首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Population divergence in geographic isolation is due to a combination of factors. Natural and sexual selection may be important in shaping patterns of population differentiation, a pattern referred to as ‘isolation by adaptation’ (IBA). IBA can be complementary to the well‐known pattern of ‘isolation by distance’ (IBD), in which the divergence of closely related populations (via any evolutionary process) is associated with geographic isolation. The barn swallow Hirundo rustica complex comprises six closely related subspecies, where divergent sexual selection is associated with phenotypic differentiation among allopatric populations. To investigate the relative contributions of selection and geographic distance to genome‐wide differentiation, we compared genotypic and phenotypic variation from 350 barn swallows sampled across eight populations (28 pairwise comparisons) from four different subspecies. We report a draft whole‐genome sequence for H. rustica, to which we aligned a set of 9493 single nucleotide polymorphisms (SNPs). Using statistical approaches to control for spatial autocorrelation of phenotypic variables and geographic distance, we find that divergence in traits related to migratory behaviour and sexual signalling, as well as geographic distance, together explain over 70% of genome‐wide divergence among populations. Controlling for IBD, we find 42% of genomewide divergence is attributable to IBA through pairwise differences in traits related to migratory behaviour and sexual signalling alone. By (i) combining these results with prior studies of how selection shapes morphological differentiation and (ii) accounting for spatial autocorrelation, we infer that morphological adaptation plays a large role in shaping population‐level differentiation in this group of closely related populations.  相似文献   

2.
Evolution of reproductive isolation is an important process, generating biodiversity and driving speciation. To better understand this process, it is necessary to investigate factors underlying reproductive isolation through various approaches but also in various taxa. Previous studies, mainly focusing on diploid animals, supported the prevalent view that reproductive barriers evolve gradually as a by-product of genetic changes accumulated by natural selection by showing a positive relationship between the degree of reproductive isolation and genetic distance. Haplodiploid animals are expected to generate additional insight into speciation, but few studies investigated the prevalent view in haplodiploid animals. In this study, we investigate whether the relationship also holds in a haplodiploid spider mite, Amphitetranychus viennensis (Zacher). We sampled seven populations of the mite in the Palaearctic region, measured their genetic distance (mtDNA) and carried out cross experiments with all combinations. We analyzed how lack of fertilization rate (as measure of prezygotic isolation) as well as hybrid inviability and hybrid sterility (as measures of postzygotic isolation) varies with genetic distance. We found that the degree of reproductive isolation varies among cross combinations, and that all three measures of reproductive isolation have a positive relationship with genetic distance. Based on the mtDNA marker, lack of fertilization rate, hybrid female inviability and hybrid female sterility were estimated to be nearly complete (99.0–99.9% barrier) at genetic distances of 0.475–0.657, 0.150–0.209 and 0.145–0.210, respectively. Besides, we found asymmetries in reproductive isolation. The prevalent view on the evolution of reproductive barriers is supported in the haplodiploid spider mite we studied here. According to the estimated minimum genetic distance for total reproductive isolation in parent population crosses in this study and previous work, a genetic distance of 0.15–0.21 in mtDNA (COI) appears required for speciation in spider mites. Variations and asymmetries in the degree of reproductive isolation highlight the importance of reinforcement of prezygotic reproductive isolation through incompatibility and the importance of cytonuclear interactions for reproductive isolation in haplodiploid spider mites.  相似文献   

3.
Genetic diversity in clonal organisms includes two distinct components, (i) the diversity of genotypes or clones (i.e. genotypic richness) in a population and (ii) that of the alleles (i.e. allelic and gene diversity within populations, and differentiation between populations). We investigated how population differentiation and genotypic components are associated across a gradient of eutrophication in a clonal marine plant. To that end, we combined direct measurements of sexual allocation (i.e. flower and seed counts) and genotypic analyses, which are used as an estimator of effective sexual reproduction across multiple generations. Genetic differentiation across sites was also modelled according to a hypothesis here defined as isolation‐by‐demography, in which we use population‐specific factors, genotypic richness and eutrophication that are hypothesized to affect the source‐sink dynamics and thus influence the genetic differentiation between a pair of populations. Eutrophic populations exhibited lower genotypic richness, in agreement with lower direct measurements of sexual allocation and contemporaneous gene flow. Genetic differentiation, while not explained by distance, was best predicted by genotypic richness and habitat quality. A multiple regression model using these two predictors was considered the best model (R2 = 0.43). In this study, the relationship between environment and effective sexual–asexual balance is not simply (linearly) predicted by direct measurements of sexual allocation. Our results indicate that population‐specific factors and the isolation‐by‐demography model should be used more often to understand genetic differentiation.  相似文献   

4.
Observed patterns of genetic structure result from the interactions of demographic, physical, and historical influences on gene flow. The particular strength of various factors in governing gene flow, however, may differ between species in biologically relevant ways. We investigated the role of demographic factors (population size and sex-biased dispersal) and physical features (geographic distance, island size and climatological winds) on patterns of genetic structure and gene flow for two lineages of Greater Antillean bats. We used microsatellite genetic data to estimate demographic characteristics, infer population genetic structure, and estimate gene flow among island populations of Erophylla sezekorni/E. bombifrons and Macrotus waterhousii (Chiroptera: Phyllostomidae). Using a landscape genetics approach, we asked if geographic distance, island size, or climatological winds mediate historical gene flow in this system. Samples from 13 islands spanning Erophylla's range clustered into five genetically distinct populations. Samples of M. waterhousii from eight islands represented eight genetically distinct populations. While we found evidence that a majority of historical gene flow between genetic populations was asymmetric for both lineages, we were not able to entirely rule out incomplete lineage sorting in generating this pattern. We found no evidence of contemporary gene flow except between two genetic populations of Erophylla. Both lineages exhibited significant isolation by geographic distance. Patterns of genetic structure and gene flow, however, were not explained by differences in relative effective population sizes, island area, sex-biased dispersal (tested only for Erophylla), or surface-level climatological winds. Gene flow among islands appears to be highly restricted, particularly for M. waterhousii, and we suggest that this species deserves increased taxonomic attention and conservation concern.  相似文献   

5.
Classical speciation concepts focus almost exclusively on the evolution of strict reproductive isolation as a prerequisite for speciation. However, there is a growing body of evidence indicating that speciation is possible despite or even triggered by gene flow among populations or species. Previous findings indicate that introgressive hybridization is a dominant phenomenon in the adaptive radiation of sailfin silversides (Telmatherinidae) endemic to Lake Matano (Sulawesi). In this study, we investigate patterns of genotypic and phenotypic variation of “sharpfin” sailfin silversides in the outlet area of L. Matano and six locations along River Petea, which is the only connection between L. Matano and other lakes and streams of the Malili Lakes system. Fieldwork revealed no hints for a previously cited major waterfall in River Petea, which was thought to separate L. Matano’s sailfin silverside radiation from the diversity of the downstream lake drainages. Likewise, genomic (AFLP) and morphometric data suggest high levels of gene flow between upper and lower stretches of this river, as well as between riverine Petea and lacustrine Matano populations. Increasing levels of genotypic and phenotypic dissimilarity are correlated with distance over a remarkably short geographic range.  相似文献   

6.
7.
Busseola fusca (Fuller) (Lepidoptera: Noctuidae) is one of the major cereal pests in sub-Saharan Africa. Previous phylogeographic investigations on samples collected in Kenya, Cameroon and West-Africa showed the presence of three main clades (W, KI, KII) originated from populations isolated in West and East Africa around one million years ago. Demographic and phylogenetic analyses suggested that this event was followed by local demographic expansion and isolation by distance. These hypotheses were tested by a more comprehensive sampling across B. fusca’s geographic range in Africa. Comparisons of sequences of partial mitochondrial DNA gene (cytochrome b) from 489 individuals of 98 localities in southern, central, eastern and western African countries confirmed the presence of the three main clades. Phylogenetic, F-statistics, demographic parameters and nested clade phylogeographic analyses confirmed that the clades experienced geographic and demographic expansion with isolation by distance after their isolation in three refuge areas. The geographic range of clade KII, already known from East to Central sub-Saharan Africa was extended to Southern Africa. Mismatch distribution analysis and the negative values of Tajima’s D index are consistent with a demographic expansion hypothesis for these three clades. Significant genetic differentiations were revealed at various hierarchical levels by analysis of molecular variance (AMOVA). Hypotheses about the geographic origin of the three main clades are detailed.  相似文献   

8.
Loral extinction along the intrinsic isolation gradient within metapopulations is reviewed with particular reference to a study of the pool frog ( Rana lessonaé ) on the northern periphery of its geographical range. As in the pool frog, many other different tax a show significantly increased extinction probabilities with increased interpopulation distance. Present data imply that the relative impact of demographic and genetic factors in such stochastic extinctions depends on the genetic history of the metapopulation; data also imply that populations fluctuate more greatly in size than predicted from demographic models which have been commonly referred to. By mitigating such fluctuations and inbreeding, and compensating for emigration, immigration undoubtedly 'rescues' local populations from extinction. In this way, and not just in terms of recolonization, connectivity is concluded to be a key to metapopulation persistence. Implications for conservation are also presented.  相似文献   

9.
In the present study, a strategy was proposed for constructing plant core subsets by clusters based on the combination of continuous data for genotypic values and discrete data for molecular marker InformaUon. A mixed linear model approach was used to predict genotyplc values for eliminating the environment effect. The "mixed genetic distance" was designed to solve the difficult problem of combining continuous and discrete data to construct a core subset by cluster. Four commonly used genetic distances for continuous data (Euclidean distance, standardized Euclidean distance, city block distance, and Mahalanobls distance) were used to assess the validity of the conUnuous data part of the mixed genetic distance; three commonly used genetic distances for discrete data (cosine distance, correlaUon distance, and Jaccard distance) were used to assess the validity of the discrete data part of the mixed genetic distance, A rice germplasm group with eight quantitative traits and information for 60 molecular markers was used to evaluate the validity of the new strategy. The results suggest that the validity of both parts of the mixed geneUc distance are equal to or higher than the common geneUc distance. The core subset constructed on the basis of a combination of data for genotyplc values and molecular marker information was more representative than that constructed on the basis of data from genotypic values or molecular marker informaUon alone. Moreover, the strategy of using combined data was able to treat dominant marker informaUon and could combine any other continuous data and discrete data together to perform cluster to construct a plant core subset.  相似文献   

10.
Genetic variation at the phosphoglucomutase-1 (PGM) and acid phosphatase (ACP) loci, in 160 and 120 European and Asian populations, respectively, is described by spatial autocorrelation statistics and directional variograms. Short-distance patterns of gene frequencies correspond to those predicted by models of isolation by distance, but long-range differentiation of populations is observed as well. A possible role of climatic selection in maintaining the PGM polymorphism is supported by the north-south orientation of the gradient for that locus, but not by biochemical evidence. By and large, the observed patterns of gene frequencies seem to reflect a combination of demographic processes, subdivision and isolation of local populations among them.  相似文献   

11.
Drosophila polymorpha is a widespread species that exhibits abdominal pigmentation variation throughout its range. To gain insight into this variation we combined phenotypic and genotypic data to test a series of nested hypotheses. First, we tested the null hypothesis that geographic variation in pigmentation is due to neutral factors. We used nested clade analysis to examine the distribution of haplotypes from a nuclear and a mitochrondrial locus. Restricted gene flow via isolation by distance, the primary inference of this phylogeographic analysis, was then used to generate and test the hypothesis of increasing average abdominal pigmentation difference with increasing geographic distance. We found no correlation between geographic distance and phenotypic distance. We then tested the hypothesis that pigmentation is affected by environmental differences among localities. We found a significant effect of habitat type on the average abdominal pigmentation phenotype of different localities. Finally, we tested the hypothesis that pigmentation in D. polymorpha is associated with desiccation resistance. We found that dark individuals of both sexes survived significantly longer in a desiccating environment than light individuals. These patterns combined lead us to hypothesize that abdominal pigmentation variation in D. polymorpha is important in mediating the organism's interactions with local ecological factors.  相似文献   

12.
A. Pornon  N. Escaravage 《Plant Ecology》1999,141(1-2):145-150
Genotypic structure of a closed population of the clonal ericaceous shrub Rhododendron ferrugineum is examined in the light of two independent studies previously conducted on this species. In the first study, spatial distribution of genotypes in the closed population was inferred from the amplified fragment length polymorphism (AFLP) procedure. Age of clones was estimated using their spatial extent and the annual growth rate of shoots. In the second study, ramet demography was studied in the three most representative stages of shrub invasion on two different sites, including the site where the population investigated by AFLP grew. The demographic data recorded were the area occupied by ramets and ramet age, and from this information the developmental pattern of Rhododendron populations was determined. Additional data such as genet density and distance between genets were calculated.These two sources of information allow us to propose that all or most of the clones detected in the closed population established at the early successional stage, and that the present genotypic structure was established several hundred years ago, long before the population reached total closure. Hypotheses concerning the future development of this genotypic structure are discussed.  相似文献   

13.
This is the first comprehensive analysis of vascular plant diversity patterns in the Aleutian Islands to identify and quantify the impact of Aleutian Island distance dispersal barriers, geographical, ecological and anthropogenic factors. Data from public Open Access databases, printed floristic accounts, and from collections made by the primary author were used to develop an Aleutian floristic database. The most common plant distribution pattern was “an eastern origin community”, though it compared similarly to the “Western” and “Widespread” distribution pattern. We established an ecological plant community composition class for each island, based on clustering species assemblage dissimilarity measurements (Jaccard Index), and a measurement of phylogenetic dissimilarity (UniFrac). We modelled these composition classes and species richness values in non‐parametric algorithmic models and concepts (data cloning using machine learning, stochastic boosting‐ TreeNet) based on classic and Aleutians‐specific island biogeography hypotheses. Plant species richness is strongly associated with the equilibrium model variables of area and island isolation, as well as distance to the Alaska Peninsula, and island total stream length. Species composition is strongly associated with the landmass groups during the last glacial maximum, maximum island elevation, island isolation and island area. Phylogenetic composition is associated with island area, distance from the islands to the Chukotka Peninsula, maximum island elevation, island geologic age, and island isolation. This study extends the equilibrium theory of island biogeography by including additional drivers of diversity during the Anthropocene, such as the landmass during the LGM, as well as factors that may be related to anthropogenic extinction rate.  相似文献   

14.
The diversity of spatial patterns of 61 allele frequencies for 20 genetic systems (15 loci) in Italy is presented. Blood antigens, enzymes, and proteins were analyzed. The total number of data points over all systems and localities was 1119. We used homogeneity tests, one-dimensional and directional spatial correlograms, and SYMAP interpolated surfaces. The data matrices were reduced by clustering techniques to reveal the principal patterns. Only a few allele frequency surfaces are strongly correlated across loci. All systems but one (ADA) exhibit significant heterogeneity in allele frequencies among the localities. Significant spatial patterns are shown by 27 of the 61 surfaces. Only one pattern (cde; system 4.19) is clinal; another (PGM1) exhibits a pure isolation by distance pattern; the others show long-range differentiation in addition to the short-distance decline of autocorrelation expected under isolation by distance. There is a marked decline in overall genetic similarity with distance for most variables. The 27 spatially significant alleles in Italy are also significantly patterned in Europe, but in all but 2 cases the country-wide and continent-wide patterns differ. The Italian patterns are due to forces specific to Italy. Differential selection for alleles associated with malaria is still evident. Whereas short-range differentiation can with malaria is still evident. Whereas short-range differentiation can be explained by isolation by distance, long-range differentiation appears to be due to demographic changes in certain populations that may be maintained by physical and linguistic isolation.  相似文献   

15.
Sequence analysis of the mtDNA control region of four samples (n=195) of Atlantic bonito (Sarda sarda) collected along the northern Mediterranean reveals two clades about 8.1% divergent distributed in an east-west cline that fits an isolation by distance (IBD) model. The vicariant origin of this genetic discontinuity is proposed, supported in addition to the cline, by evidence of distinct historical demographic factors affecting each clade. Variation in Clade I suggests a large stable population, whereas Clade II displays a star-like phylogeny indicative of a population bottleneck followed by sudden expansion. The historical demography and biogeographic scenario is as follows: (1) Allopatric isolation during the Pleistocene give rise to Clade I (Atlantic) and Clade II (Mediterranean); (2) Population collapse followed by sudden expansion gives rise to the characteristic star-like phylogeny of Clade II; (3) Secondary contact as Clade I enters from the Atlantic, and (4) An east-west cline is maintained by IBD.  相似文献   

16.
Historical abiotic factors such as climatic oscillations and extreme climatic events as well as biotic factors have shaped the structuring of species' genetic diversity. In obligate species‐specific mutualisms, the biogeographic histories of the interacting species are tightly linked. This could be particularly true for nuclear genes in the Ficus‐pollinating wasp mutualistic association as the insects disperse pollen from their natal tree. In this study, we compare spatial genetic structure of plant and pollinator for the Ficus hirtaValisia javana association throughout southeast China including Hainan Island, for both nuclear and cytoplasmic markers. We show that dispersal of the insect leads to plant and insect presenting similar signatures of lack of genetic isolation by distance for nuclear genes on the continent over a distance of 1000 km. But we also show that the demographic histories of plant and insect are strikingly different. This is in agreement with extreme climatic events leading to transient regional extinctions of the insects, associated with local survival of the plants. We also observe evidence of genetic differentiation for both wasps and fig‐tree between the continent and Hainan Island, although the Qiongzhou Strait is only on average 30 km wide, suggesting that geographic isolation by itself has not been sufficient to generate this differentiation. Hence, our results suggest that in highly dispersive mutualistic systems, isolation‐by‐dispersal limitation across a geographic barrier could be supplemented by isolation by adaptation, and maybe by coevolution, allowing further genetic divergence. In such systems, species may frequently be composed of a single population.  相似文献   

17.
Evolutionary processes can be influenced by several factors, such as geographic isolation, environmental selection, and sensory variation. For most nocturnal bats, echolocation is the primary sensory system used to prey and communicate, and plays important roles in chiropteran diversification and evolution. Understanding the relative contribution of geography, the environment, and this sensory system to population genetic divergence can elucidate the processes involved in bat incipient speciation and evolution. In this study, we collected spatial and environmental information, echolocation calls, as well as the previously published genetic data (six microsatellite loci and the mitochondrial cytochrome b gene) of widely distributed Rhinolophus episcopus populations to test three hypotheses for nuclear and mitochondrial divergence (isolation by distance, isolation by environment, and isolation by sensory variation) and unveil the factors that drive intraspecific genetic differentiation. The moderate level of nuclear differentiation was correlated with geographic/spatial distance and acoustic variation, whereas the relatively high level of mitochondrial differentiation was mainly associated with acoustic divergence. No significant correlation was observed between genetic divergence and environmental variables. Among the three factors, acoustic divergence explained the highest percentage of both nuclear and mitochondrial divergence. Thus, our results indicate that sensory variation may have played important roles in driving population isolation early in bat speciation, which is consistent with the hypothesis of isolation by sensory variation. Our study emphasizes the need to consider more factors, especially sensory traits, and combine multiple statistical methods in landscape genetic studies to test their potential contributions to driving population divergence.  相似文献   

18.
Phylogeographic, nested clade, and mismatch analyses of mitochondrial DNA (mtDNA) variation were used to infer the temporal dynamics of distributional and demographic history of brown trout (Salmo trutta). Both new and previously published data were analyzed for 1,794 trout from 174 populations. This combined analysis improved our knowledge of the complex evolutionary history of brown trout throughout its native Eurasian and North African range of distribution in many ways. It confirmed the existence of five major evolutionary lineages that evolved in geographic isolation during the Pleistocene and have remained largely allopatric since then. These should be recognized as the basic evolutionarily significant units within brown trout. Finer phylogeographic structuring was also resolved within major lineages. Contrasting temporal juxtaposition of different evolutionary factors and timing of major demographic expansions were observed among lineages. These unique evolutionary histories have been shaped both by the differential latitudinal impact of glaciations on habitat loss and potential for dispersal, as well as climatic impacts and landscape heterogeneity that translated in a longitudinal pattern of genetic diversity and population structuring at more southern latitudes. This study also provided evidence for the role of biological factors in addition to that of physical isolation in limiting introgressive hybridization among major trout lineages.  相似文献   

19.
Mesenchymal stem cells (MSC), because of their multipotency and ease of purification and amplification, are an ideal stem cell source for cell therapies. Bone-marrow-derived stem cells (BMSC) can be used to develop MSC-like immortalized cell lines with large proliferation and differentiation potentialities. Their immortalized status prevents the maintenance of MSC function and characters; this can be negated by modifying the isolation and maintenance protocol. Adult murine BMSC were isolated and maintained in media without additional growth factors together with passage-dependent reseeding following trypsinization. Cells maintained over 25 passages were considered as putative cell lines and characterized. The phenotypic and genotypic characteristics and multilineage differentiation potential of the cells were assessed by morphological, phenotypic, and molecular assays at various passages. The putative BMSC cell lines showed the characteristics of MSC and were able to maintain these characteristics, even after immortalization. The phenotypic data demonstrated difference among two cell lines; this was further validated by the difference in their multilineage differentiation potential following specific induction. More importantly, no changes were observed in the genotypic level in comparison with control cells, even after more than 50 passages. Our protocol thus advances the isolation and maintenance of BMSC and the development of putative BMSC cell lines that maintain characteristics of MSC, including multilineage differentiation potential, after more than 40 passages.  相似文献   

20.
F. Rousset 《Genetics》1997,145(4):1219-1228
I reexamine the use of isolation by distance models as a basis for the estimation of demographic parameters from measures of population subdivision. To that aim, I first provide results for values of F-statistics in one-dimensional models and coalescence times in two-dimensional models, and make more precise earlier results for F-statistics in two-dimensional models and coalescence times in one-dimensional models. Based on these results, I propose a method of data analysis involving the regression of F(ST)/(1 - F(ST)) estimates for pairs of subpopulations on geographic distance for populations along linear habitats or logarithm of distance for populations in two-dimensional habitats. This regression provides in principle an estimate of the product of population density and second moment of parental axial distance. In two cases where comparison to direct estimates is possible, the method proposed here is more satisfactory than previous indirect methods.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号