首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Tay ST  Chai HC  Na SL  Ng KP 《Mycopathologia》2005,159(3):325-329
The genotypes of 221 recent isolates of Candida albicans from various clinical specimens of 213 patients admitted to the University Malaya Medical Centre, Malaysia was determined based on the amplification of a transposable intron region in the 25 S rRNA gene. The analyses of 178 C. albicansisolated from nonsterile clinical specimens showed that they could be classified into three genotypes: genotype A (138 isolates), genotype B (38 isolates) and genotype C (2 isolates). The genotyping of 43 clinical isolates from sterile specimens showed that they belonged to genotype A (29 isolates), genotype B (10 isolates), genotype C (2 isolates) and genotype D (2 isolates). The overall distribution of C. albicans genotypes in sterile and nonsterile specimens appeared similar, with genotype A being the most predominant type. This study reported the identification of C. dubliniensis (genotype D) in 2 HIV-negative patients with systemic candidiasis, which were missed by the routine mycological procedure. The study demonstrated the genetic diversity of clinical isolates of C. albicans in Malaysia.  相似文献   

2.
Our survey revealed that infected intrauterine devices (IUDs) recovered from patients suffering from reproductive tract infections (RTIs) were tainted with Candida biofilm composed of a single or multiple species. Scanning electron microscopy (SEM) analysis of C. albicans biofilm topography showed that it consists of a dense network of mono- or multilayer of cells embedded within the matrix of extracellular polymeric substances (EPS). Confocal scanning laser microscopy (CSLM) and atomic force microscopy (AFM) images depicted that C. albicans biofilms have a highly heterogeneous architecture composed of cellular and noncellular elements with EPS distributed in the cell-surface periphery or at cell-cell interface. Biochemical analysis showed that EPS produced by C. albicans biofilm contained significantly reduced total carbohydrate (40%), protein (5%) and enhanced amount of hexosamine (4%) in contrast to its planktonic counterparts. The in vitro activity of antifungal agents amphotericin B, nystatin, fluconazole and chlorhexidine against pre-formed C. albicans biofilm, assessed using XTT (2,3-bis[2-methoxy-4-nitro-5-sulfophenyl]-2H-tetrazolium-5-carboxanilide) reduction assay revealed increased resistance of these infectious biofilm (50% reduction in metabolic activity at a concentration of 8, 16, 64, 128 μg/ml respectively) in comparison to its planktonic form.  相似文献   

3.
Pathogenicity of Candida albicans is associated with its capacity switch from yeast-like to hyphal growth. The hyphal form is capable to penetrate the epithelial surfaces and to damage the host tissues. Therefore, many investigations have focused on mechanisms that control the morphological transitions of C. albicans. Recently, certain studies have showed that non-albicans Candida species can reduce the capacity of C. albicans to form biofilms and to develop candidiasis in animal models. Then, the objective of this study was to evaluate the effects of Candida krusei and Candida glabrata on the morphogenesis of C. albicans. Firstly, the capacity of reference and clinical strains of C. albicans in forming hyphae was tested in vitro. After that, the expression of HWP1 (hyphal wall protein 1) gene was determined by quantitative real-time PCR (polymerase chain reaction) assay. For both reference and clinical strains, a significant inhibition of the hyphae formation was observed when C. albicans was incubated in the presence of C. krusei or C. glabrata compared to the control group composed only by C. albicans. In addition, the culture mixed of C. albicans-C. krusei or C. albicans-C. glabrata reduced significantly the expression of HWP1 gene of C. albicans in relation to single cultures of this specie. In both filamentation and gene expression assays, C. krusei showed the higher inhibitory activity on the morphogenesis of C. albicans compared to C. glabrata. C. krusei and C. glabrata are capable to reduce the filamentation of C. albicans and consequently decrease the expression of the HWP1 gene.  相似文献   

4.
Nineteen clinical isolates of Candida albicans and C. dubliniensis were isolated from patients (majority of them HIV-positive) in Slovakia, Brazil, Thailand and Japan. Species discrimination was performed by using growth on CHROMagar Candida, commercial biochemical set API 20C AUX, germ-tube test in human serum, growth at 42 and 45 degrees C on Sabouraud-dextrose agar as well as on CHROMagar Candida, assimilation of D-xylose and methyl alpha-D-glucoside by glass-tube test, and production of chlamydospores. These tests were completed by PCR using Cd-oligo2/F and Cd-oligo2/R primer pair specific for C. dubliniensis. Six clinical isolates were confirmed to be C. dubliniensis, remaining 13 strains were determined as C. albicans. The use of conventional method showed that the determination is markedly influenced by personal evaluation suggesting the necessity of using the combination of many tests to obtain correct results comparing with accurate and rapid PCR assay. For discrimination between C. albicans and C. dubliniensis we recommend the combination of primo-cultivation on CHROMagar, followed by germ-tube test and PCR.  相似文献   

5.
Over the past decades there has been a significant increase in fungal infections caused by Candida species, and continues to be common in immunocompromised individuals infected with the human immunodeficiency virus (HIV). Although Candida albicans remains the fungal species most frequently isolated as an opportunistic oral pathogen, other non-albicans are often identified in this cohort of patients, including C. dubliniensis. This yeast is closely related to and shares many phenotypic characteristics with C. albicans. Colonies of these two species appear morphologically identical when not grown on special media. The shared phenotypic characteristics of C. dubliniensis and C. albicans suggest that many C. dubliniensis isolates may have been misidentified as C. albicans in the past. The present studies aim is to recover and identify C. dubliniensis, and presumptive clinical C. albicans, from the oral cavities of HIV-seropositive individuals, comparing conventional media to obtain a simple, low-cost and reliable identification system for C. dubliniensis. A total of 16 isolates (3,98%) had been obtained from 402 HIV infected individuals with recurrent oropharyngitis and were identified as C. dubliniensis. Out of these C. dubliniensis isolates 19% were resistant, with MICs above 64 μg/ml to fluconazole. This constitutes, to the authors knowledge the first recovery of this organism in Venezuela.  相似文献   

6.
7.
Yeast–mold mycobiota inhabit several natural ecosystems, in which symbiotic relationships drive strategic pathoadaptation. Mycotoxins are metabolites produced by diverse mycotoxigenic fungi as a defense against yeasts, though at times yeasts secrete enzymes that degrade, detoxify, or bio-transform mycotoxins. The present study is focused on the in vitro inhibitory effects of zearalenone (ZEN), a F2 mycotoxin produced by several Fusarium and Gibberella species, on different microbial strains. ZEN exhibited no effect on the planktonic growth or biofilms of several Gram positive and negative bacteria at the tested concentrations. Remarkably, Candida albicans biofilm formation and hyphal morphogenesis were significantly inhibited when treated with 100 µg/mL of ZEN. Likewise, ZEN proficiently disrupted pre-formed C. albicans biofilms without disturbing planktonic cells. Furthermore, these inhibitions were confirmed by crystal violet staining and XTT reduction assays and by confocal and scanning electron microscopy. In an in vivo model, ZEN significantly suppressed C. albicans infection in the nematode Caenorhabditis elegans. The study reports the in vitro antibiofilm efficacy of ZEN against C. albicans strains, and suggests mycotoxigenic fungi participate in asymmetric competitive interactions, such as, amensalism or antibiosis, rather than commensal interactions with C. albicans, whereby mycotoxins secreted by fungi destroy C. albicans biofilms.  相似文献   

8.
Candida spp. is able to form a biofilm, which is considered resistant to the majority of antifungals used in medicine. The aim of this study was to evaluate the in vitro activity of micafungin against Candida spp. biofilms at different stages of their maturation (2, 6, and 24 h). We assessed the inhibitory effect of micafungin against 78 clinical isolates of Candida spp., growing as planktonic or sessile cells, by widely recommended broth microdilution method. The in vitro effect on sessile cells viability was evaluated by colorimetric reduction assay. All examined strains were susceptible or intermediate to micafungin when growing as planktonic cells. At the early stages of biofilm maturation, from 11 (39.3%) to 20 (100%), tested strains, depending on the species, exhibited sessile minimal inhibitory concentrations (SMICs) of micafungin at ≤ 2 mg/L. For 24-h-old Candida spp. biofilms, from 3 (10.7%) to 20 (100%) of the tested strains displayed SMICs of micafungin at ≤ 2 mg/L. Our findings confirm that micafungin exhibits high potential anti-Candida-biofilm activity. However, this effect does not comprise all Candida species and strains. All strains were susceptible or intermediate to micafungin when growing as planktonic cells, but for biofilms, micafungin displays species- and strain-specific activity. Paradoxical growth of C. albicans and C. parapsilosis was observed. Antifungal susceptibility testing of Candida spp. biofilms would be the best solution, but to date, no reference method is available. The strongest antibiofilm activity of micafungin is observed at early stages of biofilm formation. Possibly, micafungin could be considered as an effective agent for prevention of biofilm-associated candidiasis, especially catheter-related candidaemia.  相似文献   

9.
The aim of this study was to evaluate the effect of farnesol on the production of acids and hydrolytic enzymes by biofilms of Streptococcus mutans and Candida albicans. The present study also evaluated the time-kill curve and the effect of farnesol on matrix composition and structure of single-species and dual-species biofilms. Farnesol, at subinhibitory concentrations, showed a significant reduction in S. mutans biofilm acid production, but did not alter C. albicans hydrolytic enzyme production. The number of cultivable cells of both microorganisms was significantly reduced after 8 h of contact with farnesol. Extracellular matrix protein content was reduced for biofilms formed in the presence of farnesol. In addition, confocal laser scanning and scanning electron microscopy displayed structural alterations in all biofilms treated with farnesol, which included reduction in viable cells and extracellular matrix. In conclusion, farnesol showed favorable properties controlling some virulence factors of S. mutans and C. albicans biofilms. These findings should stimulate further studies using this quorum-sensing molecule, combined with other drugs, to prevent or treat biofilm-associated oral diseases.  相似文献   

10.
In Candida albicans, alcohol metabolism is implicated in biofilm formation. The alcohol dehydrogenase gene (ADH1) is involved in the conversion of acetaldehyde to ethanol and reported to be downregulated during biofilm formation. C. albicans produces acetaldehyde under both in vivo and in vitro conditions. Mutations in ADH genes result in increased acetaldehyde production in vitro, but studies are lacking on the morphogenetic role(s) of acetaldehyde in C. albicans. We report here that acetaldehyde at a concentration of 7 mM was able to inhibit the conversion from yeast to hyphal forms induced by four standard inducers at 37°C. The hyphal inhibitory concentrations did not adversely affect the growth and viability of C. albicans cells. The same concentration of acetaldehyde also significantly inhibited biofilm development, and only adhered yeast cells were found. We hypothesize that acetaldehyde produced by C. albicans may exert a morphogenetic regulatory role influencing yeast-to-hypha conversion, biofilm formation, dissemination and establishment of infection.  相似文献   

11.
Candida dubliniensis, yeast closely related to Candida albicans, is a new pathogen associated mainly with infections of immunocompromised hosts. In this study, we report the first isolation of three isolates of C. dubliniensis in Slovakia. The first selection of both C. albicans and C. dubliniensis from the other Candida species was done on the basis of specific green color of primoculture grown on CHROMagar Candida. The presumptive identification was completed by supplemental tests: germ-tube formation, production of chlamydospores, ability or inability to grow at 42 and 45,°C and by commercial set API 20C AUX. Parallely, the discrimination between both species was performed by PCR assay using primers specific for Candida dubliniensis  相似文献   

12.
Recent changes in the aetiology and epidemiology of invasive candidiasis have serious implications for current and future diagnosis, treatment and prognosis. The aim of the current review was to discuss the epidemiology of invasive candidiasis, the distribution of Candida species in different regions of the world, the medical concerns of the changing aetiology and the emergence of antifungal resistance. Overall burden of invasive candidiasis remains high, especially in vulnerable persons, such as the elderly, immunosuppressed or debilitated patients. Moreover, there is a progressive shift in the aetiology of invasive candidiasis from Candida albicans to other species of Candida, probably related to the increased use of azole drugs with a clear trend towards increased antifungal resistance. Finally, the emergence and rise of multiresistant species, such as Candida auris or Candida glabrata, is a major threat making necessary invasive candidiasis worldwide surveillances. These changes have serious implications for the diagnosis, treatment and prognosis of invasive candidiasis. Updated knowledge of the current local epidemiology of invasive candidiasis is critical for the clinical management.  相似文献   

13.
The aim of this study was to characterize switch phenotypes in Candida albicans biofilms. Cells of Candida albicans 192887g biofilms (24 h) were resuspended and these together with their planktonic counterparts were separately inoculated on Lee’s medium agar supplemented with arginine and zinc, at 25 °C for 9 days, for colony formation. The different switch phenotypes, as reflected by varying colony morphologies, were then examined for their (i) stability under various growth conditions, (ii) carbohydrate assimilation profiles, (iii) susceptibility to the polyene antifungal, nystatin, (iv) adhering and biofilm-forming ability, (v) filamentation, and (vi) growth rate in yeast nitrogen base medium supplemented with 100 mM glucose. Our data showed that the frequency of phenotypic switching in C. albicans biofilms was approximately 1%. Compared with the planktonic yeasts, cells derived from candidal biofilms generated one of the phenotypes less frequently (Chi-square-tests: P = 0.017). The five phenotypes derived from the biofilm growth demonstrated differing profiles for carbohydrate assimilation, adhesion, biofilm formation, filamentation, and growth rate. These findings reported here, for the first time, imply that phenotypic switching in the candidal biofilms differs from that in the planktonic growth, and affects multiple biological attributes.  相似文献   

14.
Candida albicans is the most common human fungal pathogen and can grow as yeast or filaments, depending on the environmental conditions. The filamentous form is of particular interest because it can play a direct role in adherence and pathogenicity. Therefore, the purpose of this study was to evaluate the effects of three clinical strains of Lactobacillus on C. albicans filamentation as well as their probiotic potential in pathogen-host interactions via an experimental candidiasis model study in Galleria mellonella. We used the reference strain Candida albicans ATCC 18804 and three clinical strains of Lactobacillus: L. rhamnosus strain 5.2, L. paracasei strain 20.3, and L. fermentum strain 20.4. First, the capacity of C. albicans to form hyphae was tested in vitro through association with the Lactobacillus strains. After that, we verified the ability of these strains to attenuate experimental candidiasis in a Galleria mellonella model through a survival curve assay. Regarding the filamentation assay, a significant reduction in hyphae formation of up to 57% was observed when C. albicans was incubated in the presence of the Lactobacillus strains, compared to a control group composed of only C. albicans. In addition, when the larvae were pretreated with Lactobacillus spp. prior to C. albicans infection, the survival rate of G. mellonela increased in all experimental groups. We concluded that Lactobacillus influences the growth and expression C. albicans virulence factors, which may interfere with the pathogenicity of these microorganisms.  相似文献   

15.

Background  

GUP1 gene was primarily identified in Saccharomyces cerevisiae being connected with glycerol uptake defects in association with osmotic stress response. Soon after, Gup1p was implicated in a complex and extensive series of phenotypes involving major cellular processes. These include membrane and wall maintenance, lipid composition, bud-site selection, cytoskeleton orientation, vacuole morphology, secretory/endocytic pathway, GPI anchors remodelling, and lipid-ordered domains assembly, which is compatible with their inclusion in the Membrane Bound O-acyl transferases (MBOAT) family. In mammals, it has been described as a negative regulator of the Sonic hedgehog pathway involved in morphogenesis, differentiation, proliferation, among other processes.  相似文献   

16.
Agarwal V  Lal P  Pruthi V 《Mycopathologia》2008,165(1):13-19
The inhibitory effect of 30 plant oils was evaluated against biofilm forming Candida albicans strain (CA I) isolated from clinical samples, which was sensitive to 4 μg/ml of fluconazole, used as a positive control. The standard strain (MTCC 227, CA II) used in this study was found to be highly resistant to fluconazole, 3,000 μg/ml of which was required to inhibit the growth of this strain partially, and complete inhibition could not be achieved. Eighteen among the 30 plant oils tested were found to show anti-Candida activity by disc diffusion assay. Effective plant oils were assessed using XTT (2, 3-bis [2-Methoxy-4-nitro-5-sulphophenyl]-2H-tetrazolium-5-carboxanilide) reduction assay for biofilm quantification. Four oils eucalyptus, peppermint, ginger grass and clove showed 80.87%, 74.16%, 40.46% and 28.57% biofilm reduction respectively. Minimum inhibitory concentration (MIC) values were calculated using agar dilution assay. Scanning electron microscopic (SEM) analysis further revealed reduction in C. albicans biofilm in response to effective oils. The substantial antifungal activity shown by these plant oils suggests their potential against infections caused by C. albicans.  相似文献   

17.
Candida albicans is a common microbe, colonizer and potential pathogen found in respiratory cultures of cystic fibrosis (CF) patients. Because of possible development of resistance in patient isolates resulting from residence in the abnormal milieu of CF patient airways, or from exposure to antifungals, and considering the possibility of patient-to-patient spread of microbes and reports of elevated resistance to other fungal pathogens, it was important to assay the susceptibility of isolates of Candida and compare that profile to isolates from the community. In our center, and unlike another fungal pathogen, no increase in resistance of Candida isolates of the CF cohort was found.  相似文献   

18.
Candida albicans is one of the most frequent causes of fungal infections in humans. Significant correlation between candiduria and invasive candidiasis has previously been described. The existing diagnostic methods are often time-consuming, cost-intensive and lack in sensitivity and specificity. In this study, the profile of low-molecular weight volatile compounds in the headspace of C. albicans-urine suspensions of four different fungal cell concentrations compared to nutrient media and urine without C. albicans was determined using proton-transfer reaction mass spectrometry (PTR-MS). At fungal counts of ≥1.5 × 105 colony forming units (CFU)/ml signals at 45, 47 and 73 atomic mass units (amu) highly significantly increased. At fungal counts of <1.5 × 105 CFU/ml signals at 47 and 73 amu also increased, but only at 45 amu a statistically significant increase was seen. Time course alterations of signal intensities dependent on different cell concentrations and after addition of Sabouraud nutrient solution were analysed. Recommendations for measurement conditions are given. Our study is the first to describe headspace profiling of C. albicans-urine suspensions of different fungal cell concentrations. PTR-MS represents a promising approach to rapid, highly sensitive and non-invasive clinical diagnostics allowing qualitative and quantitative analysis.  相似文献   

19.
Farnesol is a quorum-sensing molecule that inhibits biofilm formation in Candida albicans. Previous in vitro data suggest that, in combination with certain antifungals, farnesol may have an adjuvant anti-biofilm agent. However, the in vivo efficacy of farnesol is very questionable. Therefore, the in vitro and in vivo activity of fluconazole combined with farnesol was evaluated against C. albicans biofilms using fractional inhibitory concentration index (FICI) determination, time-kill experiments and a murine vulvovaginitis model. The median biofilm MICs of fluconazole-sensitive C. albicans isolates ranged between 4 -> 512 mg/L and 150–300 μM for fluconazole and farnesol, respectively. These values were 512 -> 512 mg/L and > 300 μM for fluconazole-resistant clinical isolates. Farnesol decreased the median MICs of fluconazole by 2-64-fold for biofilms. Based on FICI, synergistic interaction was observed only in the case of the sessile SC5314 reference strain (FICIs: 0.16–0.27). In time-kill studies, only the 512 mg/L fluconazole and 512 mg/L fluconazole + 75 μM farnesol reduced biofilm mass significantly at each time point in the case of all isolates. The combination reduced the metabolic activity of biofilms for all isolates in a concentration- and time-dependent manner. Our findings revealed that farnesol alone was not protective in a murine vulvovaginitis model. Farnesol was not beneficial in combination with fluconazole for fluconazole-susceptible isolates, but partially increased fluconazole activity against one fluconazole-resistant isolate, but not the other one.  相似文献   

20.
Flower-visiting beetles belonging to three species of Cetoniidae were collected on three mountains near Beijing, China, and yeasts were isolated from the gut of the insects collected. Based on the 26S rDNA D1/D2 domain and internal transcribed spacer (ITS) region sequence analysis and phenotypic characterization, four novel anamorphic yeast species located in the Candida albicans/Lodderomyces elongisporus clade were identified from 18 of the strains isolated. The new species and type strains are designated as Candida blackwellae AS 2.3639T (=CBS 10843T), Candida jiufengensis AS 2.3688T (=CBS 10846T), Candida oxycetoniae AS 2.3656T (=CBS 10844T), and Candida pseudojiufengensis AS 2.3693T (=CBS 10847T). C. blackwellae sp. nov. was basal to the branch formed by C. albicans and C. dubliniensis with moderately strong bootstrap support. The closest relative of C. oxycetoniae was L. elongisporus. C. jiufengensis sp. nov. and C. pseudojiufengensis sp. nov. were closely related with each other and formed a branch in a subclade represented by C. parapsilosis and L. elongisporus.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号