首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The giant sea anemone Condylactis gigantea associates with members of two clades of the dinoflagellate alga Symbiodinium, either singly or in mixed infection, as revealed by clade-specific quantitative polymerase chain reaction of large subunit ribosomal DNA. To explore the functional significance of this molecular variation, the fate of photosynthetically fixed carbon was investigated by (14)C radiotracer experiments. Symbioses with algae of clades A and B released ca. 30-40% of fixed carbon to the animal tissues. Incorporation into the lipid fraction and the low molecular weight fraction dominated by amino acids was significantly higher in symbioses with algae of clade A than of clade B, suggesting that the genetically different algae in C. gigantea are not functionally equivalent. Symbioses with mixed infections yielded intermediate values, such that this functional trait of the symbiosis can be predicted from the traits of the contributing algae. Coral and sea anemone symbioses with Symbiodinium break down at elevated temperature, a process known as 'coral bleaching'. The functional response of the C. gigantea symbiosis to heat stress varied between the algae of clades A and B, with particularly depressed incorporation of photosynthetic carbon into lipid of the clade B algae, which are more susceptible to high temperature than the algae of clade A. This study provides a first exploration of how the core symbiotic function of photosynthate transfer to the host varies with the genotype of Symbiodinium, an algal symbiont which underpins corals and, hence, coral reef ecosystems.  相似文献   

2.
The dinoflagellate microalga Symbiodinium is the dominant algal symbiont in corals and related marine animals. To explore the incidence of mixed infections, methods employing real-time quantitative polymerase chain reaction (QPCR) and fluorescence in situ hybridization (FISH) were developed. In experiments focusing on Symbiodinium clades A and B, QPCR and FISH results were well correlated and generally more precise and sensitive than those from the endpoint PCR-restriction fragment length polymorphism analysis (PCR-RFLP) traditionally used for this application, thus increasing the detected incidence of mixed infections. For example, the prevalence of mixed infections in the sea anemone Condylactis gigantea was 40% by PCR-RFLP and 80%-90% by QPCR and FISH. However, the use of QPCR and FISH was limited by inter-host variation in the rRNA gene copy number per Symbiodinium cell, precluding any single conversion factor between QPCR signal and Symbiodinium cell number; and one FISH probe that gave excellent hybridization efficiency with cultured Symbiodinium yielded variable results with Symbiodinium from symbioses. After controlling for these caveats, QPCR studies revealed that field-collected hosts previously described as universally unialgal bore up to 1.6% of the alternative clade. Further research is required to establish the contribution that algal cells at low density in symbiosis and external to the symbiosis make to the minor clade.  相似文献   

3.
Among temperate cnidarian symbioses, the partnership between the intertidal anemone Anthopleura elegantissima and its dinoflagellate and chlorophyte symbionts is one of the most well characterized. Biogeographic, reciprocal transplant, and physiological studies have convincingly demonstrated a relationship between environmental factors such as temperature and irradiance and the distribution of symbionts from both algal phyla. However, little is known about the fine-scale diversity or biogeographic distribution within symbiont lineages of this anemone. We used sequence information from the mitochondrial cytochrome b and chloroplast 23S ribosomal genes and restriction fragment length polymorphism data from the 18S nuclear ribosomal gene to characterize the Symbiodinium populations in tentacles clipped from 105 anemones at 14 sites along the entire California coast, spanning about 1200 km. Our results show the presence of at least three primary biogeographic regions with breaks around Cape Mendocino and Monterey Bay, each dominated by a different Symbiodinium muscatinei genotype. Sharp clines suggest limited gene flow between adjacent regions. Few sampling locations or individual anemones showed symbiont diversity at either organellar locus within the limits of our detection method, while sequence analysis of cloned nr18S polymerase chain reaction product suggests that nuclear pseudogenes may underlie intra-host diversity observed at that locus.  相似文献   

4.
Intracellular symbiotic relationships are prevalent between cnidarians, such as corals and sea anemones, and the photosynthetic dinoflagellate symbionts. However, there is little understanding about how the genes express when the symbiotic relationship is set up. To characterize genes involved in this association, the endosymbiosis between sea anemone, Aiptasia pulchella, and dinoflagellate zooxanthellae, Symbiodinium spp., was employed as a model. Two complementary DNA (cDNA) libraries were constructed from RNA isolated from symbiotic and aposymbiotic A. pulchella. Using single-pass sequencing of cDNA clones, a total of 870 expressed sequence tags (ESTs) clones were generated from the two libraries: 474 from symbiotic animal and 396 from aposymbiotic animal. The initial ESTs consisted of 143 clusters and 231 singletons. A BLASTX search revealed that 147 unique genes had similarities with protein sequences available from databases; 120 of these clones were categorized according to their putative function. However, many ESTs could not assign functionally. The putative roles of some of the identified genes relative to endosymbiosis were discussed. This is the first report of the use of EST analysis to examine the gene expression in symbiotic and aposymbiotic states of the cnidarians. The systematic analysis of EST from this study provides a useful database for future investigations of the molecular mechanisms involved in algal-cnidarian symbiosis.  相似文献   

5.
The symbiotic interaction between cnidarians (e.g., corals and sea anemones) and photosynthetic dinoflagellates of the genus Symbiodinium is triggered by both host–symbiont recognition processes and metabolic exchange between the 2 partners. The molecular communication is crucial for homeostatic regulation of the symbiosis, both under normal conditions and during stresses that further lead to symbiosis collapse. It is therefore important to identify and fully characterise the key players of this intimate interaction at the symbiotic interface. In this study, we determined the cellular and subcellular localization and expression of the sterol‐trafficking Niemann–Pick type C proteins (NPC1 and NPC2) in the symbiotic sea anemones Anemonia viridis and Aiptasia sp. We first established that NPC1 is localised within vesicles in host tissues and to the symbiosome membranes in several anthozoan species. We demonstrated that the canonical NPC2‐a protein is mainly expressed in the epidermis, whereas the NPC2‐d protein is closely associated with symbiosome membranes. Furthermore, we showed that the expression of the NPC2‐d protein is correlated with symbiont presence in healthy symbiotic specimens. As npc2‐d is a cnidarian‐specific duplicated gene, we hypothesised that it probably arose from a subfunctionalisation process that might result in a gain of function and symbiosis adaptation in anthozoans. Niemann–Pick type C proteins may be key players in a functional symbiosis and be useful tools to study host–symbiont interactions in the anthozoan–dinoflagellate association.  相似文献   

6.
Mutualistic symbioses are common, especially in nutrient-poor environments where an association between hosts and symbionts can allow the symbiotic partners to persist and collectively out-compete non-symbiotic species. Usually these mutualisms are built on an intimate transfer of energy and nutrients (e.g. carbon and nitrogen) between host and symbiont. However, resource availability is not consistent, and the benefit of the symbiotic association can depend on the availability of resources to mutualists. We manipulated the diets of two temperate sea anemone species in the genus Anthopleura in the field and recorded the responses of sea anemones and algal symbionts in the family Symbiodiniaceae to our treatments. Algal symbiont density, symbiont volume and photosynthetic efficiency of symbionts responded to changes in sea anemone diet, but the responses depended on the species of sea anemone. We suggest that temperate sea anemones and their symbionts can respond to changes in anemone diet, modifying the balance between heterotrophy and autotrophy in the symbiosis. Our data support the hypothesis that symbionts are upregulated or downregulated based on food availability, allowing for a flexible nutritional strategy based on external resources.  相似文献   

7.
High-field pulsed Fourier-transform nuclear magnetic resonance spectroscopy (NMR) was used to quantify the adenylate levels of sea anemones (Aiptasia pulchella) with and without symbiotic dinoflagellates (Symbiodinium sp.). Animals were fed to repletion, then starved in darkness for up to six days before collection of in vivo NMR spectra. The host adenylate ratio of ATP: (ATP + ADP) declined significantly with increasing periods of starvation in both symbiotic and aposymbiotic hosts (P less than 0.05). However, the decline in the animal adenylate ratio was significantly more rapid in animals bearing symbiotic algae (P less than 0.05). This suggests that symbiotic algae in darkness cause more rapid depletion of host energy reserves, possibly by drawing on host pools of organic substrates. In vivo NMR spectroscopy was also used to evaluate the effect on A. pulchella of photosynthesis by zooxanthellae. Symbiotic anemones were fed to repletion, then starved under high irradiance (300 to 320 mu Ein m-2 s-1) or low irradiance (70 to 80 mu Ein m-2 s-1) conditions for up to five days. The host adenylate ratio declined significantly (P less than 0.01) with starvation under both treatments, but no significant difference was detected between treatments (P greater than 0.35). Blotted wet weight of anemones under high and low irradiance declined by 50% over eight days of starvation, but there was no significant difference in the rate of weight loss by anemones in the two treatments. There results suggest that translocation of photosynthate from symbiotic zooxanthellae does not significantly affect host adenylate ratio or have a sparing effect on host biomass during starvation in this symbiotic sea anemone.  相似文献   

8.
Some reef-building corals have been shown to respond to environmental change by shifting the composition of their algal symbiont (genus Symbiodinium) communities. These shifts have been proposed as a potential mechanism by which corals might survive climate stressors, such as increased temperatures. Conventional molecular methods suggest this adaptive capacity may not be widespread because few (~25%) coral species have been found to associate with multiple Symbiodinium clades. However, these methods can fail to detect low abundance symbionts (typically less than 10-20% of the total algal symbiont community). To determine whether additional Symbiodinium clades are present, but are not detected using conventional techniques, we applied a high-resolution, real-time PCR assay to survey Symbiodinium (in clades A-D) from 39 species of phylogenetically and geographically diverse scleractinian corals. This survey included 26 coral species thought to be restricted to hosting a single Symbiodinium clade ('symbiotic specialists'). We detected at least two Symbiodinium clades (C and D) in at least one sample of all 39 coral species tested; all four Symbiodinium clades were detected in over half (54%) of the 26 symbiotic specialist coral species. Furthermore, on average, 68 per cent of all sampled colonies within a given coral species hosted two or more symbiont clades. We conclude that the ability to associate with multiple symbiont clades is common in scleractinian (stony) corals, and that, in coral-algal symbiosis, 'specificity' and 'flexibility' are relative terms: specificity is rarely absolute. The potential for reef corals to adapt or acclimatize to environmental change via symbiont community shifts may therefore be more phylogenetically widespread than has previously been assumed.  相似文献   

9.
10.
Barbrook AC  Visram S  Douglas AE  Howe CJ 《Protist》2006,157(2):159-171
Dinoflagellate algae of the genus Symbiodinium are important symbionts within corals and other benthic marine animals. The molecular diversity of Symbiodinium has been described mainly by use of ribosomal DNA sequence data. We tested whether minicircle sequences, which appear to form the chloroplast genome in many dinoflagellates, could be used as a marker for molecular diversity among symbionts found in corals and sea anemones. Partial and full-length sequences for psbA were obtained from environmental samples of coral and sea anemones of wide-ranging geographical distribution. Phylogenetic trees constructed with partial psbA sequences were consistent with the known phylotypes of the isolates. Further sequencing suggested that the psbA gene is present on a minicircle in all Symbiodinium phylotypes. The length and DNA sequence of the non-coding portion of the minicircles varied considerably among Symbiodinium phylotypes. In two Symbiodinium isolates from different phylotypes an elaborate pattern of repeat sequences of unknown function was found in the non-coding region. Phylogenetic analysis of the non-coding region of the psbA minicircle indicates that minicircle sequences could be a useful chloroplast-derived marker for differentiating both closely related and distantly related Symbiodinium isolates.  相似文献   

11.
12.
实时荧光定量PCR技术及其应用   总被引:11,自引:0,他引:11  
定量PCR的问世是继定性PCR(即常规PCR)后分子生物学方法学研究的一大飞跃,实现了对核酸信息量的分析比较,为疾病的诊断和治疗提供了更多、更有效的基因水平信息。本文介绍实时荧光定量PCR技术及其在兽医领域中的应用,包括近年来研究和应用较多的几种定量PCR技术。  相似文献   

13.
At northern latitudes the sea anemones Anthopleura elegantissima and its congener A. xanthogrammica contain unidentified green chlorophytes (zoochlorellae) in addition to dinophytes belonging to the genus Symbiodinium. This dual algal symbiosis, involving members of distinct algal phyla in one host, has been extensively studied from the perspective of the ecological and energetic consequences of hosting one symbiotic type over the other. However, the identity of the green algal symbiont has remained elusive. We determined the phylogenetic position of the marine zoochlorellae inhabiting A. elegantissima by comparing sequence data from two cellular compartments, the nuclear 18S ribosomal RNA gene region and the plastid-encoded rbcL gene. The results support the inclusion of these zoochlorellae in a clade of green algae that form symbioses with animal (Anthopleura elegantissima), fungal (the lichen genus Nephroma), and seed plant (Ginkgo) partners. This clade is distinct from the Chlorella symbionts of Hydra. The phylogenetic diversity of algal hosts observed in this clade indicates a predisposition for this group of algae to participate in symbioses. An integrative approach to the study of these algae, both within the host and in culture, should yield important clues about how algae become symbionts in other organisms.  相似文献   

14.
We tested the hypothesis that there is a relation between phylotypes (phylogenetic types, as determined by restriction fragment length polymorphism (RFLP) and partial sequence analysis of the small subunit ribosomal RNA gene (SSUrDNA)) and the synthesis of mycosporine-like amino acids (MAAs) by symbiotic dinoflagellates under the influence of ultraviolet radiation (UV-B/A) and photosynthetically active radiation (PAR). We exposed 27 isolates of symbiotic dinoflagellates simultaneously to UV-B/A and PAR, and subsequently determined the MAAs present in cell extracts and in the media. The algae used included 24 isolates of Symbiodinium spp. originating from jellyfishes, sea anemones, zoanthids, scleractinians, octocorals, and bivalves, and three others in the genera Gymnodinium, Gloeodinium and Amphidinium from a jellyfish, an hydrocoral and a flatworm, respectively. In this study, all of the phylotype A Symbiodinium spp. synthesized up to three identified MAAs. None of the 11 cultured phylotypes B and C Symbiodinium spp. synthesized MAAs. The three non-Symbiodinium symbionts also synthesized up to three MAAs. The results support a conclusion that phylotype A Symbiodinium spp. have a high predilection for the synthesis of MAAs, while phylotypes B and C do not. Synthesis of MAAs by symbiotic dinoflagellates in culture does not appear to relate directly to depths or to the UV exposure regimes from which the consortia were collected.  相似文献   

15.
We have analyzed the genetic profiles of dinoflagellate populations obtained from the Pacific coast sea anemone Anthopleura elegantissima (Brandt) at collection sites from Washington to California. Genetic differences within the symbiont populations of California anemones have been uncovered by restriction length polymorphism (RFLP) analysis of the small subunit (SSU) and large subunit (LSU) ribosomal RNA genes, and by denaturing gradient gel electrophoresis (DGGE) of the internal transcribed spacer region 2 (ITS 2). The existence of two Symbiodinium species is substantiated by sequence analysis of the variable regions V1, V2, and V3 of the SSUrDNA, which also establishes their phylogenetic relatedness to other members of the genus Symbiodinium. Anemones from Washington and Oregon harbor a single dinoflagellate species, for which we propose the name S. muscatinei sp. nov. At these northern locations, S. muscatinei either exists alone or co-occurs with the Chlorella-like green algal symbiont. Our results indicate that S. muscatinei co-occurs with a second dinoflagellate, S. californium, in mixed populations in central and southern California. We suggest that the geographic distribution of these dinoflagellates is related to the temperature cline created by latitude.  相似文献   

16.
The symbiotic interaction between cnidarians, such as corals and sea anemones, and the unicellular algae Symbiodinium is regulated by yet poorly understood cellular mechanisms, despite the ecological importance of coral reefs. These mechanisms, including host–symbiont recognition and metabolic exchange, control symbiosis stability under normal conditions, but also lead to symbiosis breakdown (bleaching) during stress. This study describes the repertoire of the sterol‐trafficking proteins Niemann‐Pick type C (NPC1 and NPC2) in the symbiotic sea anemone Anemonia viridis. We found one NPC1 gene in contrast to the two genes (NPC1 and NPC1L1) present in vertebrate genomes. While only one NPC2 gene is present in many metazoans, this gene has been duplicated in cnidarians, and we detected four NPC2 genes in A. viridis. However, only one gene (AvNPC2‐d) was upregulated in symbiotic relative to aposymbiotic sea anemones and displayed higher expression in the gastrodermis (symbiont‐containing tissue) than in the epidermis. We performed immunolabelling experiments on tentacle cross sections and demonstrated that the AvNPC2‐d protein was closely associated with symbiosomes. In addition, AvNPC1 and AvNPC2‐d gene expression was strongly downregulated during stress. These data suggest that AvNPC2‐d is involved in both the stability and dysfunction of cnidarian–dinoflagellate symbioses.  相似文献   

17.
Due to the potential for increasing ocean temperatures to detrimentally impact reef-building corals, there is an urgent need to better understand not only the coral thermal stress response, but also natural variation in their sub-cellular composition. To address this issue, while simultaneously developing a molecular platform for studying one of the most common Taiwanese reef corals, Seriatopora hystrix, 1,092 cDNA clones were sequenced and characterized. Subsequently, RNA, DNA and protein were extracted sequentially from colonies exposed to elevated (30°C) temperature for 48 hours. From the RNA phase, a heat shock protein-70 (hsp70)-like gene, deemed hsp/c, was identified in the coral host, and expression of this gene was measured with real-time quantitative PCR (qPCR) in both the host anthozoan and endosymbiotic dinoflagellates (genus Symbiodinium). While mRNA levels were not affected by temperature in either member, hsp/c expression was temporally variable in both and co-varied within biopsies. From the DNA phase, host and Symbiodinium hsp/c genome copy proportions (GCPs) were calculated to track changes in the biological composition of the holobiont during the experiment. While there was no temperature effect on either host or Symbiodinium GCP, both demonstrated significant temporal variation. Finally, total soluble protein was responsive to neither temperature nor exposure time, though the protein/DNA ratio varied significantly over time. Collectively, it appears that time, and not temperature, is a more important driver of the variation in these parameters, highlighting the need to consider natural variation in both gene expression and the molecular make-up of coral holobionts when conducting manipulative studies. This represents the first study to survey multiple macromolecules from both compartments of an endosymbiotic organism with methodologies that reflect their dual-compartmental nature, ideally generating a framework for assessing molecular-level changes within corals and other endosymbioses exposed to changes in their environment.  相似文献   

18.
The sea anemone Anthopleura elegantissima (Brandt) hosts two species of symbiotic dinoflagellates, known as zooxanthellae, which coexist within the host at southern latitudes only. One of these species, Symbiodinium muscatinei LaJeunesse et Trench, has a broad latitudinal distribution, occurring in intertidal anemones from Washington state to Southern California. To investigate whether high thermal tolerance contributes to the ability of S. muscatinei to inhabit anemones from northern and southern regions, the upper thermal tolerance limit for photosynthesis of symbionts in northern (48°24′ N) populations of A. elegantissima was determined by subjecting anemones to a gradual increase in temperature from 12°C to 30°C over a 10‐week period. Light‐saturated photosynthetic rates of isolated zooxanthellae were the same over the range of 12°C–24°C and declined significantly at 26°C, which is 14°C and 5°C above average summertime seawater temperatures in northern Puget Sound and Southern California, respectively. At 28°C, zooxanthellae isolated from the anemones, and those expelled by their hosts, exhibited extremely low rates of photosynthesis and highly reduced chl content. The photosynthetic rates and chl content of expelled zooxanthellae were lower than those of retained zooxanthellae. The high thermal tolerance of S. muscatinei isolated from northern populations of anemones supports the broad latitudinal distribution of this symbiont, allowing it to coexist with S. californium (#383, Banaszak et al. 1993 ) in southern populations of anemones.  相似文献   

19.
The diversity of symbiotic dinoflagellates ( Symbiodinium ) in pocilloporid corals originating from various reef habitats surrounding Heron Island, southern Great Barrier Reef, was examined by targeting ribosomal, mitochondrial, and chloroplast genes using six methods that analyse for sequence differences. The ability of each of 13 genetic analyses to characterize eight ecologically distinct Symbiodinium spp. was dependent on the level of conservation of the gene region targeted and the technique used. Other than differences in resolution, phylogenetic reconstructions using nuclear and organelle gene sequences were complementary and when combined produced a well-resolved phylogeny. Analysis of the ribosomal internal transcribed spacers using denaturing gradient gel electrophoresis fingerprinting in combination with sequencing of dominant bands provided a precise method for rapidly resolving and characterizing symbionts into ecologically and evolutionarily distinct units of diversity. Single-stranded conformation polymorphisms of the nuclear ribosomal large subunit (D1/D2 domain) identified the same number of ecologically distinct Symbiodinium spp., but profiles were less distinctive. The repetitive sequencing of bacterially cloned ITS2 polymerase chain reaction amplifications generated numerous sequence variants that clustered together according to the symbiont under analysis. The phylogenetic relationships between these clusters show how intragenomic variation in the ribosomal array diverges among closely related eukaryotic genomes. The strong correlation between phylogenetically independent lineages with different ecological and physiological attributes establishes a clear basis for assigning species designations to members of the genus Symbiodinium .  相似文献   

20.
Here we report primers targeting 10 microsatellite loci of dinoflagellates in the genus Symbiodinium (clade B1/B184) symbiotic with the Caribbean sea fan coral, Gorgonia ventalina. Primers were tested on 12 Symbiodinium B1/B184 cultures, as well as 40 genomic DNA extracts of G. ventalina tissue samples. All loci were polymorphic with allelic richness ranging from 4-16. Gene diversity ranged from 0.15 to 0.91. These primers provide powerful tools for examining the fine-scale population structure and dynamics of Symbiodinium within a single host species.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号