首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Ticks are among the most important vectors of disease in the Northern Hemisphere, and a better understanding of their feeding behaviour and life cycle is critical to the management and control of tick-borne zoonoses. DNA-based tools for the identification of residual bloodmeals in hematophagous arthropods have proven useful in the investigation of patterns of host use in nature. Using a blind test approach, we challenged the utility of the DNA barcode library for the identification of vertebrate bloodmeals in engorged, field-collected Ixodes scapularis. Universal vertebrate primers for the COI barcode region successfully amplified DNA from the host bloodmeal and only rarely amplified tick DNA. Of the 61 field-collected ticks, conclusive genus- and species-level identification was possible for 72% of the specimens. In all but two cases, barcode-based identification of the bloodmeal was consistent with the morphological identification of the vertebrate host the ticks were collected from. Possible explanations for mismatches or ambiguities are presented. This study validates the utility of the DNA barcode library as a valuable and reliable resource for the identification of unknown bloodmeals in arthropod vectors of disease. Future directions aimed at the refinement of these techniques to gain additional information and to improve the amplification success of digested vertebrate DNA in tick bloodmeals are discussed.  相似文献   

2.
Little is known about the transmission dynamics of human malaria and other vector-borne diseases, partly because of the limited availability and distribution of appropriate tools for quantifying human-mosquito contact rates. Recent developments in molecular biology have allowed a significant increase in the efficacy and reliability of bloodmeal identification, and DNA-based molecular markers are now being harnessed for typing arthropod bloodmeals. The extent to which these markers have been used for analysis of mosquito bloodmeals and the potential they might have for the future is discussed, and the contributions that the advent of PCR has made are examined here.  相似文献   

3.
Emerging infectious diseases represent a challenge for global economies and public health. About one fourth of the last pandemics have been originated by the spread of vector-borne pathogens. In this sense, the advent of modern molecular techniques has enhanced our capabilities to understand vector-host interactions and disease ecology. However, host identification protocols have poorly profited of international DNA barcoding initiatives and/or have focused exclusively on a limited array of vector species. Therefore, ascertaining the potential afforded by DNA barcoding tools in other vector-host systems of human and veterinary importance would represent a major advance in tracking pathogen life cycles and hosts. Here, we show the applicability of a novel and efficient molecular method for the identification of the vertebrate host''s DNA contained in the midgut of blood-feeding arthropods. To this end, we designed a eukaryote-universal forward primer and a vertebrate-specific reverse primer to selectively amplify 758 base pairs (bp) of the vertebrate mitochondrial Cytochrome c Oxidase Subunit I (COI) gene. Our method was validated using both extensive sequence surveys from the public domain and Polymerase Chain Reaction (PCR) experiments carried out over specimens from different Classes of vertebrates (Mammalia, Aves, Reptilia and Amphibia) and invertebrate ectoparasites (Arachnida and Insecta). The analysis of mosquito, culicoid, phlebotomie, sucking bugs, and tick bloodmeals revealed up to 40 vertebrate hosts, including 23 avian, 16 mammalian and one reptilian species. Importantly, the inspection and analysis of direct sequencing electropherograms also assisted the resolving of mixed bloodmeals. We therefore provide a universal and high-throughput diagnostic tool for the study of the ecology of haematophagous invertebrates in relation to their vertebrate hosts. Such information is crucial to support the efficient management of initiatives aimed at reducing epidemiologic risks of arthropod vector-borne pathogens, a priority for public health.  相似文献   

4.
We developed a DNA assay for bloodmeal identification in haematophagous insects. Specific host cytochrome B gene sequences were amplified by PCR and classified on the basis of their mobility in a heteroduplex assay. In the blackfly Simulium damnosum s.l. (Diptera: Simuliidae), human cytochrome B DNA sequences were identifiable up to 3 days following ingestion of the bloodmeal. In the tsetse Glossina palpalis (Diptera: Glossinidae) collected from tsetse traps in Ivory Coast, bloodmeals were identified as taken from domestic pigs on the basis of their heteroduplex pattern and DNA sequence. Evidently the cytochrome B sequence shows sufficient interspecific variation to distinguish between mammalian host samples, while exhibiting minimal intraspecific variation. The stability of DNA in bloodmeals, for several days post-ingestion by haematophagous insects, allows PCR-HDA assays to be used reliably for host identification.  相似文献   

5.
Abstract. Human specific genetic markers have been used to profile the human DNA found within a mosquito bloodmeal. In this technique, variable numbers of tandem repeat (VNTR) sequences are employed to prime amplification of human DNA in the polymerase chain reaction (PCR) and the radiolabeled products are analysed by high resolution denaturing gel electrophoresis. Matching of DNA profiles allows identification of the individual human host. Bloodmeals of 125 female Anopheles gambiae Giles mosquitoes, caught dead or alive in verandah-trap huts wherein two people had slept overnight protected by intact insecticide-impregnated bednets, were analysed: thirty-five out of thirty-nine profiles generated were identical to those of the sleepers under the nets. Thus the blood-fed mosquitoes found after impregnated nets have been used cannot, in most cases, be explained away by entry of already fed mosquitoes into the huts.  相似文献   

6.
论中药分子鉴定的方法和原则   总被引:3,自引:0,他引:3  
中药的准确鉴定涉及到人民生命安全和切身利益。传统的鉴定方法,即感官评价、显微鉴定和理化鉴定均存在不同程度的局限性,而分子鉴定则为中药的快速和准确鉴定带来了新的契机。为了使中药的分子鉴定得到更加广泛和有效的应用,应该高度重视相关标准、规范的制订。本文提出了中药分子鉴定的一些主要方法:1)真伪品鉴定:特异聚合酶链式反应法;2)正品和替代品鉴定:DNA条形码鉴定法;3)多基源鉴定:群体遗传学分析法;4)产地鉴别:分子谱系地理学分析法。经上述方法仍无法鉴别的贵重药材可进一步应用人类亲子鉴定的方法,开发特异微卫星标记进行进一步的鉴定。  相似文献   

7.
Accurate identification of herbal medicinal materials is relevant to the safety of human life and economic interests. Traditional identification methods, including sensory evaluation, microscopic identification, physical and chemical identification, all have their limitations. Molecular identification brings a new opportunity for accurate identification of herbal medicinal materials. However, prior to its wide adoption, the methods and principles of molecular identification should be fully discussed. In this paper, we proposed a set of new methods for molecular authentication of herbal medicinal materials: 1) Identification between authenticity and adulteration by using specific polymerase chain reaction; 2) Identification between official herb and substitute by using the method of DNA barcoding; 3) Identification among multiple species of one official herbs by constructing genealogy among closely related species based on population genetics; 4) Identification among herbs of different geographical origins by phylogeography based analysis. For those that can not be identified by above four methods, more rapidly evolved markers such as microsatellite should be employed and individual based analysis could be adopted.  相似文献   

8.
Abstract:  The polymerase chain reaction (PCR) revolutionized the field of diagnostics, and today it has routine applications in medical, veterinary, forensic and botanical sciences. The fields of biological control and insect pest management have generally been slow to adopt PCR-based diagnostics in comparison with other fields of science. However, there has been increasing interest in the use of molecular diagnostic tools in arthropod biological control. In applied entomology, molecular techniques have generally been used for insect identification and systematics; however, PCR-based techniques are increasingly becoming recognized as valuable tools in ecological studies. Here, we review research that has used PCR-based techniques for parasitoid and predator/prey identification and detection, and place these studies in the context of their contributions to biological control of arthropods. The status and future directions of diagnostic molecular markers in applied entomology and insect pest management are also discussed.  相似文献   

9.
Chagas disease vector insects Triatoma infestans and Rhodnius prolixus (fifteen stage III nymphs per 4 litre cage) were allowed to feed on anaesthetized mice for 1 h (control group), or on active non-anaesthetized mice (NAM) for 2, 4 or 8 h exposure. The bloodmeal size (weight increase) for both species was proportional to the duration of contact with NAM, due to ingestion of multiple small bloodmeals, up to 142% of control weight for T. infestans with 8 h exposure to NAM. The mean weight increase of T. infestans nymphs after 4 h contact with NAM was similar to that of the control group, whereas for R. prolixus , 8 h contact with NAM gave only 64% of the control value. For both species of insect, within 4 h of feeding, >20% of the bloodmeal weight was lost by defaecation and diuresis. The proportions of unfed nymphs and mortality during 2 h contact with NAM were significantly higher for R. prolixus , demonstrating better exploitation of the host blood source by T. infestans , apparently because during blood-feeding the latter insect species caused less irritation to the host.  相似文献   

10.
11.
The Anopheles gambiae species complex includes the major malaria transmitting mosquitoes in Africa. Because these species are of such medical importance, several traits are typically characterized using molecular assays to aid in epidemiological studies. These traits include species identification, insecticide resistance, parasite infection status, and host preference. Since populations of the Anopheles gambiae complex are morphologically indistinguishable, a polymerase chain reaction (PCR) is traditionally used to identify species. Once the species is known, several downstream assays are routinely performed to elucidate further characteristics. For instance, mutations known as KDR in a para gene confer resistance against DDT and pyrethroid insecticides. Additionally, enzyme-linked immunosorbent assays (ELISAs) or Plasmodium parasite DNA detection PCR assays are used to detect parasites present in mosquito tissues. Lastly, a combination of PCR and restriction enzyme digests can be used to elucidate host preference (e.g., human vs. animal blood) by screening the mosquito bloodmeal for host-specific DNA. We have developed a multi-detection assay (MDA) that combines all of the aforementioned assays into a single multiplex reaction genotyping 33SNPs for 96 or 384 samples at a time. Because the MDA includes multiple markers for species, Plasmodium detection, and host blood identification, the likelihood of generating false positives or negatives is greatly reduced from previous assays that include only one marker per trait. This robust and simple assay can detect these key mosquito traits cost-effectively and in a fraction of the time of existing assays.  相似文献   

12.
Abstract

Embryonic mice have been used widely to study organ development. Days 14–16 are critical for sex organ development and differentiation in mice. Current methods for sex identification are limited. Even the simplest polymerase chain reaction method may injure the embryo. We determined that morphologic analysis of embryonic mammary anlagen could be used for rapid atraumatic sex identification of day 14–16 mice. The accuracy of our method was verified by molecular and anatomical approaches.  相似文献   

13.
Sex identification of birds is of great interest in ecological studies, however this can be very difficult in many species because their external features are almost monomorphic between the sexes. Molecular methodology has simplified this process but limitations still occur with widely accepted methods using polymerase chain reaction and gel electrophoresis, especially when applied to degraded DNA. Real-time polymerase chain reaction assays are emerging as a more efficient, sensitive, and higher throughput means of identification, but there are very few techniques validated using fecal samples and small target sizes. We present a real-time melt curve analysis assay targeting a small region of the CHD-1 gene allowing for high-throughput, sensitive, specific, and easy-to-interpret sexing results for a variety of Southern Ocean seabirds using fecal and tissue samples.  相似文献   

14.
A molecular paleoparasitological diagnostic approach was developed for Enterobius vermicularis. Ancient DNA was extracted from 27 coprolites from archaeological sites in Chile and USA. Enzymatic amplification of human mtDNA sequences confirmed the human origin. We designed primers specific to the E. vermicularis 5S ribosomal RNA spacer region and they allowed reproducible polymerase chain reaction identification of ancient material. We suggested that the paleoparasitological microscopic identification could accompany molecular diagnosis, which also opens the possibility of sequence analysis to understand parasite-host evolution.  相似文献   

15.
Nitroxide-labeled nucleic acids are used as a molecular size sensor to identify as few as one genome under polymerase chain reaction (PCR) conditions by electron paramagnetic resonance (EPR) spectroscopy. DNA identification is based on differences in the EPR spectra of mono-nitroxide-labeled nucleic acids. The experimental data imply that rapid DNA identification can be achieved in many systems by EPR at the molecular level.  相似文献   

16.
Group‐specific, degenerate polymerase chain reaction primers for DNA‐based detection of springtails (Hexapoda: Collembola) within predator gut contents have been developed for the first time. Primers were designed from 18S rDNA and amplified fragments of 272 bp and 177 bp from 17 springtail species collected in agricultural habitats. Specificity tests against 41 nontarget species revealed no cross‐reactivity. Group‐specific polymerase chain reaction is advantageous when working in species‐rich habitats and these primers could facilitate studies of trophic links between springtails and generalist arthropod predators worldwide.  相似文献   

17.
Conventional methods to identify fungi have often relied on identification of disease symptoms, isolation and culturing of environmental organisms, and laboratory identification by morphology and biochemical tests. Although these methods are still fundamental there is an increasing move towards molecular diagnostics of fungi in all fields. In this review, some of the molecular approaches to fungal diagnostics based on polymerase chain reaction (PCR) and DNA/RNA probe technology are discussed. This includes several technological advances in PCR-based methods for the detection, identification and quantification of fungi including real-time PCR which has been successfully used to provide rapid, quantitative data on fungal species from environmental samples. PCR and probe based methods have provided new tools for the enumeration of fungal species, but it is still necessary to combine the new technology with more conventional methods to gain a fuller understanding of interactions occurring in the environment. Since its introduction in the mid 1980's PCR has provided many molecular diagnostic tools, some of which are discussed within this review, and with the advances in micro-array technology and real-time PCR methods the future is bright for the development of accurate, quantitative diagnostic tools that can provide information not only on individual fungal species but also on whole communities.  相似文献   

18.
Toxic cyanobacteria pose a significant hazard to human health and the environment. The recent characterisation of cyanotoxin synthetase gene clusters has resulted in an explosion of molecular detection methods for these organisms and their toxins. Conventional polymerase chain reaction (PCR) tests targeting cyanotoxin biosynthesis genes provide a rapid and sensitive means for detecting potentially toxic populations of cyanobacteria in water supplies. The adaptation of these simple PCR tests into quantitative methods has additionally enabled the monitoring of dynamic bloom populations and the identification of particularly problematic species. More recently, DNA microarray technology has been applied to cyanobacterial diagnostics offering a high-throughput option for detecting and differentiating toxic genotypes in complex samples. Together, these molecular methods are proving increasingly important for monitoring water quality.  相似文献   

19.
The consequences of enzyme and template interaction were examined by several independent methods in the replication reactions catalyzed by calf thymus low molecular weight DNA polymerase, calf thymus high molecular weight DNA polymerase, and Eacherichia coli polymerase I. All methods used support a distributive, rather than processive, mechanism for enzyme in the replication of homopolymer templates in vitro. First, addition of an excess of initiated poly(dC) template to an ongoing poly(dA) replication reaction results in immediate cessation of dTTP polymerization. Second, the kinetics of monomer and initiator incorporation in reactions where a large number of initiated template molecules are available to each enzyme molecule show early incorporation of all initiators followed by simultaneous replication of the total population of template molecules. Third, alkaline sucrose gradient analysis of the products formed at various stages during replication show simultaneous growth in product chain lengths. Fourth, analysis of products formed when an average of one to two nucleotides are added at the end of the growing chain, in reactions having a molecular ratio of template to enzyme of about 900, show that the enzyme can dissociate from the replicating template after a single addition. Increasing the ionic strength of the reaction mixture, to decrease the secondary interactions between the enzyme and the template, results in nearly random interaction of the enzyme and the template. The results from this study suggest that translocation of template chain during replication is not an obligatory function of purified DNA polymerases. The possible involvement of other proteins required for DNA replication in vivo in the interaction of DNA polymerase and DNA is discussed.  相似文献   

20.
Numerous biological mechanisms depend on nucleic acid--protein interactions. The first step to the understanding of these mechanisms is to identify interacting molecules. Knowing one partner, the identification of other associated molecular species can be carried out using affinity-based purification procedures. When the nucleic acid-binding protein is known, the nucleic acid can be isolated and identified by sensitive techniques such as polymerase chain reaction followed by DNA sequencing or hybridization on chips. The reverse identification procedure is less straightforward in part because interesting nucleic acid-binding proteins are generally of low abundance and there are no methods to amplify amino acid sequences. In this article, we will review the strategies that have been developed to identify nucleic acid-binding proteins. We will focus on methods permitting the identification of these proteins without a priori knowledge of protein candidates.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号