incubation of hepatocytes with bromobenzene in an amino acid-containing medium lacking cysteine and methionine resulted in accelerated cell damage. Addition of either cysteine, N-acetylcysteine, or methionine to the medium caused a decrease in bromobenzene toxicity. The protective effect was dependent, however, on the time of addition of the amino acid to the incubate; e.g., the effect on bromobenzene toxicity was greatly reduced when either cysteine or methionine was added after 1 h of preincubation of the hepatocytes with bromobenzene as compared to addition at zero time. This decrease in protective effect in bromobenzene-exposed cells was related to a similar decrease in the rate of uptake of cysteine and methionine into hepatocytes preincubated with bromobenzene. The rate of uptake, and incorporation into cellular protein, of leucine was also markedly inhibited in hepatocytes preincubated with bromobenzene. In contrast, there was no measurable change in the rate of release of leucine from cellular protein as a result of incubation of hepatocytes with bromobenzene. It is concluded that the presence of cysteine, N-acetylcysteine, or methionine in the medium protects hepatocytes from bromobenzene toxicity by providing intracellular cysteine for GSH biosynthesis and suggested that an inhibitory effect on amino acid uptake may contribute to the cytotoxicity of bromobenzene in hepatocytes.  相似文献   

7.
Obesity is currently a worldwide epidemic and public health burden that increases the risk for developing insulin resistance and several chronic diseases such as diabetes, cardiovascular diseases and non-alcoholic fatty liver disease. The multifactorial causes of obesity include several genetic, dietary and lifestyle variables that together result in an imbalance between energy intake and energy expenditure. Dietary approaches to limit fat intake are commonly prescribed to achieve the hypocaloric conditions necessary for weight loss. But dietary fat restriction is often accompanied by increased carbohydrate intake, which can dramatically increase endogenous fatty acid synthesis depending upon carbohydrate composition. Since both dietary and endogenously synthesized fatty acids contribute to the whole-body fatty acid pool, obesity can therefore result from excessive fat or carbohydrate consumption. Stearoyl-Coenzyme A desaturase-1 (SCD1) is a delta-9 fatty acid desaturase that converts saturated fatty acids into monounsaturated fatty acids (MUFA) and this activity is elevated by dietary carbohydrate. Mice lacking Scd1 are protected from obesity and insulin resistance and are characterized by decreased fatty acid synthesis and increased fatty acid oxidation. In this review, we address the association of high-carbohydrate diets with increased SCD activity and summarize the current literature on the subject of SCD1 and body weight regulation.  相似文献   

8.
We have previously shown that combined amylin + leptin agonism elicits synergistic weight loss in diet‐induced obese (DIO) rats. Here, we assessed the comparative efficacy of amylin, leptin, or amylin + leptin in the maintenance of amylin + leptin–mediated weight loss. DIO rats pretreated with the combination of rat amylin (50 µg/kg/day) and murine leptin (125 µg/kg/day) for 4 weeks were subsequently infused with either vehicle, amylin, leptin, or amylin + leptin for an additional 4 weeks. Food intake, body weight, body composition, plasma parameters, and the expression of key metabolic genes in liver and white adipose tissue (WAT) were assessed. Amylin + leptin treatment (weeks 0–4) reduced body weight to 87.5% of baseline. Rats subsequently maintained on vehicle or leptin regained all weight (to 104.2 and 101.2% of baseline, respectively), those maintained on amylin had partial weight regain (97.0%). By contrast, weight loss was largely maintained with continued amylin + leptin treatment (91.4%), associated with a 10% decrease in adiposity. Cumulative food intake (weeks 5–8) was reduced by amylin and amylin + leptin, but not by leptin alone. Amylin + leptin, but not amylin or leptin alone, reduced plasma triglycerides (by 55%), total cholesterol (by 19%), and insulin (by 57%) compared to vehicle. Amylin + leptin also reduced hepatic stearoyl‐CoA desaturase‐1 (Scd1) mRNA, and increased WAT mRNA levels of adiponectin, fatty acid synthase (Fasn), and lipoprotein lipase (Lpl). We conclude that, in DIO rats, maintenance of amylin + leptin–mediated weight loss requires continued treatment with both agonists, and is accompanied by sustained improvements in body composition, and indices of lipid metabolism and insulin sensitivity.  相似文献   

9.
10.
Stearoyl-CoA desaturase (SCD) is the rate-limiting enzyme in the biosynthesis of monounsaturated fatty acids. Thus far, three isoforms of SCD (SCD1, SCD2, and SCD3) have been identified and characterized. Regulation of the SCD1 isoform has been shown to be an important component of the metabolic actions of leptin in liver, but the effects of leptin on SCD isoforms in other tissues have not been investigated. We found that although the mRNA levels of SCD1 and SCD2 were not affected by leptin deficiency in the hearts of ob/ob mice, the SCD activity and levels of monounsaturated fatty acids were increased, implying the existence of another SCD isoform. This observation has led to the cDNA cloning and characterization of a fourth SCD isoform (SCD4) that is expressed exclusively in the heart. SCD4 encodes a 352-amino acid protein that shares 79% sequence identity with the SCD1, SCD2, and SCD3 isoforms. Liver X receptor alpha (LXR alpha) agonists and a high carbohydrate fat-free diet induced SCD4 expression, but unlike SCD1, SCD4 expression was not repressed by dietary polyunsaturated fatty acids. SCD4 mRNA levels were elevated 5-fold in the hearts of leptin-deficient ob/ob mice relative to wild type controls. Treatment of ob/ob mice with leptin decreased mRNA levels of SCD4, whereas levels of SCD1 and SCD2 were not affected. Furthermore, in the hearts of SCD1-deficient mice, SCD4 mRNA levels were induced 3-fold, whereas the levels of SCD2 were not altered. The current studies identify a novel heart-specific SCD isoform that demonstrates tissue-specific regulation by leptin and dietary factors.  相似文献   

11.
Oxidation of methionine leads to the formation of the S and R diastereomers of methionine sulfoxide (MetO), which can be reversed by the actions of two structurally unrelated classes of methionine sulfoxide reductase (Msr), MsrA and MsrB, respectively. Although MsrAs have long been demonstrated in numerous bacteria, their physiological and biochemical functions remain largely unknown in Actinomycetes. Here, we report that a Corynebacterium glutamicum methionine sulfoxide reductase A (CgMsrA) that belongs to the 3-Cys family of MsrAs plays important roles in oxidative stress resistance. Deletion of the msrA gene in C. glutamicum resulted in decrease of cell viability, increase of ROS production, and increase of protein carbonylation levels under various stress conditions. The physiological roles of CgMsrA in resistance to oxidative stresses were corroborated by its induced expression under various stresses, regulated directly by the stress-responsive extracytoplasmic-function (ECF) sigma factor SigH. Activity assays performed with various regeneration pathways showed that CgMsrA can reduce MetO via both the thioredoxin/thioredoxin reductase (Trx/TrxR) and mycoredoxin 1/mycothione reductase/mycothiol (Mrx1/Mtr/MSH) pathways. Site-directed mutagenesis confirmed that Cys56 is the peroxidatic cysteine that is oxidized to sulfenic acid, while Cys204 and Cys213 are the resolving Cys residues that form an intramolecular disulfide bond. Mrx1 reduces the sulfenic acid intermediate via the formation of an S-mycothiolated MsrA intermediate (MsrA-SSM) which is then recycled by mycoredoxin and the second molecule of mycothiol, similarly to the glutathione/glutaredoxin/glutathione reductase (GSH/Grx/GR) system. However, Trx reduces the Cys204-Cys213 disulfide bond in CgMsrA produced during MetO reduction via the formation of a transient intermolecular disulfide bond between Trx and CgMsrA. While both the Trx/TrxR and Mrx1/Mtr/MSH pathways are operative in reducing CgMsrA under stress conditions in vivo, the Trx/TrxR pathway alone is sufficient to reduce CgMsrA under normal conditions. Based on these results, a catalytic model for the reduction of CgMsrA by Mrx1 and Trx is proposed.  相似文献   

12.
13.
The present study investigated whether dietary turmeric (Curcuma longa L.) can improve rabbit reproduction, ovarian function, growth, or viability. Female New Zealand White rabbits were either fed a standard diet (n=15) or a diet enriched with 5 g (group E1) or 20 g (group E2) turmeric powder per 100 kg feed mixture (n=16 or 15, respectively). After 295 days, weight gain, conception and kindling rates, pup and mother viability, ovarian macro- and micro-morphometric indices, release of leptin in response to the addition LH, and the release of progesterone, testosterone and leptin by isolated ovarian fragments were analyzed. Dietary turmeric failed to affect ovarian length and weight but did increase the number of primary follicles (E2: 32.5% greater than control group), as well as the diameter of primary (E1: +19.4%, E2: +21.1%), secondary (E2: +41.4%), and tertiary (E1: +97.1%, E2: +205.1%) follicles. Turmeric also increased the number of liveborn (E1: +21.0%) and weaned (E1: +25.0%) pups and decreased the number of stillborn pups (E2: −87.5%) but did not affect weight gain, conception, or kindling rate. Furthermore, dietary turmeric decreased doe mortality during the first reproductive cycle (13.3% in control; 0% in E1; and 6.7% in E2) but not during the second cycle. In vitro, the ovaries of the turmeric-treated rabbits released more progesterone (E1: +85.7%, E2: +90.0%) and less testosterone (E2: −87.0%) and leptin (E2: −29.0%) than the ovaries of control rabbits. Moreover, LH decreased the leptin output of control rabbits but increased that of experimental rabbits. Therefore, it is likely that dietary turmeric improves pup viability and that it could promote rabbit fecundity by either (1) promoting the production of primary ovarian follicles or (2) stimulating the growth of follicles at all stages of folliculogenesis.  相似文献   

14.
Stearoyl-CoA desaturase (SCD) is the rate-limiting enzyme in monounsaturated fatty acid synthesis. Previously, we showed that Scd1 deficiency reduces liver triglyceride accumulation and considerably decreases synthesis of very low density lipoprotein and its secretion in both lean and obese mice. In the present study, we found that Scd1 deficiency significantly modulates hepatic glycerophospholipid profile. The content of phosphatidylcholine (PC) was increased by 40% and the activities of CTP:choline cytidylyltransferase (CCT), the rate-limiting enzyme in de novo PC synthesis, and choline phosphotransferase were increased by 64 and 53%, respectively, in liver of Scd1-/- mice. In contrast, the protein level of phosphatidylethanolamine N-methyltransferase, an enzyme involved in PC synthesis via methylation of phosphatidylethanolamine, was decreased by 80% in the liver of Scd1-/- mice. Membrane translocation of CCT is required for its activation. Immunoblot analyses demonstrated that twice as much CCTalpha was associated with plasma membrane in livers of Scd1-/- compared with wild type mice, suggesting that Scd1 mutation leads to an increase in CCT membrane affinity. The incorporation of [(3)H]glycerol into PC was increased by 2.5-fold in Scd1-/- primary hepatocytes compared with those of wild type mice. Furthermore, mitochondrial glycerol-3-phosphate acyltransferase activity was reduced by 42% in liver of Scd1-/- mice; however, the activities of microsomal glycerol-3-phosphate acyltransferase, diacylglycerol acyltransferase, and ethanolamine phosphotransferase were not affected by Scd1 mutation. Our study revealed that SCD1 deficiency specifically increases CCT activity by promoting its translocation into membrane and enhances PC biosynthesis in liver.  相似文献   

15.
Stearoyl-CoA desaturase 1 (SCD1) deficiency protects mice from diet-induced obesity and insulin resistance. To understand the tissue-specific role of SCD1 in energy homeostasis, we have generated mice with an adipose-specific knockout of Scd1 (AKO), and report here that SCD1 deficiency increases GLUT1 expression in adipose tissue of AKO mice, but not global SCD1 knockout (GKO) mice. In 3T3-L1 adipocytes treated with an SCD inhibitor, basal glucose uptake and the cellular expression of GLUT1 were significantly increased while GLUT4 expression remained unchanged. Consistently, adipose-specific SCD1 knockout (AKO) mice had significantly elevated GLUT1 expression, but not GLUT4, in white adipose tissue compared to Lox counterparts. Concurrently, adiponectin expression was significantly diminished, whereas TNF-α expression was elevated. In contrast, in adipose tissue of GKO mice, GLUT4 and adiponectin expression were significantly elevated with lowered TNF-α expression and little change in GLUT1 expression, suggesting a differential responsiveness of adipose tissue to global- or adipose-specific SCD1 deletion. Taken together, these results indicate that adipose-specific deletion of SCD1 induces GLUT1 up-regulation in adipose tissue, associated with decreased adiponectin and increased TNF-α production, and suggest that GLUT1 may play a critical role in controlling glucose homeostasis of adipose tissue in adipose-specific SCD1-deficient conditions.  相似文献   

16.
The effect of twelve amino acids and lactalbumin hydrolysate in concentration of 200 mg 1?1 on rooting of the dwarf apple rootstocks P 2 and P 60 was testedin vitro. Arginine, omithine, glutamic acid and glycine enhanced root number of the P 60 rootstock; proline and lactalbumin hydrolysate were neutral; and asparagine, tyrosine, methionine, cysteine and glutamine lowered the root number. Tyrosine, methionine, cysteine and glutamine reduced almost completely rooting of P 60. In the recalcitrant P 2 rootstock aspartic acid, glutamic acid and omithine significantly enhanced the number of roots and rooted shoots, arginine and tryptophan increased the root number only slightly, asparagine was neutral, and proline reduced the root number.  相似文献   

17.
《Insect Biochemistry》1988,18(6):599-605
When two clones of Myzus persicae were maintained on a defined diet with inorganic sulphate as sole sulphur source, their growth and survival were inferior to that on diets containing the sulphur amino acid, methionine. This discrepancy is due, at least in part, to the phagostimulatory properties of methionine, which stimulated aphid feeding rate by 50–150%. Myzus persicae incorporated radioactivity from dietary [35S]sulphate into protein and low molecular weight compounds, including cysteine and methionine. Two lines of evidence indicate that the mycetocyte-symbionts are responsible for the reductive assimilation of sulphate. (1) [35S]sulphate incorporation is abolished by treatment of the aphids with the antibiotic chlortetracycline, which disrupts the symbionts; and (2) [35S]sulphate is utilized by isolated embryos (which contain mycetocyte-symbionts but no gut flora) but not by isolated guts. Tracer studies suggest that 20% of dietary radiosulphur is translocated to the aphid tissues, and it is hypothesized that methionine may be the principal product released by the symbionts.  相似文献   

18.
Decreasing the dietary intake of methionine exerts robust anti‐adiposity effects in rodents but modest effects in humans. Since cysteine can be synthesized from methionine, animal diets are formulated by decreasing methionine and eliminating cysteine. Such diets exert both methionine restriction (MR) and cysteine restriction (CR), that is, sulfur amino acid restriction (SAAR). Contrarily, SAAR diets formulated for human consumption included cysteine, and thus might have exerted only MR. Epidemiological studies positively correlate body adiposity with plasma cysteine but not methionine, suggesting that CR, but not MR, is responsible for the anti‐adiposity effects of SAAR. Whether this is true, and, if so, the underlying mechanisms are unknown. Using methionine‐ and cysteine‐titrated diets, we demonstrate that the anti‐adiposity effects of SAAR are due to CR. Data indicate that CR increases serinogenesis (serine biosynthesis from non‐glucose substrates) by diverting substrates from glyceroneogenesis, which is essential for fatty acid reesterification and triglyceride synthesis. Molecular data suggest that CR depletes hepatic glutathione and induces Nrf2 and its downstream targets Phgdh (the serine biosynthetic enzyme) and Pepck‐M. In mice, the magnitude of SAAR‐induced changes in molecular markers depended on dietary fat concentration (60% fat >10% fat), sex (males > females), and age‐at‐onset (young > adult). Our findings are translationally relevant as we found negative and positive correlations of plasma serine and cysteine, respectively, with triglycerides and metabolic syndrome criteria in a cross‐sectional epidemiological study. Controlled feeding of low‐SAA, high‐polyunsaturated fatty acid diets increased plasma serine in humans. Serinogenesis might be a target for treating hypertriglyceridemia.  相似文献   

19.
Stearoyl-CoA desaturase-1 (Scd1) is a rate-limiting enzyme in the biosynthesis of monounsaturated fatty acids. Overexpression of Scd1 in transgenic animals would modify the nutritional value of ruminant-derived foods by increasing the monounsaturated fatty acid (MUFA) and decreasing the saturated fatty acid (SFA) content. The aim of this study was to develop an effective Scd1 vector that is specifically expressed in dairy goat mammary glands. We successfully amplified the goat full length Scd1 cDNA and evaluated its activity in goat ear skin-derived fibroblast cells (GEFCs) by lipid analysis. In addition, we constructed a mammary gland-specific expression vector and confirmed efficient expression of Scd1 in goat mammary epithelial cells (GMECs) by qRT-PCR and Western blot analysis. Fatty acid analysis showed that Scd1-overexpression resulted in an increase in levels of palmitoleic acid (16:1n-7) and oleic acid (18:1n-9), from 1.73 ± 0.02% to 2.54 ± 0.02% and from 27.25 ± 0.13% to 30.37 ± 0.04%, respectively (both p < 0.01) and the ratio of MUFA to SFA was increased. This work lays a foundation for the generation of Scd1 transgenic goats.  相似文献   

20.
It has been known that liver regeneration is accompanied with a profound change in the metabolomics of sulfur-containing substances in liver. However, its physiological significance in the liver regenerative process is still unclear. Our previous work showed that buthioninesulfoximine and phorone, both widely used to deplete intracellular glutathione (GSH) in biological experiments, induced contrasting changes in the sulfur-containing amino acid metabolism in liver. In this study we employed these GSH-depleting agents to evaluate the role of sulfur-containing substances in the early phase of liver regeneration. Male rats treated with buthioninesulfoximine or phorone were subjected to two-thirds partial hepatectomy (PHx). At the doses used, the magnitude of GSH depletion after PHx was comparable, but buthioninesulfoximine administration inhibited the progression of liver regeneration as determined by liver weight increase, elevation of serum alanine aminotransferase activity, and cyclin D1 and proliferating cell nuclear antigen (PCNA) protein expressions, whereas liver recovery was significantly accelerated in the phorone-treated rats, suggesting that the role of GSH in this process is minimal. Hepatic concentrations of methionine, S-adenosylmethionine, cysteine, taurine and GSH were all elevated by PHx. Methionine adenosyltransferase activity was also induced in the remnant liver. Buthioninesulfoximine administration depressed the elevation of S-adenosylmethionine, but increased the catabolism of cysteine to taurine. In contrast, S-adenosylmethionine elevation was augmented whereas cysteine, hypotaurine and taurine were decreased in the phorone-treated rats. PHx elevated hepatic putrescine and spermidine, but lowered spermine concentrations. Buthioninesulfoximine administration increased putrescine further, but decreased spermidine and spermine concentrations. On the contrary, both spermidine and spermine concentrations were elevated in the rats treated with phorone. The results suggest that the availability of S-adenosylmethionine plays a critical role in the progression of liver regeneration via enhancement of polyamine synthesis. These findings raise the possibility that regulating hepatic transsulfuration reactions may be capable of modifying the recovery process after liver injury.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号