首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Na (and Li) currents and fluorescence transients were recorded simultaneously under voltage-clamp conditions from mouse flexor digitorum brevis fibers stained with the potentiometric dye di-8-ANEPPS to investigate the distribution of Na channels between the surface and transverse tubular system (TTS) membranes. In fibers rendered electrically passive, voltage pulses resulted in step-like fluorescence changes that were used to calibrate the dye response. The effects of Na channel activation on the TTS voltage were investigated using Li, instead of Na, because di-8-ANEPPS transients show anomalies in the presence of the latter. Na and Li inward currents (I(Na), I(Li); using half of the physiological ion concentration) showed very steep voltage dependences, with no reversal for depolarizations beyond the calculated equilibrium potential, suggesting that most of the current originates from a noncontrolled membrane compartment. Maximum peak I(Li) was ~ 30% smaller than for I(Na), suggesting a Li-blocking effect. I(Li) activation resulted in the appearance of overshoots in otherwise step-like di-8-ANEPPS transients. Overshoots had comparable durations and voltage dependence as those of I(Li). Simultaneously measured maximal overshoot and peak I(Li) were 54 ± 5% and 773 ± 53 μA/cm(2), respectively. Radial cable model simulations predicted the properties of I(Li) and di-8-ANEPPS transients when TTS access resistances of 10-20 Ω cm(2), and TTS-to-surface Na permeability density ratios in the range of 40:60 to 70:30, were used. Formamide-based osmotic shock resulted in incomplete detubulation. However, results from a subpopulation of treated fibers (low capacitance) provide confirmatory evidence that a significant proportion of I(Li), and the overshoot in the optical signals, arises from the TTS in normal fibers. The quantitative evaluation of the distribution of Na channels between the sarcolemma and the TTS membranes, as provided here, is crucial for the understanding of the radial and longitudinal propagation of the action potential, which ultimately govern the mechanical activation of muscle in normal and diseased conditions.  相似文献   

2.
3.
A two-microelectrode voltage clamp and optical measurements of membrane potential changes at the transverse tubular system (TTS) were used to characterize delayed rectifier K currents (IK(V)) in murine muscle fibers stained with the potentiometric dye di-8-ANEPPS. In intact fibers, IK(V) displays the canonical hallmarks of K(V) channels: voltage-dependent delayed activation and decay in time. The voltage dependence of the peak conductance (gK(V)) was only accounted for by double Boltzmann fits, suggesting at least two channel contributions to IK(V). Osmotically treated fibers showed significant disconnection of the TTS and displayed smaller IK(V), but with similar voltage dependence and time decays to intact fibers. This suggests that inactivation may be responsible for most of the decay in IK(V) records. A two-channel model that faithfully simulates IK(V) records in osmotically treated fibers comprises a low threshold and steeply voltage-dependent channel (channel A), which contributes ~31% of gK(V), and a more abundant high threshold channel (channel B), with shallower voltage dependence. Significant expression of the IK(V)1.4 and IK(V)3.4 channels was demonstrated by immunoblotting. Rectangular depolarizing pulses elicited step-like di-8-ANEPPS transients in intact fibers rendered electrically passive. In contrast, activation of IK(V) resulted in time- and voltage-dependent attenuations in optical transients that coincided in time with the peaks of IK(V) records. Normalized peak attenuations showed the same voltage dependence as peak IK(V) plots. A radial cable model including channels A and B and K diffusion in the TTS was used to simulate IK(V) and average TTS voltage changes. Model predictions and experimental data were compared to determine what fraction of gK(V) in the TTS accounted simultaneously for the electrical and optical data. Best predictions suggest that K(V) channels are approximately equally distributed in the sarcolemma and TTS membranes; under these conditions, >70% of IK(V) arises from the TTS.  相似文献   

4.
To determine the effects of chloride channel 3 (ClC-3) knockdown and overexpression on lysophosphatidic acid (LPA)- and volume-regulated anion channel Cl(-) currents (I(Cl,LPA) and I(Cl,VRAC), respectively), cell differentiation, and cell volume regulation, a short hairpin RNA (shRNA) expression system based on a mouse U6 promoter was used to knock down ClC-3 in human corneal keratocytes and human fetal lung fibroblasts. ClC-3 overexpression was achieved by electroporating full-length ClC-3, within a pcDNA3.1 vector, into these two cell lines. RT-PCR and Western blot analysis were used to detect ClC-3 mRNA and protein levels. Whole cell perforated patch-clamp recording was used to measure I(Cl,LPA) and I(Cl,VRAC) currents, and fluorescence-activated cell sorting analysis was used to measure cell volume regulation. ClC-3 knockdown significantly decreased I(Cl,LPA) and I(Cl,VRAC) activity in the presence of transforming growth factor-beta(1) (TGF-beta(1)) compared with controls, whereas ClC-3 overexpression resulted in increased I(Cl,LPA) activity in the absence of TGF-beta(1). ClC-3 knockdown also resulted in a reduction of alpha-smooth muscle actin (alpha-SMA) protein levels in the presence of TGF-beta(1), whereas ClC-3 overexpression increased alpha-SMA protein expression in the absence of TGF-beta(1). In addition, keratocytes transfected with ClC-3 shRNA had a significantly blunted regulatory volume decrease response following hyposmotic stimulation compared with controls. These data confirm that ClC-3 is important in VRAC function and cell volume regulation, is associated with the I(Cl,LPA) current activity, and participates in the fibroblast-to-myofibroblast transition.  相似文献   

5.
6.
Potentiometric dyes are useful tools for studying membrane potential changes from compartments inaccessible to direct electrical recordings. In the past, we have combined electrophysiological and optical techniques to investigate, by using absorbance and fluorescence potentiometric dyes, the electrical properties of the transverse tubular system in amphibian skeletal muscle fibers. In this paper we expand on recent observations using the fluorescent potentiometric indicator di-8-ANEPPS to investigate structural and functional properties of the transverse tubular system in mammalian skeletal muscle fibers. Two-photon laser scanning confocal fluorescence images of live muscle fibers suggest that the distance between consecutive rows of transverse tubules flanking the Z-lines remains relatively constant in muscle fibers stretched to attain sarcomere lengths of up to 3.5 μm. Furthermore, the combined use of two-microelectrode electrophysiological techniques with microscopic fluorescence spectroscopy and imaging allowed us to compare the spectral properties of di-8-ANEPPS fluorescence in fibers at rest, with those of fluorescence transients recorded in stimulated fibers. We found that although the indicator has excitation and emission peaks at 470 and 588 nm, respectively, fluorescence transients display optimal fractional changes (13%/100 mV) when using filters to select excitation wavelengths in the 530–550 nm band and emissions beyond 590 nm. Under these conditions, results from tetanically stimulated fibers and from voltage-clamp experiments suggest strongly that, although the kinetics of di-8-ANEPPS transients in mammalian fibers are very rapid and approximate those of the surface membrane electrical recordings, they arise from the transverse tubular system membranes.  相似文献   

7.
Volume regulation is essential for normal cell function. A key component of the cells' response to volume changes is the activation of a channel, which elicits characteristic chloride currents (I(Cl, Swell)). The molecular identity of this channel has been controversial. Most recently, ClC-3, a protein highly homologous to the ClC-4 and ClC-5 channel proteins, has been proposed as being responsible for I(Cl, Swell). Subsequently, however, other reports have suggested that ClC-3 may generate chloride currents with characteristics clearly distinct from I(Cl, Swell). Significantly different tissue distributions for ClC-3 have also been reported, and it has been suggested that two isoforms of ClC-3 may be expressed with differing functions. In this study we generated a series of cell lines expressing variants of ClC-3 to rigorously address the question of whether or not ClC-3 is responsible for I(Cl, Swell). The data demonstrate that ClC-3 is not responsible for I(Cl, Swell) and has no role in regulatory volume decrease, furthermore, ClC-3 is not activated by intracellular calcium and fails to elicit chloride currents under any conditions tested. Expression of ClC-3 was shown to be relatively tissue-specific, with high levels in the central nervous system and kidney, and in contrast to previous reports, is essentially absent from heart. This distribution is also inconsistent with the previous proposed role in cell volume regulation.  相似文献   

8.
In order to clarify the mechanism underlying the reduction of resting membrane chloride conductance (gCl) during aging, the levels of mRNA encoding the principal skeletal muscle chloride channel, ClC-1, were measured. Total RNA samples isolated from tibialis anterior muscles of aged (24-29 months old) and adult (3-4 months old) rats were examined for ClC-1 expression using Northern blot analysis, and macroscopic gCl was recorded from extensor digitorum longus muscle fibers from each adult and aged rat in vitro using a two intracellular microelectrode technique. Although interindividual variability was observed, aged rats exhibited a parallel reduction of both gCl and ClC-1 mRNA expression as compared to adult rats. A linear correlation exists between individual values of ClC-1 mRNA and gCl. These results provide evidence that ClC-1 is the main determinant of sarcolemmal gCl and demonstrate that the decrease of gCl observed during aging is associated with a down-regulation of ClC-1 expression in muscle.  相似文献   

9.
Electrolyte transport by airway epithelia regulates the quantity and composition of liquid covering the airways. Previous data indicate that airway epithelia can absorb NaCl. At the apical membrane, cystic fibrosis transmembrane conductance regulator (CFTR) provides a pathway for Cl(-) absorption. However, the pathways for basolateral Cl(-) exit are not well understood. Earlier studies, predominantly in cell lines, have reported that the basolateral membrane contains a Cl(-) conductance. However, the properties have varied substantially in different epithelia. To better understand the basolateral Cl(-) conductance in airway epithelia, we studied primary cultures of well-differentiated human airway epithelia. The basolateral membrane contained a Cl(-) current that was inhibited by 4,4'-diisothiocyanostilbene-2,2'-disulfonic acid (DIDS). The current-voltage relationship was nearly linear, and the halide selectivity was Cl(-) > Br(-) > I(-). Several signaling pathways increased the current, including elevation of cellular levels of cAMP, activation of protein kinase C (PKC), and reduction of pH. In contrast, increasing cell Ca(2+) and inducing cell swelling had no effect. The basolateral Cl(-) current was present in both cystic fibrosis (CF) and non-CF airway epithelia. Likewise, airway epithelia from wild-type mice and mice with disrupted genes for ClC-2 or ClC-3 all showed similar Cl(-) currents. These data suggest that the basolateral membrane of airway epithelia possesses a Cl(-) conductance that is not due to CFTR, ClC-2, or ClC-3. Its regulation by cAMP and PKC signaling pathways suggests that coordinated regulation of Cl(-) conductance in both apical and basolateral membranes may be important in controlling transepithelial Cl(-) movement.  相似文献   

10.
We previously found that antisense oligonucleotide specific to ClC-3 (ClC-3 antisense) prevented rat aortic smooth muscle cell proliferation, which was related to cell volume regulation. In the present study, we further characterized the regulation of intracellular Cl(-) concentrations ([Cl(-)](i)) via volume-regulated ClC-3 Cl(-) channels in an embryo rat aortic vascular smooth muscle cell line (A10 cell) and ClC-3 cDNA-transfected A10 cells (ClC-3-A10) using multiple approaches including [Cl(-)](i) measurement, whole cell patch clamp, and application of ClC-3 antisense and intracellular dialysis of an anti-ClC-3 antibody. We found that hypotonic solution decreased [Cl(-)](i) and evoked a native I(Cl.vol) in A10 cells. The responses of [Cl(-)](i) and I(Cl.vol) to hypotonic challenge were enhanced by expression of ClC-3, and inhibited by ClC-3 antisense. The currents in A10 (I(Cl.vol)) and in ClC-3-A10 cells (I(Cl.ClC-3)) were remarkably inhibited by intracellular dialysis of anti-ClC-3 antibody. Reduction in [Cl(-)](i) and activation of I(Cl.vol) and I(Cl.ClC-3) in A10 and ClC-3-A10 cells, respectively, were significantly inhibited by activation of protein kinase C (PKC) by phorbol-12,13-dibutyrate (PDBu) and inhibition of tyrosine protein kinase by genistein. Sodium orthovanadate (vanadate), a protein-tyrosine phosphatase inhibitor, however, enhanced the cell swelling-induced reduction in [Cl(-)](i), accompanied by the activation of I(Cl.vol) and I(Cl.ClC-3) in a voltage-independent manner. Our results suggest that the volume-regulated ClC-3 Cl(-) channels play important role in the regulation of [Cl(-)](i) and cell proliferation of vascular smooth muscle cells.  相似文献   

11.
Calcium currents were recorded in contracting and actively shortening mammalian muscle fibers. In order to characterize the influence of extracellular calcium concentration changes in the small unstirred lumina of the transverse tubular system (TTS) on the time course of the slow L-type calcium current (I(Ca)), we have combined experimental measurements of I(Ca) with quantitative numerical simulations of Ca2+ depletion. I(Ca) was recorded both in calcium-buffered and unbuffered external solutions using the two-microelectrode voltage clamp technique (2-MVC) on short murine toe muscle fibers. A simulation program based on a distributed TTS model was used to calculate the effect of ion depletion in the TTS. The experimental data obtained in a solution where ion depletion is suppressed by a high amount of a calcium buffering agent were used as input data for the simulation. The simulation output was then compared with experimental data from the same fiber obtained in unbuffered solution. Taking this approach, we could quantitatively show that the calculated Ca2+ depletion in the transverse tubular system of contracting mammalian muscle fibers significantly affects the time-dependent decline of Ca2+ currents. From our findings, we conclude that ion depletion in the tubular system may be one of the major effects for the I(Ca) decline measured in isotonic physiological solution under voltage clamp conditions.  相似文献   

12.
13.
ClC-5 chloride channels and epithelial sodium channels (ENaC) are present in many cell types including airway and retinal epithelia. Since ENaC activity is known to be affected by chloride transport, we co-injected Xenopus oocytes with cRNAs encoding ENaC and ClC-5 to investigate whether channel currents are impacted by heterologous co-expression of these proteins. ClC-5 currents were not detectably affected by co-expression with ENaC, whereas amiloride-sensitive ENaC currents were significantly lower compared to control oocytes expressing ENaC alone. Co-expression of ENaC with cRNA sequences encoding non-conducting fragments of ClC-5 revealed that the amino acid sequence region between positions 347 and 647 was sufficient for inhibition of ENaC currents. Co-expression of ENaC and another transport protein, the sodium dicarboxylate co-transporter (NaDC-1), did not affect ENaC currents. To test whether the inhibitory effects of ClC-5 were specific for ENaC, ClC-5 was also co-expressed with CFTR. CFTR currents were also inhibited by co-expression with ClC-5, whereas ClC-5 currents were unaffected. Western blot analysis of biotinylated oocyte surface membranes revealed that the co-expression of ClC-5 with ENaC, CFTR, or NaDC-1 decreased the abundance of these proteins at the surface membrane. We conclude that overexpression of ClC-5, specifically amino acids 347–647, can alter the normal translation or trafficking of ENaC and other ion transport proteins by a mechanism that is independent of the chloride conductance of ClC-5.  相似文献   

14.
ClC-2 is localized to the apical membranes of secretory epithelia where it has been hypothesized to play a role in fluid secretion. Although ClC-2 is clearly the inwardly rectifying anion channel in several tissues, the molecular identity of the hyperpolarization-activated Cl(-) current in other organs, including the salivary gland, is currently unknown. To determine the nature of the hyperpolarization-activated Cl(-) current and to examine the role of ClC-2 in salivary gland function, a mouse line containing a targeted disruption of the Clcn2 gene was generated. The resulting homozygous Clcn2(-/-) mice lacked detectable hyperpolarization-activated chloride currents in parotid acinar cells and, as described previously, displayed postnatal degeneration of the retina and testis. The magnitude and biophysical characteristics of the volume- and calcium-activated chloride currents in these cells were unaffected by the absence of ClC-2. Although ClC-2 appears to contribute to fluid secretion in some cell types, both the initial and sustained salivary flow rates were normal in Clcn2(-/-) mice following in vivo stimulation with pilocarpine, a cholinergic agonist. In addition, the electrolytes and protein contents of the mature secretions were normal. Because ClC-2 has been postulated to contribute to cell volume control, we also examined regulatory volume decrease following cell swelling. However, parotid acinar cells from Clcn2(-/-) mice recovered volume with similar efficiency to wild-type littermates. These data demonstrate that ClC-2 is the hyperpolarization-activated Cl(-) channel in salivary acinar cells but is not essential for maximum chloride flux during stimulated secretion of saliva or acinar cell volume regulation.  相似文献   

15.
Generation of the action potentials (AP) necessary to activate skeletal muscle fibers requires that inward membrane currents exceed outward currents and thereby depolarize the fibers to the voltage threshold for AP generation. Excitability therefore depends on both excitatory Na+ currents and inhibitory K+ and Cl- currents. During intensive exercise, active muscle loses K+ and extracellular K+ ([K+]o) increases. Since high [K+]o leads to depolarization and ensuing inactivation of voltage-gated Na+ channels and loss of excitability in isolated muscles, exercise-induced loss of K+ is likely to reduce muscle excitability and thereby contribute to muscle fatigue in vivo. Intensive exercise, however, also leads to muscle acidification, which recently was shown to recover excitability in isolated K(+)-depressed muscles of the rat. Here we show that in rat soleus muscles at 11 mM K+, the almost complete recovery of compound action potentials and force with muscle acidification (CO2 changed from 5 to 24%) was associated with reduced chloride conductance (1731 +/- 151 to 938 +/- 64 microS/cm2, P < 0.01) but not with changes in potassium conductance (405 +/- 20 to 455 +/- 30 microS/cm2, P < 0.16). Furthermore, acidification reduced the rheobase current by 26% at 4 mM K+ and increased the number of excitable fibers at elevated [K+]o. At 11 mM K+ and normal pH, a recovery of excitability and force similar to the observations with muscle acidification could be induced by reducing extracellular Cl- or by blocking the major muscle Cl- channel, ClC-1, with 30 microM 9-AC. It is concluded that recovery of excitability in K(+)-depressed muscles induced by muscle acidification is related to reduction in the inhibitory Cl- currents, possibly through inhibition of ClC-1 channels, and acidosis thereby reduces the Na+ current needed to generate and propagate an AP. Thus short term regulation of Cl- channels is important for maintenance of excitability in working muscle.  相似文献   

16.
ClC-3 is a member of the ClC family of anion channels/transporters. Recently, the closely related proteins ClC-4 and ClC-5 were shown to be Cl(-)/H(+) antiporters (39, 44). The function of ClC-3 has been controversial. We studied anion currents in HEK293T cells expressing wild-type or mutant ClC-3. The basic biophysical properties of ClC-3 currents were very similar to those of ClC-4 and ClC-5, and distinct from those of the swelling-activated anion channel. ClC-3 expression induced currents with time-dependent activation that rectified sharply in the outward direction. The reversal potential of the current shifted by -48.3 +/- 2.5 mV per 10-fold (decade) change in extracellular Cl(-) concentration, which did not conform to the behavior of an anion-selective channel based upon the Nernst equation, which predicts a -58.4 mV/decade shift at 22 degrees C. Manipulation of extracellular pH (6.35-8.2) altered reversal potential by 10.2 +/- 3.0 mV/decade, suggesting that ClC-3 currents were coupled to proton movement. Mutation of a specific glutamate residue (E224A) changed voltage dependence in a manner similar to that observed in other ClC Cl(-)/H(+) antiporters. Mutant currents exhibited Nernstian changes in reversal potential in response to altered extracellular Cl(-) concentration that averaged -60 +/- 3.4 mV/decade and were pH independent. Thus ClC-3 overexpression induced a pH-sensitive conductance in HEK293T cells that is biophysically similar to ClC-4 and ClC-5.  相似文献   

17.
Skeletal muscle fibers exhibit a high resting chloride conductance primarily determined by ClC-1 chloride channels that stabilize the resting membrane potential during repetitive stimulation. Although the importance of ClC-1 channel activity in maintaining normal muscle excitability is well appreciated, the subcellular location of this conductance remains highly controversial. Using a three-pronged multidisciplinary approach, we determined the location of functional ClC-1 channels in adult mouse skeletal muscle. First, formamide-induced detubulation of single flexor digitorum brevis (FDB) muscle fibers from 15-16-day-old mice did not significantly alter macroscopic ClC-1 current magnitude (at -140 mV; -39.0 +/- 4.5 and -42.3 +/- 5.0 nA, respectively), deactivation kinetics, or voltage dependence of channel activation (V(1/2) was -61.0 +/- 1.7 and -64.5 +/- 2.8 mV; k was 20.5 ± 0.8 and 22.8 +/- 1.2 mV, respectively), despite a 33% reduction in cell capacitance (from 465 +/- 36 to 312 +/- 23 pF). In paired whole cell voltage clamp experiments, where ClC-1 activity was measured before and after detubulation in the same fiber, no reduction in ClC-1 activity was observed, despite an approximately 40 and 60% reduction in membrane capacitance in FDB fibers from 15-16-day-old and adult mice, respectively. Second, using immunofluorescence and confocal microscopy, native ClC-1 channels in adult mouse FDB fibers were localized within the sarcolemma, 90 degrees out of phase with double rows of dihydropyridine receptor immunostaining of the T-tubule system. Third, adenoviral-mediated expression of green fluorescent protein-tagged ClC-1 channels in adult skeletal muscle of a mouse model of myotonic dystrophy type 1 resulted in a significant reduction in myotonia and localization of channels to the sarcolemma. Collectively, these results demonstrate that the majority of functional ClC-1 channels localize to the sarcolemma and provide essential insight into the basis of myofiber excitability in normal and diseased skeletal muscle.  相似文献   

18.
Ins(3,4,5,6)P(4) inhibits plasma membrane Cl(-) flux in secretory epithelia [1]. However, in most other mammalian cells, receptor-dependent elevation of Ins(3,4,5,6)P(4) levels is an "orphan" response that lacks biological significance [2]. We set out to identify Cl(-) channel(s) and/or transporter(s) that are regulated by Ins(3,4,5,6)P4 in vivo. Several candidates [3-5] were excluded through biophysical criteria, electrophysiological analysis, and confocal immunofluorescence microscopy. Then, we heterologously expressed ClC-3 in the plasma membrane of HEK293-tsA201 cells; whole-cell patch-clamp analysis showed Ins(3,4,5,6)P4 to inhibit Cl(-) conductance through ClC-3. Next, we heterologously expressed ClC-3 in the early endosomal compartment of BHK cells; by fluorescence ratio imaging of endocytosed FITC-transferrin, we recorded intra-endosomal pH, an in situ biosensor for Cl(-) flux across endosomal membranes [6]. A cell-permeant, bioactivatable Ins(3,4,5,6)P4 analog elevated endosomal pH from 6.1 to 6.6, reflecting inhibition of ClC-3. Finally, Ins(3,4,5,6)P(4) inhibited endogenous ClC-3 conductance in postsynaptic membranes of neonatal hippocampal neurones. Among other ClC-3 functions that could be regulated by Ins(3,4,5,6)P4 are tumor cell migration [7], apoptosis [8], and inflammatory responses [9]. Ins(3,4,5,6)P4 is a ubiquitous cellular signal with diverse biological actions.  相似文献   

19.
ClC-2 belongs to a large family of chloride channels and its expression in certain cell types is associated with the appearance of swelling-activated chloride (Cl) currents. In the present report, we examined the hypothesis that ClC-2 plays a role in regulatory volume decrease by expressing ClC-2 in Sf9 cells using the baculovirus system. First, we showed that ClC-2 protein expression is associated with appearance of a Cl conductance which is activated by hypo-osmotic shock and can be distinguished from swelling-activated chloride currents endogenous to Sf9 cells on the basis of its pharmacology and specific inhibition by an anti-ClC-2 antibody. Second, we show that the rate of regulatory volume decrease is significantly enhanced in Sf9 cells expressing ClC-2 protein. Hence, our data support the hypothesis that ClC-2 is capable of mediating regulatory volume decrease. Received: 12 August/Revised: 23 October 1998  相似文献   

20.
Mao J  Xu B  Li H  Chen L  Jin X  Zhu J  Wang W  Zhu L  Zuo W  Chen W  Wang L 《Journal of cellular physiology》2011,226(5):1176-1185
Stretch-activated chloride currents (I(Cl,SA) ) have been considered to be a component of volume-activated chloride currents (I(Cl,vol) ) for some time. This is due to a similarity in biophysical and pharmacological properties that involve a membrane curvature-induced mechanism and rearrangement of the cytoskeleton induced by cell swelling or membrane stretch. In the present study, we demonstrated that current density, along with the time taken from the activation of currents to the peak, were significantly different between the two currents, in highly metastatic human hepatocellular carcinoma cells. In addition, the activation of I(Cl,vol) or I(Cl,SA), induced maximally by hypotonic solutions or membrane stretch, respectively, did not affect the following activation of the other one. Moreover, neither inhibition of I(Cl,vol) by sh-ClC-3 transfection, nor functional blocking of I(Cl,vol) by intracellular dialysis of anti-ClC-3 antibody had an effect on the activation and properties of I(Cl,SA). Collectively, our results suggest that I(Cl,SA) is different from I(Cl,vol) in activation mechanism and/or in molecular entity responsible for formation of the currents. ClC-3 is involved in the activation of I(Cl,vol), but not of I(Cl,SA).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号