首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Genetic polymorphism of the Uralian relict plant species, yellow foxglove Digitalis grandiflora Mill. (family Scrophulariaceae), was examined using RAPD and ISSR techniques. A total of 149 RAPD and 74 ISSR markers were tested. The indices characterizing polymorphism and genetic diversity were calculated. The data obtained pointed to a high level of genetic variation of D. grandiflora (P95 = 65%). The cenopopulation examined was weakly differentiated with most of genetic diversity accounted by within-population differentiation.  相似文献   

2.
? Premise of the study: Microsatellite primers were developed to investigate genetic diversity and population structure of Qualea grandiflora, a typical species of the Brazilian cerrado. ? Methods and Results: Eight microsatellite loci were isolated using an enrichment cloning protocol. These loci were tested on a population of 110 individuals of Q. grandiflora collected from a cerrado fragment in S?o Paulo State, Brazil. The loci polymorphism ranges from seven to 19 alleles and the average heterozygosity value is 0.568, while the average polymorphic information content is 0.799. ? Conclusions: The developed markers were found to be highly polymorphic, indicating their applicability to studies of population genetic diversity in Q. grandiflora.  相似文献   

3.
Abstract: Based on haploid males, random amplified polymorphic DNA (RAPD) markers were used to study genetic variation within and among four French populations and one Finnish outgroup population of the common pine sawfly, Diprion pini (L.), representing a severe European forest pest associated with mass outbreaks. Taking into account that all multilocus haplotypes were detected, a total of 140 individuals were completely discriminated by means of 17 polymorphic markers (present or absent), which were amplified from nine selected random-decamer primers. All populations shared the same genetic types, but pronounced population-specific frequency distributions were found, indicating that on average 84% of the present genetic variation exists within populations and the remaining smaller part counts for interpopulational variation. The haplotype differentiation registered was able to distinguish between the class of lowland populations and the class of highland populations. Reproductive isolation and therefore limited altitudinal gene flow, indicated in case of a French highland population by an enlarged number of fixed markers, and hitchhiking effects with respect to selective processes at certain loci following local adaptation and speciation are discussed to explain the population structures found. A possible selection is indicated by five markers, showing significantly different frequency distributions between the class of highland populations and the class of lowland populations.  相似文献   

4.
Genetic variation in the expanding moss species Pogonatum dentatum was studied using intersimple sequence repeat (ISSR) markers. The genetic consequences of range expansion were studied by comparing source populations in a mountain area with populations from a recently colonized lowland area in Sweden. Indices of genetic variation show slightly lower number of alleles per locus in the lowlands and a similar gene diversity in both areas. Three of four lowland populations had evidence of a recently passed bottleneck. Considerably higher haplotype diversity was found in the recently colonized lowlands compared to source populations in the mountains. Patterns of allelic diversity suggest that P. dentatum experiences loss of genetic variation through founder effects and genetic drift when expanding its distribution range. Higher haplotypic diversity, less linkage disequilibrium, and fewer compatible loci indicate that sexual recombination is relatively more important in the lowlands compared to the mountains. A likely explanation is higher success of establishment from spores in the lowlands, while clonal propagation predominates in the mountains. Less genetic differentiation among lowland populations indicates more gene flow in the lowland area, involving more spores and/or fragments moving among populations.  相似文献   

5.
An understanding of the genetic and environmental basis of genotype×environment interaction (GEI) is of fundamental importance in plant breeding. In mapping quantitative trait loci (QTLs), suitable genetic populations are grown in different environments causing QTLs×environment interaction (QEI). The main objective of the present study is to show how Partial Least Squares (PLS) regression and Factorial Regression (FR) models using genetic markers and environmental covariables can be used for studying QEI related to GEI. Biomass data were analyzed from a multi-environment trial consisting of 161 lines from a F3:4 maize segregating population originally created with the purpose of mapping QTLs loci and investigating adaptation differences between highland and lowland tropical maize. PLS and FR methods detected 30 genetic markers (out of 86) that explained a sizeable proportion of the interaction of maize lines over four contrasting environments involving two low-altitude sites, one intermediate-altitude site, and one high-altitude site for biomass production. Based on a previous study, most of the 30 markers were associated with QTLs for biomass and exhibited significant QEI. It was found that marker loci in lines with positive GEI for the highland environments contained more highland alleles, whereas marker loci in lines with positive GEI for intermediate and lowland environments contained more lowland alleles. In addition, PLS and FR models identified maximum temperature as the most-important environmental covariable for GEI. Using a stepwise variable selection procedure, a FR model was constructed for GEI and QEI that exclusively included cross products between genetic markers and environmental covariables. Higher maximum temperature in low- and intermediate-altitude sites affected the expression of some QTLs, while minimum temperature affected the expression of other QTLs. Received: 10 January 1999 / Accepted: 12 March 1999  相似文献   

6.
The small cavy Microcavia australis, a social and fossorial rodent, inhabits a large distribution range in South American arid zones. The species is versatile in coping with the seasonal and spatial variability typical of these environments through changes in morphology, physiology, and behavior. In order to explore whether phenotypic variations are related to the evolutionary history of the species, we analyzed the levels of genetic variability and divergence among four populations that differ in climate and habitat characteristics, two belonging to highlands and the other two from lowlands. We sequenced the mitochondrial control region and used the Inter Simple Sequence Repeats technique to study variability in the noncoding nuclear genome. Results from both genetic markers were consistent. Variability levels were high for all populations, and even higher for lowland ones. Pairwise genetic differentiation varied greatly, all comparisons being statistically significant except for the two highland populations. Seventeen haplotypes were detected which displayed three clear lineages: two corresponding to each lowland population and one to those in the highlands. Levels of genetic differentiation between population pairs varied widely. Haplotypes showed a mean sequence divergence of 1.4% between lowland populations and 0.2% between highland ones, whereas divergence was around 9% when populations from different altitudes were compared. Results from BEAST analysis support extant hypotheses suggesting that lowland forms are clearly older than the highland group. The deep genetic divergence between lineages poses the need to search for new evidence for properly defining the taxonomic status of divergent populations of M. australis.  相似文献   

7.

Loss of genetic diversity is expected to be a reason behind the decline of populations of many rare species. To what extent this is true for populations at the range periphery remains to be explored. Alpine species with peripheral lowland populations are an ideal but little-known model system to address this issue. We used 17 microsatellite markers to investigate the genetic diversity and structure of populations of Tofieldia calyculata, a common species in central European mountains, but highly endangered in lowlands. We showed that lowland populations have lower genetic diversity than mountain populations and that the two groups of populations are not clearly differentiated genetically. The species probably survived the last glaciation in refugia in the margins of the Alps and the western Carpathians and some lowland populations likely originated by postglacial colonisation. Some lowland populations may be relictual, but our data did not unequivocally confirm this. Low genetic diversity of lowland populations is likely the result of the reduction of population sizes, limited gene flow, and selfing. Based on data from herbarium specimens from extinct lowland populations, within-population genetic diversity has not changed over the last century suggesting that, under suitable habitat conditions, these populations are able to survive with low levels of genetic diversity. This idea is also supported by the presence of large viable extant populations with very low genetic diversity. Comparisons between modern and historic collection also showed that a large proportion of genetic diversity was lost, due mainly to the extinction of whole populations. Our results provided detailed insight into the recent past of the populations of Tofieldia calyculata, but the genetic diversity of the populations before the twentieth century remains unknown due to the poor quality of old DNA from herbaria samples. Overall, the study indicates that despite reduced genetic diversity, the lowland populations harbour some unique alleles and, with the current levels of genetic diversity, have a chance to survive in the long-term, and thus deserve conservation.

  相似文献   

8.
Li J  Wang D  Xie Y  Zhang H  Hu G  Li J  Dai A  Liu L  Li Z 《遗传学报》2011,38(11):547-556
Introgression lines (ILs) are valuable materials for identifying quantitative trait loci (QTLs),evaluating genetic interactions,and marker assisted breeding.A set of 430 ILs (BC5F3) containing segments from upland tropical japonica cultivar IRAT109 in a lowland temperate japonica cultivar Yuefu background were developed.One hundred and seventy-six polymorphic markers were used to identify introgressed segments.No segment from IRAT 109 was found in 160 lines.Introgressed segments of the other 270 lines covered 99.1% of the donor genome.The mean number of introgressed donor segments per individual was 3.3 with an average length of 14.4 cM.QTL analysis was conducted on basal root thickness (BRT) of the 270 ILs grown under irrigated lowland,upland and hydroponic conditions.A total of 22 QTLs affecting BRT were identified,six QTLs (qBRT3.1,qBRT3.2,qBRT6.1,qBRT8.2,qBRT9.1,and qBRT9.2) were consistently expressed under at least two environments (location and water regime),and qBRT7.2 was a new BRT QTL identified under lowland conditions.IL255 containing qBRT9.1 showed an increase of 10.09% and 7.07% BRT over cultivar Yuefu when grown under upland and lowland conditions,respectively.Using a population of 304 F2:3 lines derived from the cross IL255 × Yuefu,qBRT9.1 was validated and mapped to a 1.2 cM interval between RM24271 and RM566.The presence of qBRT9.1 explained 12% of BRT variation.The results provide upland rice ILs and BRT QTLs for analyzing the genetic basis of drought resistance,detecting favorable genes from upland rice,and rice drought resistance breeding.  相似文献   

9.
The almendro (Dipteryx panamensis, Fabaceae) is a tetraploid tree native to the Atlantic lowland rainforests of Central America. We present nine microsatellite primer pairs amplified in three multiplexed reactions for 549 individuals from four sites in Costa Rica. All loci were polymorphic, ranging from three to 13 alleles per locus. Expected heterozygosity was estimated with the program tetrasat, and ranged from 0.21 to 0.74 across loci. These markers will be used for estimating pollen dispersal, seed dispersal, genetic structure and genetic diversity in fragmented landscapes.  相似文献   

10.
  • 1 The European bison Bison bonasus went through a severe bottleneck and became extinct in the wild 90 years ago. The lowland subspecies B. b. bonasus is the only one of three original subspecies that exists today. The entire species derives from only 12 founders, including a bull of the Caucasian subspecies B. b. caucasicus. Due to its presence among founders, there are two geographically separated genetic lines of European bison: the pure lowland (Bia?owie?a) line and the hybrid lowland‐Caucasian line.
  • 2 The lowland line of the European bison originates from only seven founders with an extremely varying genetic contribution. Approximately 80% of the genes in contemporary populations come from just two founders.
  • 3 A variety of genetic markers (mtDNA, microsatellites, single nucleotide polymorphism microchips) were applied to studies of the level of depletion of genetic variability in European bison.
  • 4 The lowland line of the European bison, the most extensively studied, shows very low levels of genetic variation, and has just half the microsatellite heterozygosity of the closely related American bison Bison bison. The effective population size (Ne) for the highly genetically homogenous lowland line in the Polish part of the Bia?owie?a Forest is estimated to be 23.5, far less than the census population size of 450.
  • 5 The average inbreeding level in lowland bison is almost 50%, although no signs of inbreeding depression have been observed. In contrast, inbreeding effects have been noticed in the lowland‐Caucasian line, which has a much lower average inbreeding level (28%). In spite of the apparently high fitness of the lowland bison, the lack of genetic variation and high level of inbreeding may present substantial threats in the future, especially in the context of potential epizootics.
  相似文献   

11.
Both mating system and population history can have large impacts on genetic diversity and population structure. Here, we use multilocus sequence data to investigate how these factors impact two closely related Brassicaceae species: the selfing Capsella rubella and the outcrossing C. grandiflora. To do this, we have sequenced 16 loci in approximately 70 individuals from 7 populations of each species. Patterns of population structure differ strongly between the two species. In C. grandiflora, we observe an isolation-by-distance pattern and identify three clearly delineated genetic groups. In C. rubella, where we estimate the selfing rate to be 0.90-0.94, the pattern is less clear with some sampling populations forming separate genetic clusters while others are highly mixed. The two species also have divergent histories. Our analysis gives support for a bottleneck approximately 73 kya (20-139 kya) in C. rubella, which most likely represents speciation from C. grandiflora. In C. grandiflora, there is moderate support for the standard neutral model in 2 of 3 genetic clusters, while the third cluster and the total data set show evidence of expansion. It is clear that mating system has an impact on these two species, for example affecting the level of genetic variation and the genetic structure. However, our results also clearly show that a combination of past and present processes, some of which are not affected by mating system, is needed to explain the differences between C. rubella and C. grandiflora.  相似文献   

12.
In the last few years, the biogeography of many European plant species has been analyzed using molecular markers, and some consistent patterns of Pleistocenic differentiation and range fluctuations have been established. These studies mostly focused on perennial herbs or woody species, rarely considering annual taxa. This study focused on the annual Microthlaspi perfoliatum, which is distributed all over Europe and comprises three cytotypes. Morphologically, these cytotypes are hard to distinguish, although, based on molecular markers, they should be treated as two different species. Diploid and polyploid cytotypes had a different biogeographical history, with distinct glacial refugia. For the polyploids, a well-known distribution pattern of relict areas was confirmed, with Iberia, Italy, and the Balkans serving as primary Pleistocene refugia. Secondary refuge areas have been detected in southeastern France and neighboring Switzerland, with closer affinity to the Iberian refugium than to any other region based on allozyme and cpDNA haplotype data. For the diploids, two refugia have been characterized, one of which is congruent to the secondary refugium of the polyploids in France and Switzerland. The second refuge of diploid populations is located in unglaciated lowland areas of East Austria and Croatia. Isozyme and cpDNA haplotype data favor a postglacial colonization of diploid populations into Germany from Austrian lowland areas along the Danube River as well as from Switzerland. This scenario is also true for polyploids in Germany, Belgium, and Sweden.  相似文献   

13.
Switchgrass (Panicum virgatum L.) is an important crop for bioenergy feedstock development. Switchgrass has two main ecotypes: the lowland ecotype being exclusively tetraploid (2n = 4x = 36) and the upland ecotype being mainly tetraploid and octaploid (2n = 8x = 72). Because there is a significant difference in ploidy, morphology, growth pattern, and zone of adaptation between and within the upland and lowland ecotypes, it is important to discriminate switchgrass plants belonging to different genetic pools. We used 55 simple sequence repeats (SSR) loci and six chloroplast sequences to identify patterns of variation between and within 18 switchgrass cultivars representing seven lowland and 11 upland cultivars from different geographic regions and of varying ploidy levels. We report consistent discrimination of switchgrass cultivars into ecotype membership and demonstrate unambiguous molecular differentiation among switchgrass ploidy levels using genetic markers. Also, SSR and chloroplast markers identified genetic pools related to the geographic origin of the 18 cultivars with respect to ecotype, ploidy, and geographical, and cultivar sources. SSR loci were highly informative for cultivar fingerprinting and to classify plants of unknown origin. This classification system is the first step toward developing switchgrass complementary gene pools that can be expected to provide a significant heterotic increase in biomass yield.  相似文献   

14.
Identification of the source population of biological invasions has important consequences for the effective control and management of the invader. Tall annual willowherb (Epilobium brachycarpum) is a relatively recent and rapidly spreading neophyte in Europe that was first detected in 1978. Populations of tall annual willowherb from Germany and northern France were analysed by AFLP fingerprinting together with samples from five different localities in its native range in western North America. Three genetically different groups were found corresponding to different altitude zones in the native range. The FST is high among all samples indicating a strong genetical separation of the three groups. Invasive populations showed much lower genetic diversity than the native population. Additionally invasive populations revealed genetic affinities to North American specimens originating particularly from high mountain areas. The two large German populations and the population from northern France are genetically distinct while the individuals within the populations are genetically uniform. This suggests multiple introduction events rather than one introduction with consequent spreading across Europe. A third small German population from Treis-Karden in the Mosel valley clusters with North American lowland populations but suffers from frost damage and its permanent establishment is doubtful.  相似文献   

15.
为了研究不同水分条件下组成型根系性状和适应性根系性状的遗传机制,利用由IR64/Azucena发展的双单倍体(DH)群体分析了淹水和干旱条件下水稻幼苗种子根长(SRL)、不定根数(ARN)、总根干重(RW)及其对应的相对参数(干旱和淹水条件下根系性状的比值)的QTLs。淹水与干旱条件下检测到一个共同的种子根长QTL和一个共同的总根干重QTL。同时对前人发表的遗传群体定位的根系性状QTLs进行比较分析,检测到几个共同的根系性状QTLs。对与细胞伸长、分裂相关的候选基因进行了定位,其中4个细胞壁相关的ESTs(OsEXP2,OsEXP4,EXT和Xet)被定位在与不同水分条件下检测出的根系性状QTLs的相同区间。  相似文献   

16.
The aborigines of Taiwan represent the indigenous inhabitants of the island at the time of the arrival of the Chinese from the mainland. Linguistically, the aboriginal Taiwanese are related to the Malayo-Polynesian-speaking inhabitants of Indonesia and the Philippines. Three tribes occupied lowland areas while six tribes occupied highland areas. Previous studies indicate that genetic markers associated with malaria occur in lowland populations. Though the GM haplotypes are demonstrated to be very useful in the measure of population affinities, the possibility of malarial selection on this locus could affect studies of population affinity. The present work is a case study to see whether a subdivided insular population under a possible selective load will provide divergent clustering analysis depending on the population sampled. Immunoglobulin allotype (GM and KM) profiles were generated on 230 lowland and 407 highland Taiwan Aborigines from the nine tribes. A highly significant difference in GM haplotype distribution was detected between lowland and highland populations (adjusted G = 69.408, 2 df [degrees of freedom], p < 0.00001). There were no significant differences in KM*1 frequency by altitude. The Taiwan Aboriginal GM and KM frequencies were compared to data from Indonesians, Vietnamese, Thai, Malay, Chinese from Taiwan, and Ryukyu Islanders from Okinawa using cluster analysis. The lowland populations plot among the Thai (N, NC) and Malayan Aborigines. In contrast, the highland and total Taiwan Aborigine samples plot with the Indonesian, Vietnamese, and Malayan Negrito samples. Thus, depending on the populations of Taiwan Aborigines used, different conclusions could be reached. The highland population supports the published linguistic ties; however, the lowland population does not support the linguistic relationship with Indonesian populations but is more closely related to Thai and Malays, or reflects a similar selection history.  相似文献   

17.
Mycosphaerella graminicola populations were examined in France with microsatellite markers and PCR-SSCP analysis of partial actin and β-tubulin encoding sequences. A total of 363 isolates was sampled in 2005 from 17 provinces, and genotypes from corresponding strains were characterized. Unique haplotypes comprised 84% of the population, and gene diversity was high nationwide (0.70) and locally. A moderate genetic differentiation (G(ST) = 0.18) was found and indicated that in France the M. graminicola population was more structured than in other previously studied European countries. Bayesian structure analysis identified three genetic clusters distributed among the 17 provinces. Our results highlighted the potential for the adaptation of the fungus to local conditions, leading to genetic clusters among the French population of the fungus as well as genotype flow between regional clusters.  相似文献   

18.
We examined the consequences of barriers, stream architecture and putative dispersal capability on levels of genetic differentiation among populations of the freshwater fish Craterocephalus stercusmuscarum. Seven polymorphic allozyme loci and sequences of a 498-bp fragment of the ATPase 6 mitochondrial DNA (mtDNA) gene were used to assess patterns of genetic variation among 16 populations from upland and lowland streams of five drainages in northern Queensland, Australia. Concordant patterns at both genetic markers revealed that there were significant levels of genetic subdivision among all populations, while an analysis of molecular variation showed that the distribution of genetic diversity was not consistent with contemporary drainage structure. There were reciprocally monophyletic mtDNA clades and fixed or large frequency differences at allozyme loci either side of instream barriers such as waterfalls. This implied barriers were effective in restricting gene flow between upland and lowland populations separated by waterfalls. However, there were two genetically distinct groups in upland areas, even within the same subcatchment, as well as high levels of genetic subdivision among lowland populations, suggesting barriers alone do not explain the patterns of genetic diversity. The data revealed a complex phylogeographic pattern, which we interpreted to be the result of one or more invasion events of independent lineages to different sections of each drainage, possibly mediated by well documented geomorphological changes. Our results highlight the importance of earth structure and history in shaping population genetic structure in stream organisms where dispersal capability may be limited, and reveal that the contemporary structure of drainages is not necessarily a good indicator of genetic relationships among populations.  相似文献   

19.
Genetic diversity among 49 Indian accessions of rice (Oryza sativa subsp. indica), including 29 landraces from Jeypore, 12 modern cultivars, and 8 traditional cultivars from Tamil Nadu, was investigated using AFLP markers. In total, nine primer combinations revealed 664 AFLPs, 408 of which were found to be polymorphic. The percentage of polymorphic AFLPs was approximately the same within the cultivars and landraces. Similar results were obtained when genetic diversity values were estimated using the Shannon-Weiner index of diversity. Genetic diversity was slightly higher in the modern cultivars than in the traditional cultivars from Tamil Nadu. Among the landraces from Jeypore, the lowland landraces showed the highest diversity. The present study showed that the process of breeding modern cultivars did not appear to cause significant genetic erosion in rice. Cluster analysis and the first component of principle component analysis (PCA) both showed a clear demarcation between the cultivars and landraces as separate groups, although the genetic distance between them was narrow. The modern cultivars were positioned between the landraces from Jeypore and the traditional cultivars from Tamil Nadu. The second component of PCA further separated medium and upland landraces from lowland landraces, with the lowland landraces found closest to the traditional and modern cultivars.  相似文献   

20.
The annotated Arabidopsis genome sequence was exploited as a tool for carrying out comparative analyses of the Arabidopsis and Capsella rubella genomes. Comparison of a set of random, short C. rubella sequences with the corresponding sequences in Arabidopsis revealed that aligned protein-coding exon sequences differ from aligned intron or intergenic sequences in respect to the degree of sequence identity and the frequency of small insertions/deletions. Molecular-mapped markers and expressed sequence tags derived from Arabidopsis were used for genetic mapping in a population derived from an interspecific cross between Capsella grandiflora and C. rubella. The resulting eight Capsella linkage groups were compared to the sequence maps of the five Arabidopsis chromosomes. Fourteen colinear segments spanning approximately 85% of the Arabidopsis chromosome sequence maps and 92% of the Capsella genetic linkage map were detected. Several fusions and fissions of chromosomal segments as well as large inversions account for the observed arrangement of the 14 colinear blocks in the analyzed genomes. In addition, evidence for small-scale deviations from genome colinearity was found. Colinearity between the Arabidopsis and Capsella genomes is more pronounced than has been previously reported for comparisons between Arabidopsis and different Brassica species.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号