共查询到20条相似文献,搜索用时 0 毫秒
1.
Priyanka Lal Vishnu Agarwal Parul Pruthi Ben M. J. Pereira M. R. Kural Vikas Pruthi 《Indian journal of microbiology》2008,48(4):438-444
Our survey revealed that infected intrauterine devices (IUDs) recovered from patients suffering from reproductive tract infections
(RTIs) were tainted with Candida biofilm composed of a single or multiple species. Scanning electron microscopy (SEM) analysis of C. albicans biofilm topography showed that it consists of a dense network of mono- or multilayer of cells embedded within the matrix
of extracellular polymeric substances (EPS). Confocal scanning laser microscopy (CSLM) and atomic force microscopy (AFM) images
depicted that C. albicans biofilms have a highly heterogeneous architecture composed of cellular and noncellular elements with EPS distributed in the
cell-surface periphery or at cell-cell interface. Biochemical analysis showed that EPS produced by C. albicans biofilm contained significantly reduced total carbohydrate (40%), protein (5%) and enhanced amount of hexosamine (4%) in
contrast to its planktonic counterparts. The in vitro activity of antifungal agents amphotericin B, nystatin, fluconazole and chlorhexidine against pre-formed C. albicans biofilm, assessed using XTT (2,3-bis[2-methoxy-4-nitro-5-sulfophenyl]-2H-tetrazolium-5-carboxanilide) reduction assay revealed
increased resistance of these infectious biofilm (50% reduction in metabolic activity at a concentration of 8, 16, 64, 128
μg/ml respectively) in comparison to its planktonic form. 相似文献
2.
The genotypes of 221 recent isolates of Candida albicans from various clinical specimens of 213 patients admitted to the University Malaya Medical Centre, Malaysia was determined based on the amplification of a transposable intron region in the 25 S rRNA gene. The analyses of 178 C. albicansisolated from nonsterile clinical specimens showed that they could be classified into three genotypes: genotype A (138 isolates), genotype B (38 isolates) and genotype C (2 isolates). The genotyping of 43 clinical isolates from sterile specimens showed that they belonged to genotype A (29 isolates), genotype B (10 isolates), genotype C (2 isolates) and genotype D (2 isolates). The overall distribution of C. albicans genotypes in sterile and nonsterile specimens appeared similar, with genotype A being the most predominant type. This study reported the identification of C. dubliniensis (genotype D) in 2 HIV-negative patients with systemic candidiasis, which were missed by the routine mycological procedure. The study demonstrated the genetic diversity of clinical isolates of C. albicans in Malaysia. 相似文献
3.
Patrícia Pimentel de Barros Fernanda Freire Rodnei Dennis Rossoni Juliana Campos Junqueira Antonio Olavo Cardoso Jorge 《Folia microbiologica》2017,62(4):317-323
Pathogenicity of Candida albicans is associated with its capacity switch from yeast-like to hyphal growth. The hyphal form is capable to penetrate the epithelial surfaces and to damage the host tissues. Therefore, many investigations have focused on mechanisms that control the morphological transitions of C. albicans. Recently, certain studies have showed that non-albicans Candida species can reduce the capacity of C. albicans to form biofilms and to develop candidiasis in animal models. Then, the objective of this study was to evaluate the effects of Candida krusei and Candida glabrata on the morphogenesis of C. albicans. Firstly, the capacity of reference and clinical strains of C. albicans in forming hyphae was tested in vitro. After that, the expression of HWP1 (hyphal wall protein 1) gene was determined by quantitative real-time PCR (polymerase chain reaction) assay. For both reference and clinical strains, a significant inhibition of the hyphae formation was observed when C. albicans was incubated in the presence of C. krusei or C. glabrata compared to the control group composed only by C. albicans. In addition, the culture mixed of C. albicans-C. krusei or C. albicans-C. glabrata reduced significantly the expression of HWP1 gene of C. albicans in relation to single cultures of this specie. In both filamentation and gene expression assays, C. krusei showed the higher inhibitory activity on the morphogenesis of C. albicans compared to C. glabrata. C. krusei and C. glabrata are capable to reduce the filamentation of C. albicans and consequently decrease the expression of the HWP1 gene. 相似文献
4.
Hartung de Capriles C Mata-Essayag S Pérez C Colella MT Roselló A Olaizola C Abate SM 《Mycopathologia》2005,160(3):227-234
Over the past decades there has been a significant increase in fungal infections caused by Candida species, and continues to be common in immunocompromised individuals infected with the human immunodeficiency virus (HIV).
Although Candida albicans remains the fungal species most frequently isolated as an opportunistic oral pathogen, other non-albicans are often identified in this cohort of patients, including C. dubliniensis. This yeast is closely related to and shares many phenotypic characteristics with C. albicans. Colonies of these two species appear morphologically identical when not grown on special media. The shared phenotypic characteristics
of C. dubliniensis and C. albicans suggest that many C. dubliniensis isolates may have been misidentified as C. albicans in the past. The present studies aim is to recover and identify C. dubliniensis, and presumptive clinical C. albicans, from the oral cavities of HIV-seropositive individuals, comparing conventional media to obtain a simple, low-cost and reliable
identification system for C. dubliniensis. A total of 16 isolates (3,98%) had been obtained from 402 HIV infected individuals with recurrent oropharyngitis and were
identified as C. dubliniensis. Out of these C. dubliniensis isolates 19% were resistant, with MICs above 64 μg/ml to fluconazole. This constitutes, to the authors knowledge the first
recovery of this organism in Venezuela. 相似文献
5.
Satish Kumar Rajasekharan Jin-Hyung Lee Yueju Zhao Jintae Lee 《Indian journal of microbiology》2018,58(1):19-27
Yeast–mold mycobiota inhabit several natural ecosystems, in which symbiotic relationships drive strategic pathoadaptation. Mycotoxins are metabolites produced by diverse mycotoxigenic fungi as a defense against yeasts, though at times yeasts secrete enzymes that degrade, detoxify, or bio-transform mycotoxins. The present study is focused on the in vitro inhibitory effects of zearalenone (ZEN), a F2 mycotoxin produced by several Fusarium and Gibberella species, on different microbial strains. ZEN exhibited no effect on the planktonic growth or biofilms of several Gram positive and negative bacteria at the tested concentrations. Remarkably, Candida albicans biofilm formation and hyphal morphogenesis were significantly inhibited when treated with 100 µg/mL of ZEN. Likewise, ZEN proficiently disrupted pre-formed C. albicans biofilms without disturbing planktonic cells. Furthermore, these inhibitions were confirmed by crystal violet staining and XTT reduction assays and by confocal and scanning electron microscopy. In an in vivo model, ZEN significantly suppressed C. albicans infection in the nematode Caenorhabditis elegans. The study reports the in vitro antibiofilm efficacy of ZEN against C. albicans strains, and suggests mycotoxigenic fungi participate in asymmetric competitive interactions, such as, amensalism or antibiosis, rather than commensal interactions with C. albicans, whereby mycotoxins secreted by fungi destroy C. albicans biofilms. 相似文献
6.
Yuko Matsuda Otomi Cho Takashi Sugita Daiki Ogishima Satoru Takeda 《Mycopathologia》2018,183(4):691-700
7.
Candida dubliniensis, yeast closely related to Candida albicans, is a new pathogen associated mainly with infections of immunocompromised hosts. In this study, we report the first isolation of three isolates of C. dubliniensis in Slovakia. The first selection of both C. albicans and C. dubliniensis from the other Candida species was done on the basis of specific green color of primoculture grown on CHROMagar Candida. The presumptive identification was completed by supplemental tests: germ-tube formation, production of chlamydospores, ability or inability to grow at 42 and 45,°C and by commercial set API 20C AUX. Parallely, the discrimination between both species was performed by PCR assay using primers specific for Candida dubliniensis 相似文献
8.
Małgorzata Prażyńska Tomasz Bogiel Eugenia Gospodarek-Komkowska 《Folia microbiologica》2018,63(2):209-216
Candida spp. is able to form a biofilm, which is considered resistant to the majority of antifungals used in medicine. The aim of this study was to evaluate the in vitro activity of micafungin against Candida spp. biofilms at different stages of their maturation (2, 6, and 24 h). We assessed the inhibitory effect of micafungin against 78 clinical isolates of Candida spp., growing as planktonic or sessile cells, by widely recommended broth microdilution method. The in vitro effect on sessile cells viability was evaluated by colorimetric reduction assay. All examined strains were susceptible or intermediate to micafungin when growing as planktonic cells. At the early stages of biofilm maturation, from 11 (39.3%) to 20 (100%), tested strains, depending on the species, exhibited sessile minimal inhibitory concentrations (SMICs) of micafungin at ≤ 2 mg/L. For 24-h-old Candida spp. biofilms, from 3 (10.7%) to 20 (100%) of the tested strains displayed SMICs of micafungin at ≤ 2 mg/L. Our findings confirm that micafungin exhibits high potential anti-Candida-biofilm activity. However, this effect does not comprise all Candida species and strains. All strains were susceptible or intermediate to micafungin when growing as planktonic cells, but for biofilms, micafungin displays species- and strain-specific activity. Paradoxical growth of C. albicans and C. parapsilosis was observed. Antifungal susceptibility testing of Candida spp. biofilms would be the best solution, but to date, no reference method is available. The strongest antibiofilm activity of micafungin is observed at early stages of biofilm formation. Possibly, micafungin could be considered as an effective agent for prevention of biofilm-associated candidiasis, especially catheter-related candidaemia. 相似文献
9.
In Candida albicans, alcohol metabolism is implicated in biofilm formation. The alcohol dehydrogenase gene (ADH1) is involved in the conversion of acetaldehyde to ethanol and reported to be downregulated during biofilm formation. C. albicans produces acetaldehyde under both in vivo and in vitro conditions. Mutations in ADH genes result in increased acetaldehyde production in vitro, but studies are lacking on the morphogenetic role(s) of acetaldehyde
in C. albicans. We report here that acetaldehyde at a concentration of 7 mM was able to inhibit the conversion from yeast to hyphal forms
induced by four standard inducers at 37°C. The hyphal inhibitory concentrations did not adversely affect the growth and viability
of C. albicans cells. The same concentration of acetaldehyde also significantly inhibited biofilm development, and only adhered yeast cells
were found. We hypothesize that acetaldehyde produced by C. albicans may exert a morphogenetic regulatory role influencing yeast-to-hypha conversion, biofilm formation, dissemination and establishment
of infection. 相似文献
10.
Renan Aparecido Fernandes Douglas Roberto Monteiro Laís Salomão Arias Gabriela Lopes Fernandes Alberto Carlos Botazzo Delbem Debora Barros Barbosa 《Indian journal of microbiology》2018,58(2):138-145
The aim of this study was to evaluate the effect of farnesol on the production of acids and hydrolytic enzymes by biofilms of Streptococcus mutans and Candida albicans. The present study also evaluated the time-kill curve and the effect of farnesol on matrix composition and structure of single-species and dual-species biofilms. Farnesol, at subinhibitory concentrations, showed a significant reduction in S. mutans biofilm acid production, but did not alter C. albicans hydrolytic enzyme production. The number of cultivable cells of both microorganisms was significantly reduced after 8 h of contact with farnesol. Extracellular matrix protein content was reduced for biofilms formed in the presence of farnesol. In addition, confocal laser scanning and scanning electron microscopy displayed structural alterations in all biofilms treated with farnesol, which included reduction in viable cells and extracellular matrix. In conclusion, farnesol showed favorable properties controlling some virulence factors of S. mutans and C. albicans biofilms. These findings should stimulate further studies using this quorum-sensing molecule, combined with other drugs, to prevent or treat biofilm-associated oral diseases. 相似文献
11.
The aim of this study was to characterize switch phenotypes in Candida albicans biofilms. Cells of Candida albicans 192887g biofilms (24 h) were resuspended and these together with their planktonic counterparts were separately inoculated
on Lee’s medium agar supplemented with arginine and zinc, at 25 °C for 9 days, for colony formation. The different switch
phenotypes, as reflected by varying colony morphologies, were then examined for their (i) stability under various growth conditions,
(ii) carbohydrate assimilation profiles, (iii) susceptibility to the polyene antifungal, nystatin, (iv) adhering and biofilm-forming
ability, (v) filamentation, and (vi) growth rate in yeast nitrogen base medium supplemented with 100 mM glucose. Our data
showed that the frequency of phenotypic switching in C. albicans biofilms was approximately 1%. Compared with the planktonic yeasts, cells derived from candidal biofilms generated one of
the phenotypes less frequently (Chi-square-tests: P = 0.017). The five phenotypes derived from the biofilm growth demonstrated differing profiles for carbohydrate assimilation,
adhesion, biofilm formation, filamentation, and growth rate. These findings reported here, for the first time, imply that
phenotypic switching in the candidal biofilms differs from that in the planktonic growth, and affects multiple biological
attributes. 相似文献
12.
Célia Ferreira Sónia Silva Fábio Faria-Oliveira Eva Pinho Mariana Henriques Cândida Lucas 《BMC microbiology》2010,10(1):238
Background
GUP1 gene was primarily identified in Saccharomyces cerevisiae being connected with glycerol uptake defects in association with osmotic stress response. Soon after, Gup1p was implicated in a complex and extensive series of phenotypes involving major cellular processes. These include membrane and wall maintenance, lipid composition, bud-site selection, cytoskeleton orientation, vacuole morphology, secretory/endocytic pathway, GPI anchors remodelling, and lipid-ordered domains assembly, which is compatible with their inclusion in the Membrane Bound O-acyl transferases (MBOAT) family. In mammals, it has been described as a negative regulator of the Sonic hedgehog pathway involved in morphogenesis, differentiation, proliferation, among other processes. 相似文献13.
Raquel Sabino Elisabete Carolino Richard B. Moss Niaz Banaei Cristina Verissimo David A. Stevens 《Mycopathologia》2017,182(9-10):863-867
Candida albicans is a common microbe, colonizer and potential pathogen found in respiratory cultures of cystic fibrosis (CF) patients. Because of possible development of resistance in patient isolates resulting from residence in the abnormal milieu of CF patient airways, or from exposure to antifungals, and considering the possibility of patient-to-patient spread of microbes and reports of elevated resistance to other fungal pathogens, it was important to assay the susceptibility of isolates of Candida and compare that profile to isolates from the community. In our center, and unlike another fungal pathogen, no increase in resistance of Candida isolates of the CF cohort was found. 相似文献
14.
Rodnei Dennis Rossoni Marisol dos Santos Velloso Lívia Mara Alves Figueiredo Carolina Pistille Martins Antonio Olavo Cardoso Jorge Juliana Campos Junqueira 《Folia microbiologica》2018,63(3):307-314
Candida albicans is the most common human fungal pathogen and can grow as yeast or filaments, depending on the environmental conditions. The filamentous form is of particular interest because it can play a direct role in adherence and pathogenicity. Therefore, the purpose of this study was to evaluate the effects of three clinical strains of Lactobacillus on C. albicans filamentation as well as their probiotic potential in pathogen-host interactions via an experimental candidiasis model study in Galleria mellonella. We used the reference strain Candida albicans ATCC 18804 and three clinical strains of Lactobacillus: L. rhamnosus strain 5.2, L. paracasei strain 20.3, and L. fermentum strain 20.4. First, the capacity of C. albicans to form hyphae was tested in vitro through association with the Lactobacillus strains. After that, we verified the ability of these strains to attenuate experimental candidiasis in a Galleria mellonella model through a survival curve assay. Regarding the filamentation assay, a significant reduction in hyphae formation of up to 57% was observed when C. albicans was incubated in the presence of the Lactobacillus strains, compared to a control group composed of only C. albicans. In addition, when the larvae were pretreated with Lactobacillus spp. prior to C. albicans infection, the survival rate of G. mellonela increased in all experimental groups. We concluded that Lactobacillus influences the growth and expression C. albicans virulence factors, which may interfere with the pathogenicity of these microorganisms. 相似文献
15.
Candida albicans is one of the most frequent causes of fungal infections in humans. Significant correlation between candiduria and invasive
candidiasis has previously been described. The existing diagnostic methods are often time-consuming, cost-intensive and lack
in sensitivity and specificity. In this study, the profile of low-molecular weight volatile compounds in the headspace of
C. albicans-urine suspensions of four different fungal cell concentrations compared to nutrient media and urine without C. albicans was determined using proton-transfer reaction mass spectrometry (PTR-MS). At fungal counts of ≥1.5 × 105 colony forming units (CFU)/ml signals at 45, 47 and 73 atomic mass units (amu) highly significantly increased. At fungal
counts of <1.5 × 105 CFU/ml signals at 47 and 73 amu also increased, but only at 45 amu a statistically significant increase was seen. Time course
alterations of signal intensities dependent on different cell concentrations and after addition of Sabouraud nutrient solution
were analysed. Recommendations for measurement conditions are given. Our study is the first to describe headspace profiling
of C. albicans-urine suspensions of different fungal cell concentrations. PTR-MS represents a promising approach to rapid, highly sensitive
and non-invasive clinical diagnostics allowing qualitative and quantitative analysis. 相似文献
16.
Aliz Bozó Marianna Domán László Majoros Gábor Kardos István Varga Renátó Kovács 《Journal of microbiology (Seoul, Korea)》2016,54(11):753-760
Farnesol is a quorum-sensing molecule that inhibits biofilm formation in Candida albicans. Previous in vitro data suggest that, in combination with certain antifungals, farnesol may have an adjuvant anti-biofilm agent. However, the in vivo efficacy of farnesol is very questionable. Therefore, the in vitro and in vivo activity of fluconazole combined with farnesol was evaluated against C. albicans biofilms using fractional inhibitory concentration index (FICI) determination, time-kill experiments and a murine vulvovaginitis model. The median biofilm MICs of fluconazole-sensitive C. albicans isolates ranged between 4 -> 512 mg/L and 150–300 μM for fluconazole and farnesol, respectively. These values were 512 -> 512 mg/L and > 300 μM for fluconazole-resistant clinical isolates. Farnesol decreased the median MICs of fluconazole by 2-64-fold for biofilms. Based on FICI, synergistic interaction was observed only in the case of the sessile SC5314 reference strain (FICIs: 0.16–0.27). In time-kill studies, only the 512 mg/L fluconazole and 512 mg/L fluconazole + 75 μM farnesol reduced biofilm mass significantly at each time point in the case of all isolates. The combination reduced the metabolic activity of biofilms for all isolates in a concentration- and time-dependent manner. Our findings revealed that farnesol alone was not protective in a murine vulvovaginitis model. Farnesol was not beneficial in combination with fluconazole for fluconazole-susceptible isolates, but partially increased fluconazole activity against one fluconazole-resistant isolate, but not the other one. 相似文献
17.
Flower-visiting beetles belonging to three species of Cetoniidae were collected on three mountains near Beijing, China, and yeasts were isolated from the gut of the insects collected. Based
on the 26S rDNA D1/D2 domain and internal transcribed spacer (ITS) region sequence analysis and phenotypic characterization,
four novel anamorphic yeast species located in the Candida albicans/Lodderomyces elongisporus clade were identified from 18 of the strains isolated. The new species and type strains are designated as Candida blackwellae AS 2.3639T (=CBS 10843T), Candida jiufengensis AS 2.3688T (=CBS 10846T), Candida oxycetoniae AS 2.3656T (=CBS 10844T), and Candida pseudojiufengensis AS 2.3693T (=CBS 10847T). C. blackwellae sp. nov. was basal to the branch formed by C. albicans and C. dubliniensis with moderately strong bootstrap support. The closest relative of C. oxycetoniae was L. elongisporus. C. jiufengensis sp. nov. and C. pseudojiufengensis sp. nov. were closely related with each other and formed a branch in a subclade represented by C. parapsilosis and L. elongisporus. 相似文献
18.
Stefan Weidt Jennifer Haggarty Ryan Kean Cristian I. Cojocariu Paul J. Silcock Ranjith Rajendran Gordon Ramage Karl E. V. Burgess 《Metabolomics : Official journal of the Metabolomic Society》2016,12(12):189
Introduction
Combined infections from Candida albicans and Staphylococcus aureus are a leading cause of death in the developed world. Evidence suggests that Candida enhances the virulence of Staphylococcus—hyphae penetrate through tissue barriers, while S. aureus tightly associates with the hyphae to obtain entry to the host organism. Indeed, in a biofilm state, C. albicans enhances the antimicrobial resistance characteristics of S. aureus. The association of these microorganisms is also associated with significantly increased morbidity and mortality. Due to this tight association we hypothesised that metabolic effects were also in evidence.Objectives
To explore the interaction, we used a novel GC-Orbitrap-based mass spectrometer, the Q Exactive GC, which combines the high peak capacity and chromatographic resolution of gas chromatography with the sub-ppm mass accuracy of an Orbitrap system. This allows the capability to leverage the widely available electron ionisation libraries for untargeted applications, along with expanding accurate mass libraries and targeted matches based around authentic standards.Methods
Optimised C. albicans and S. aureus mono- and co-cultured biofilms were analysed using the new instrument in addition to the fresh and spent bacterial growth media.Results
The targeted analysis experiment was based around 36 sugars and sugar phosphates, 22 amino acids and five organic acids. Untargeted analysis resulted in the detection of 465 features from fresh and spent medium and 405 from biofilm samples. Three significantly changing compounds that matched to high scoring library fragment patterns were chosen for validation.Conclusion
Evaluation of the results demonstrates that the Q Exactive GC is suitable for metabolomics analysis using a targeted/untargeted methodology. Many of the results were as expected: e.g. rapid consumption of glucose and fructose from the medium regardless of the cell type. Modulation of sugar-phosphate levels also suggest that the pentose phosphate pathway could be enhanced in the cells from co-cultured biofilms. Untargeted metabolomics results suggested significant production of cell-wall biosynthesis components and the consumption of non-proteinaceous amino-acids.19.
Candida albicans is the most common human fungal pathogen (Beck-Sague and Jarvis, 1993). It is normally a harmless commensal organism. However,
it is a opportunistic pathogen for some immunologically weak and immunocompromised people. It is responsible for painful mucosal
infections such as the vaginitis in women and oral-pharangeal thrush in AIDS patients. In certain groups of vulnerable patients
it causes severe, life-threatening bloodstream infections and it causes severe, life-threatening bloodstream infections and
subsequent infections in the internal organs. There are various fascinating features of the C. albicans life cycle and biology that have made the pathogen the subject of extensive research, including its ability to grow in unicellular
yeast, psudohyphal, and hyphal forms (Fig. 1A); its ability to switch between different but stable phenotypic states, and
the way that it retains the ability to mate but apparently loses the ability to go through meiosis to complete the sexual
cycle. This research has been greatly facilitated by the derivation of the complete C. albicans genome sequence (Braun et al., 2005), the development of a variety of molecular tools for gene manipulation, and a store of underpinning knowledge of cell
biology borrowed from the distantly related model yeast Saccharomyces cerevisiae (Berman and Sudbery, 2002; Noble and Johnson, 2007). This review will provide a brief overview of the importance of C. albicans as a public health issue, the experimental tools developed to study its fascinating biology, and some examples of how these
have been applied. 相似文献
20.
Although biofilms produced by various Leuconostoc sp. are economically important as contaminants of sugar processing plants, very few studies are available on these systems. Twelve strains of Leuconostoc citreum and L. mesenteroides that produce a variety of extracellular glucans were compared for their capacity to produce biofilms. 16s rRNA sequence analysis was used to confirm the species identity of these strains, which included four isolates of L. mesenteroides, five isolates of L. citreum, and three glucansucrase mutants of L. citreum strain NRRL B-1355. Strains identified as L. mesenteroides produce glucans that are generally similar to commercial dextran. Nevertheless, these strains differed widely in their capacity to form biofilms, with densities ranging from 2.7 to 6.1 log cfu/cm(2). L. citreum strains and their derivatives produce a variety of glucans. These strains exhibited biofilm densities ranging from 2.5 to 5.9 log cfu/cm(2). Thus, biofilm-forming capacity varied widely on a strain-specific basis in both species. The types of polysaccharides produced did not appear to affect the ability to form biofilms. 相似文献