首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Ten primer pairs were screened to develop single nucleotide polymorphism (SNP) TaqMan assays that will distinguish California golden trout and some rainbow trouts (Oncorhynchus mykiss sspp., O. m. aguabonita) from the Paiute and Lahontan cutthroat trouts (Oncorhynchus clarkii seleniris, O. c. henshawi). From these 10 primer pairs, one mitochondrial and five nuclear fixed SNP differences were discovered and developed into TaqMan assays. These six assays will be useful for characterizing and monitoring hybridization between these groups. Additional Oncorhynchus clarkii sspp. and Oncorhynchus mykiss sspp. were assayed to determine if these assays are useful in closely related species.  相似文献   

2.
Interspecific hybridization represents a dynamic evolutionary phenomenon and major conservation problem in salmonid fishes. In this study we used amplified fragment length polymorphisms (AFLP) and mitochondrial DNA (mtDNA) markers to describe the extent and characterize the pattern of hybridization and introgression between coastal rainbow trout (Oncorhynchus mykiss irideus) and coastal cutthroat trout (O. clarki clarki). Hybrid individuals were initially identified using principle coordinate analysis of 133 polymorphic AFLP markers. Subsequent analysis using 23 diagnostic AFLP markers revealed the presence of F1, rainbow trout backcross, cutthroat trout backcross and later-generation hybrids. mtDNA analysis demonstrated equal numbers of F1 hybrids with rainbow and cutthroat trout mtDNA indicating reciprocal mating of the parental types. In contrast, rainbow and cutthroat trout backcross hybrids always exhibited the mtDNA from the recurrent parent, indicating a male hybrid mating with a pure female. This study illustrates the usefulness of the AFLP technique for generating large numbers of species diagnostic markers. The pattern of hybridization raises many questions concerning the existence and action of reproductive isolating mechanisms between these two species. Our findings are consistent with the hypothesis that introgression between anadromous populations of coastal rainbow and coastal cutthroat trout is limited by an environment-dependent reduction in hybrid fitness.  相似文献   

3.
A consolidated linkage map for rainbow trout (Oncorhynchus mykiss)   总被引:20,自引:0,他引:20  
Androgenetic doubled haploid progeny produced from a cross between the Oregon State University and Arlee clonal rainbow trout (Oncorhynchus mykiss) lines, used for a previous published rainbow trout map, were used to update the map with the addition of more amplified fragment length polymorphic (AFLP) markers, microsatellites, type I and allozyme markers. We have added more than 900 markers, bringing the total number to 1359 genetic markers and the sex phenotype including 799 EcoRI AFLPs, 174 PstI AFLPs, 226 microsatellites, 72 VNTR, 38 SINE markers, 29 known genes, 12 minisatellites, five RAPDs, and four allozymes. Thirty major linkage groups were identified. Synteny of linkage groups in our map with the outcrossed microsatellite map has been established for all except one linkage group in this doubled haploid cross. Putative homeologous relationships among linkage groups, resulting from the autotetraploid nature of the salmonid genome, have been revealed based on the placement of duplicated microsatellites and type I loci.  相似文献   

4.
A suite of 12 subspecies and species-specific single nucleotide polymorphism (species-specific SNP) markers was developed to distinguish rainbow trout (RT) Oncorhynchus mykiss from the four major subspecies of cutthroat trout: westslope cutthroat trout (WCT) Oncorhynchus clarki lewisi, Yellowstone cutthroat trout (YCT) Oncorhynchus clarki bouvieri, coastal cutthroat trout (CCT) Oncorhynchus clarki clarki, Lahontan cutthroat trout (LCT) Oncorhynchus clarki henshawi, and their hybrids. Several of the markers were linked to help strengthen hybrid determinations, and sex-specific species-specific SNP assays were also developed.  相似文献   

5.
Hybridization with introduced rainbow trout threatens most native westslope cutthroat trout populations. Understanding the genetic effects of hybridization and introgression requires a large set of high-throughput, diagnostic genetic markers to inform conservation and management. Recently, we identified several thousand candidate single-nucleotide polymorphism (SNP) markers based on RAD sequencing of 11 westslope cutthroat trout and 13 rainbow trout individuals. Here, we used flanking sequence for 56 of these candidate SNP markers to design high-throughput genotyping assays. We validated the assays on a total of 92 individuals from 22 populations and seven hatchery strains. Forty-six assays (82%) amplified consistently and allowed easy identification of westslope cutthroat and rainbow trout alleles as well as heterozygote controls. The 46 SNPs will provide high power for early detection of population admixture and improved identification of hybrid and nonhybridized individuals. This technique shows promise as a very low-cost, reliable and relatively rapid method for developing and testing SNP markers for nonmodel organisms with limited genomic resources.  相似文献   

6.
Thirty‐eight new microsatellite markers were developed for genome mapping and population genetics studies in rainbow trout (Oncorhynchus mykiss). The amount of polymorphism, percentage of heterozygosity and ability of each marker to amplify genomic DNA from other salmonids were recorded. Five markers were observed to be duplicated in the rainbow trout genome by containing more than one allele in homozygous (clonal) fish.  相似文献   

7.
Twenty‐four new microsatellite markers were developed for genome mapping and population genetics studies in rainbow trout (Oncorhynchus mykiss). The amount of polymorphism, percentage heterozygosity and ability of each marker to amplify genomic DNA from other salmonids were recorded. Seven markers were observed to be duplicated in the rainbow trout genome by containing more than one allele in homozygous (clonal) fish.  相似文献   

8.
Single nucleotide polymorphisms (SNPs) are a class of genetic markers that are well suited to a broad range of research and management applications. Although advances in genotyping chemistries and analysis methods continue to increase the potential advantages of using SNPs to address molecular ecological questions, the scarcity of available DNA sequence data for most species has limited marker development. As the number and diversity of species being targeted for large-scale sequencing has increased, so has the potential for using sequence from sister taxa for marker development in species of interest. We evaluated the use of Oncorhynchus mykiss and Salmo salar sequence data to identify SNPs in three other species (Oncorhynchus tshawytscha, Oncorhynchus nerka and Oncorhynchus keta). Primers designed based on O. mykiss and S. salar alignments were more successful than primers designed based on Oncorhynchus-only alignments for sequencing target species, presumably due to the much larger number of potential targets available from the former alignments and possibly greater sequence conservation in those targets. In sequencing approximately 89 kb we observed a frequency of 4.30 x 10(-3) SNPs per base pair. Approximately half (53/101) of the subsequently designed validation assays resulted in high-throughput SNP genotyping markers. We speculate that this relatively low conversion rate may reflect the duplicated nature of the salmon genome. Our results suggest that a large number of SNPs could be developed for Pacific salmon using sequence data from other species. While the costs of DNA sequencing are still significant, these must be compared to the costs of using other marker classes for a given application.  相似文献   

9.
Thirty‐two individuals representing coastal and inland populations of steelhead and rainbow trout (Oncorhynchus mykiss) were sequenced at 18 expressed sequence tags and nine microsatellite loci to identify single nucleotide polymorphisms. A total of 98 polymorphisms were discovered during the screen and 22 were developed into 5′ exonuclease assays (Taqman assays). Genotypes from TaqMan assays were compared to sequence data from individuals in the ascertainment panel to confirm proper allele designations. A larger number of samples (n = 192) from six regions were tested with the validated assays. Per‐locus FST values ranged from 0.001 to 0.414.  相似文献   

10.
In the Doubs River (Rhône drainage) two distinct brown trout ( S. trutta ) phenotypes are observed. One phenotype is locally called Doubs trout and is characterized by four black stripes on the sides, similar to perch ( Perca fluviatilis L.) and the other is the common phenotype of the fluviatile ecotype of brown trout, Salmo trutta f. fario . Protein data for three samples from the Doubs show that the Doubs trout belongs to the Mediterranean population group of brown trout, whereas the fario phenotype originates from stocking with hatchery strains of Atlantic basin origin. The two forms, however, do not hybridize freely. This is indicated by considerable gametic phase disequilibrium between alleles of hatchery and Doubs trout at one sampling site, and by lack of intermediate genotypes and phenotypes at another sampling site. The introgression patterns observed at the two sites suggest that differences in local habitat conditions can affect the degree of hybridization and introgression.  相似文献   

11.
Sexually immature rainbow trout were acclimated to small-volume (1 m3) holding tanks and then exposed to short-term stress to examine the relationship between feeding, stress, plasma ghrelin levels and other plasma stress parameters. Plasma ghrelin levels showed an increase 24 h after a single feed, plasma lactate and glucose levels decreased over the same period and plasma cortisol levels were low and constant. One hour of confinement stress resulted in elevations of plasma cortisol, glucose and lactate and depression of plasma ghrelin levels. In a separate experiment, 2 h of confinement stress also depressed feeding immediately after stress, concomitant with increases in plasma cortisol, lactate and glucose; however, in this case there was no change in plasma ghrelin concentrations. A repeat of the 2-h confinement experiment using fish that had not been acclimated to small-volume holding tanks produced a more marked elevation in plasma cortisol and a stronger suppression of feeding post-stress but in this case also, there was no change in plasma ghrelin levels. The results of this study confirm that feeding in rainbow trout is suppressed by confinement stress although the effect is transitory in this domesticated stock. Similar to that in other fishes, plasma ghrelin levels appear to be modulated by feeding status and may be influenced by stress, suggesting an orexigenic role for ghrelin in rainbow trout.  相似文献   

12.
DNA sequence data were collected and screened for single nucleotide polymorphisms (SNPs) in westslope cutthroat trout (Oncorhynchus clarki lewisi) and also for substitutions that could be used to genetically discriminate rainbow trout (O. mykiss) and cutthroat trout, as well as several cutthroat trout subspecies. In total, 260 expressed sequence tag‐derived loci were sequenced and allelic discrimination genotyping assays developed from 217 of the variable sites. Another 50 putative SNPs in westslope cutthroat trout were identified by restriction‐site‐associated DNA sequencing, and seven of these were developed into assays. Twelve O. mykiss SNP assays that were variable within westslope cutthroat trout and 12 previously published SNP assays were also included in downstream testing. A total of 241 assays were tested on six westslope cutthroat trout populations (N = 32 per population), as well as collections of four other cutthroat trout subspecies and a population of rainbow trout. All assays were evaluated for reliability and deviation from Hardy–Weinberg and linkage equilibria. Poorly performing and duplicate assays were removed from the data set, and the remaining 200 assays were used in tests of population differentiation. The remaining markers easily distinguished the various subspecies tested, as evidenced by mean GST of 0.74. A smaller subset of the markers (N = 86; average GST = 0.40) was useful for distinguishing the six populations of westslope cutthroat trout. This study increases by an order of magnitude the number of genetic markers available for the study of westslope cutthroat trout and closely related taxa and includes many markers in genes (developed from ESTs).  相似文献   

13.
With its small, diploid and completely sequenced genome, sorghum (Sorghum bicolor L. Moench) is highly amenable to genomics‐based breeding approaches. Here, we describe the development and testing of a robust single‐nucleotide polymorphism (SNP) array platform that enables polymorphism screening for genome‐wide and trait‐linked polymorphisms in genetically diverse S. bicolor populations. Whole‐genome sequences with 6× to 12× coverage from five genetically diverse S. bicolor genotypes, including three sweet sorghums and two grain sorghums, were aligned to the sorghum reference genome. From over 1 million high‐quality SNPs, we selected 2124 Infinium Type II SNPs that were informative in all six source genomes, gave an optimal Assay Design Tool (ADT) score, had allele frequencies of 50% in the six genotypes and were evenly spaced throughout the S. bicolor genome. Furthermore, by phenotype‐based pool sequencing, we selected an additional 876 SNPs with a phenotypic association to early‐stage chilling tolerance, a key trait for European sorghum breeding. The 3000 attempted bead types were used to populate half of a dual‐species Illumina iSelect SNP array. The array was tested using 564 Sorghum spp. genotypes, including offspring from four unrelated recombinant inbred line (RIL) and F2 populations and a genetic diversity collection. A high call rate of over 80% enabled validation of 2620 robust and polymorphic sorghum SNPs, underlining the efficiency of the array development scheme for whole‐genome SNP selection and screening, with diverse applications including genetic mapping, genome‐wide association studies and genomic selection.  相似文献   

14.
Eight polymerase chain reaction primer sets amplifying bi‐parentally inherited species‐specific markers were developed that differentiate between rainbow trout (Oncorhynchus mykiss) and various cutthroat trout (O. clarki) subspecies. The primers were tested within known F1 and first generation hybrid backcrosses and were shown to amplify codominantly within hybrids. Heterozygous individuals also amplified a slower migrating band that was a heteroduplex, caused by the annealing of polymerase chain reaction products from both species. These primer sets have numerous advantages for native cutthroat trout conservation including statistical genetic analyses of known crosses and simple hybrid identification.  相似文献   

15.
Restriction site variation in the Ikaros gene intron was used to assess the incidence of westslope cutthroat trout ( Oncorhynchus clarki lewisi ), rainbow trout ( O. mykiss ) and interspecific hybrids at 11 localities among eight streams tributary to the upper Kootenay River system in south-eastern British Columbia, Canada. Out of 356 fish assayed by this technique, hybrids ( n =16) were found at seven of the 11 sites across five different streams. Rainbow trout ( n =6) were found at two of the 11 sites. Analysis of hybrids with a second genetic marker (heat shock 71 intron) indicated that most represented either backcrosses to both westslope cutthroat and rainbow trout, or post F1 hybrids. Mitochondrial DNA analysis indicated that hybrid matings occur between male rainbow trout and female westslope cutthroat trout and vice versa. Comparison of present hybridization in five tributaries relative to an allozyme-based analysis in the mid-1980s, that documented hybrids in only a single tributary of seven that were common to the two studies, suggests that hybridization and introgression has increased in upper Kootenay River tributaries. The present analysis is a conservative estimate of genetic interaction between the species because introgression was not tested in the majority of samples. Identification of genetically pure westslope cutthroat trout populations, and why they might be resistant to introgression from rainbow trout, are crucial conservation priorities for this unique subspecies of cutthroat trout.  相似文献   

16.
We describe the isolation and characterization of 12 tetranucleotide microsatellites for Rio Grande cutthroat trout (Oncorhynchus clarkii virginalis) and rainbow trout (Oncorhynchus mykiss), and subsequently investigate their performance in Colorado River cutthroat trout (Oncorhynchus clarkii pleuriticus), greenback cutthroat trout (Oncorhynchus clarkii stomias) and Yellowstone cutthroat trout (Oncorhynchus clarki bouvieri). All 12 loci are polymorphic in all subspecies of O. clarkii examined.  相似文献   

17.
Scale patterns, maturational status and otolith microchemistry (strontium to calcium ratios) were analysed in sympatric anadromous and non-anadromous rainbow trout Oncorhynchus mykiss in the Santa Cruz River (Patagonia, Argentina) to investigate the life-history differences of anadromous and non-anadromous lifestyles and the association between maternal origin and progeny life history. The analyses revealed that both forms can give rise to one another, indicating a single population with alternative phenotypes. Anadromous fish smolted at ages 2 and 3 years, matured after 1 to 2 years in the ocean, and survived up to 11 years, spawning up to eight times. Non-anadromous fish survived up to 6 years, spawning up to three times. The extended reproductive life span associated with anadromy in this river suggests that increased energetic and physiological demands associated with ocean migration may not necessarily result in reduced postspawning survival, as has been suggested for salmonids in general. Alternatively, reduction in parity may be regarded as the evolutionary outcome of reproductive traits resulting from the adoption of anadromy ( i.e. augmented reproductive investment) coupled with long-range migrations to and from the ocean. The life-history patterns of Santa Cruz River rainbow trout provide a natural experiment for investigating the evolutionary transition and maintenance of anadromy and non-anadromy within salmonid populations.  相似文献   

18.
对特异核苷酸序列的高选择性检测在生物医学研究和临床检测中日趋重要. 纳米金特殊的光学性质、电学性质、化学性质、以及良好的生物相容性,使之成为检测生物大分子的首选工具.本文介绍了几种典型的基因突变检测及单核苷酸多态性(SNP)分析系统:基因芯片、生物传感器和光学检测系统.综述了多种颇有新意的检测方法和原理,详细阐明了它们的检测机制和研究进展,分析并比较了纳米金不同的作用方式,为纳米金在突变检测上的进一步研究提供了一定思路和参考.  相似文献   

19.
D. Luo  X. Ma  J. Bai  Z. Zhou  F. Wang  A. Wang  J. Wang 《Animal genetics》2018,49(4):340-344
Timidity in dogs is a trait with high heritability. However, the relevant genetic factors and markers associated with this condition are largely unknown. The function of the catechol‐O‐methyl transferase (COMT) gene has been found to be associated with human fearful or anxious emotions, and the COMT:p.Val158Met polymorphism locus is significantly related to anxious behavior. In the present study, the correlation between timidity and four single nucleotide polymorphism (SNP) variations (C.‐1666C>G c.39A>G, c.216G>A, c.482G>A) of the COMT gene was investigated in dogs. The evaluation was based on the dog courage assessment assay and a genotype and haplotype analysis in Labrador Retrievers (LR) and Golden Retrievers (GR). The principal components analysis factor structure of the courage phenotype was invariant between LR and GR. Sex, breed and age had no statistically significant effect on the timidity of the dogs. All SNP loci detected were in Hardy–Weinberg equilibrium. The c.39A>G locus was removed in the subsequent association analysis due to the significant difference between LR and GR in genotype distributions. Intriguingly, the genotypes and haplotypes of the COMT gene were significantly and highly correlated with the timidity of LR and GR. The A alleles of the COMT:c.216G>A and c.482G>A loci appeared to play a dominant role in the timid behavior of the dogs. This result supports and broadens the warrior/worrier hypothesis and will have important implications for the understanding of the evolution of temperament in dogs. Additionally, the results provide predictive genetic markers for temperament in dogs.  相似文献   

20.
Native salmonid fish have been displaced worldwide by nonnatives through hybridization, competition, and predation, but the dynamics of these factors are poorly understood. We apply stochastic Lotka–Volterra models to the displacement of cutthroat trout by rainbow/hybrid trout in the Snake River, Idaho, USA. Cutthroat trout are susceptible to hybridization in the river but are reproductively isolated in tributaries via removal of migratory rainbow/hybrid spawners at weirs. Based on information-theoretic analysis, population data provide evidence that hybridization was the primary mechanism for cutthroat trout displacement in the first 17 years of the invasion. However, under some parameter values, the data provide evidence for a model in which interaction occurs among fish from both river and tributary subpopulations. This situation is likely to occur when tributary-spawned cutthroat trout out-migrate to the river as fry. The resulting competition with rainbow/hybrid trout can result in the extinction of cutthroat trout even when reproductive segregation is maintained.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号