首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Sialidases can be used to transfer sialic acids from sialoglycans to asialoglycoconjugates via the trans-glycosylation reaction mechanism. Some pathogenic bacteria decorate their surfaces with sialic acids which were often scavenged from host sialoglycoconjugates using their surface-localized enzymes. In this study, we constructed an in vitro trans-sialylation system by reconstructing the exogenous sialoglycoconjugate synthesis system of pathogens on the surfaces of yeast cells. The nanH gene encoding an extracellular sialidase of Corynebacterium diphtheriae was cloned into the yeast surface display vector pYD1 based on the Aga1p–Aga2p platform to immobilize the enzyme on the surface of the yeast Saccharomyces cerevisiae. The surface-displayed recombinant NanH protein was expressed as a fully active sialidase and also transferred sialic acids from pNP-α-sialoside, a sialic acid donor substrate, to human-type asialo-N-glycans. Moreover, this system was capable of attaching sialic acids to the glycans of asialofetuin via α(2,3)- or α(2,6)-linkage. The cell surface-expressed C. diphtheriae sialidase showed its potential as a useful whole cell biocatalyst for the transfer of sialic acid as well as the hydrolysis of N-glycans containing α(2,3)- and α(2,6)-linked sialic acids for glycoprotein remodeling.  相似文献   

2.
唾液酸苷酶(EC.3.2.1.18)是一类重要的糖苷水解酶,在动物和微生物中广泛存在.该类酶催化寡糖或糖缀合物上非还原末端唾液酸水解,具有重要的生物学功能,如参与溶酶体降解代谢物、癌症发生、微生物致病等多种生理和病理过程.除了水解活性外,有的唾液酸苷酶还具有转糖基活性,能够以唾液酸单糖或糖苷为糖基供体,催化唾液酸转移到受体分子上,一步合成寡糖和糖苷化合物.这种合成活性对于唾液酸相关糖链的大量获得具有重要意义,有利于推动该类寡糖的基础研究及其在食品和医药中的应用.本文综述了唾液酸苷酶的结构和催化机理、生理功能、转糖基作用及其在寡糖合成中的应用.  相似文献   

3.
A gene encoding a putative sialidase was identified in the genome of the opportunistic fungal pathogen, Aspergillus fumigatus. Computational analysis showed that this protein has Asp box and FRIP domains, it was predicted to have an extracellular localization, and a mass of 42 kDa, all of which are characteristics of sialidases. Structural modeling predicted a canonical 6-bladed β-propeller structure with the model’s highly conserved catalytic residues aligning well with those of an experimentally determined sialidase structure. The gene encoding the putative Af sialidase was cloned and expressed in Escherichia coli. Enzymatic characterization found that the enzyme was able to cleave the synthetic sialic acid substrate, 4-methylumbelliferyl α-D-N-acetylneuraminic acid (MUN), and had a pH optimum of 3.5. Further kinetic characterization using 4-methylumbelliferyl α-D-N-acetylneuraminylgalactopyranoside revealed that Af sialidase preferred α2-3-linked sialic acids over the α2-6 isomers. No trans-sialidase activity was detected. qPCR studies showed that exposure to MEM plus human serum induced expression. Purified Af sialidase released sialic acid from diverse substrates such as mucin, fetuin, epithelial cell glycans and colominic acid, though A. fumigatus was unable to use either sialic acid or colominic acid as a sole source of carbon. Phylogenetic analysis revealed that the fungal sialidases were more closely related to those of bacteria than to sialidases from other eukaryotes.  相似文献   

4.
The action of sialidases on substrates containing O-acetylsialic acids   总被引:6,自引:0,他引:6  
O-Acetyl substitution of sialic acids in glycoconjugates reduces the rate of action of sialidases on these substrates. A plasma glycoprotein fraction and an erythrocyte ganglioside containing 4-O-acetylsialic acids were isolated and characterized from equine blood, and a sialyllactose preparation with Neu5,9Ac2 was purified from rat urine. Using the novel substrates II3Neu4Ac5Gc-LacCer and II3Neu5,9Ac2-Lac the influence of individual mono-O-acetylated sialic acids on bacterial and viral sialidases could be clearly shown. This extends and clarifies observations with glycoproteins containing mixtures of mono-, di- and higher O-acetylated sialic acids with substitution at the hydroxyls on carbons 4, 7, 8 and 9. A 4-O-acetyl substitution in sialic acids blocks the action of bacterial sialidases for substrates containing these derivatives, while viral enzymes show low but significant activity, reflected in Km and Vmax values. A small reduction in bacterial sialidase activity was observed for II3Neu5,9Ac2-Lac relative to II3Neu5Ac-Lac in agreement with kinetic analysis. Newcastle disease virus sialidase showed a 50% reduction in hydrolysis rate for the 9-O-acetylated substrate and ten-fold reductions of both Km and Vmax values.  相似文献   

5.
Influenza A viruses, members of the Orthomyxoviridae family, are responsible for annual seasonal influenza epidemics and occasional global pandemics. The binding of viral coat glycoprotein hemagglutinin (HA) to sialylated glycan receptors on host epithelial cells is the critical initial step in the infection and transmission of these viruses. Scientists believe that a switch in the binding specificity of HA from Neu5Acα2-3Gal linked (α2-3) to Neu5Acα2-6Gal linked (α2-6) glycans is essential for the crossover of the viruses from avian to human hosts. However, studies have shown that the classification of glycan binding preference of HA based on sialic acid linkage alone is insufficient to establish a correlation between receptor specificity of HA and the efficient transmission of influenza A viruses. A recent study reported extensive diversity in the structure and composition of α2-6 glycans (which goes beyond the sialic acid linkage) in human upper respiratory epithelia and identified different glycan structural topologies. Biochemical examination of the multivalent HA binding to these diverse sialylated glycan structures also demonstrated that high affinity binding of HA to α2-6 glycans with a characteristic umbrella-like structural topology is critical for efficient human adaptation and human-human transmission of influenza A viruses. This review summarizes studies which suggest a new paradigm for understanding the role of the structure of sialylated glycan receptors in influenza virus pathogenesis.  相似文献   

6.
《MABS-AUSTIN》2013,5(8):1381-1390
ABSTRACT

Human IgG antibodies containing terminal alpha 2,6-linked sialic acid on their Fc N-glycans have been shown to reduce antibody-dependent cell-mediated cytotoxicity and possess anti-inflammatory properties. Although terminal sialylation on complex N-glycans can happen via either an alpha 2,3-linkage or an alpha 2,6-linkage, sialic acids on human serum IgG Fc are almost exclusively alpha 2,6-linked. Recombinant IgGs expressed in Chinese hamster ovary (CHO) cells, however, have sialic acids through alpha 2,3-linkages because of the lack of the alpha 2,6-sialyltransferase gene. The impact of different sialylation linkages to the structure of IgG has not been determined. In this work, we investigated the impact of different types of sialylation to the conformational stability of IgG through hydrogen/deuterium exchange (HDX) and limited proteolysis experiments. When human-derived and CHO-expressed IgG1 were analyzed by HDX, sialic acid-containing glycans were found to destabilize the CH2 domain in CHO-expressed IgG, but not human-derived IgG. When structural isomers of sialylated glycans were chromatographically resolved and identified in the limited proteolysis experiment, we found that only alpha 2,3-linked sialic acid on the 6-arm (the major sialylated glycans in CHO-expressed IgG1) destabilizes the CH2 domain, presumably because of the steric effect that decreases the glycan-CH2 domain interaction. The alpha 2,6-linked sialic acid on the 3-arm (the major sialylated glycan in human-derived IgG), and the alpha 2,3-linked sialic acid on the 3-arm, do not have this destabilizing effect.  相似文献   

7.
Sialidases hydrolytically remove sialic acids from sialylated glycoproteins and glycolipids. Sialidases are widely distributed in nature and sialidase-mediated desialylation is implicated in normal and pathological processes. However, mechanisms by which sialidases exert their biological effects remain obscure, in part because sialidase substrate preferences are poorly defined. Here we report the design and implementation of a sialidase substrate specificity assay based on chemoselective labeling of sialosides. We show that this assay identifies components of glycosylated substrates that contribute to sialidase specificity. We demonstrate that specificity of sialidases can depend on structure of the underlying glycan, a characteristic difficult to discern using typical sialidase assays. Moreover, we discovered that Streptococcus pneumoniae sialidase NanC strongly prefers sialosides containing the Neu5Ac form of sialic acid versus those that contain Neu5Gc. We propose using this approach to evaluate sialidase preferences for diverse potential substrates.  相似文献   

8.
Several glycoconjugates are involved in the immune response. Sialic acid is frequently the glycan terminal sugar and it may modulate immune interactions. Dendritic cells (DCs) are antigen-presenting cells with high endocytic capacity and a central role in immune regulation. On this basis, DCs derived from monocytes (mo-DC) are utilised in immunotherapy, though many features are ignored and their use is still limited. We analyzed the surface sialylated glycans expressed during human mo-DC generation. This was monitored by lectin binding and analysis of sialyltransferases (ST) at the mRNA level and by specific enzymatic assays. We showed that α2-3-sialylated O-glycans and α2-6- and α2-3-sialylated N-glycans are present in monocytes and their expression increases during mo-DC differentiation. Three main ST genes are committed with this rearrangement: ST6Gal1 is specifically involved in the augmented α2-6-sialylated N-glycans; ST3Gal1 contributes for the α2-3-sialylation of O-glycans, particularly T antigens; and ST3Gal4 may contribute for the increased α2-3-sialylated N-glycans. Upon mo-DC maturation, ST6Gal1 and ST3Gal4 are downregulated and ST3Gal1 is altered in a stimulus-dependent manner. We also observed that removing surface sialic acid of immature mo-DC by neuraminidase significantly decreased its endocytic capacity, while it increased in monocytes. Our results indicate the STs expression modulates the increased expression of surface sialylated structures during mo-DC generation, which is probably related with changes in cell mechanisms. The ST downregulation after mo-DC maturation probably results in a decreased sialylation or sialylated glycoconjugates involved in the endocytosis, contributing to the downregulation of one or more antigen-uptake mechanisms specific of mo-DC.  相似文献   

9.
The initial step essential in influenza virus infection is specific binding of viral hemagglutinin to host cell-surface glycan receptors. Influenza A virus specificity for the host is mediated by viral envelope hemagglutinin, that binds to receptors containing glycans with terminal sialic acids. Human viruses preferentially bind to α2→6 linked sialic acids on receptors of host cells, whereas avian viruses are specific for the α2→3 linkage on the target cells. Human influenza virus isolates more efficiently infect amniotic membrane (AM) cells than chorioallantoic membrane (CAM) cells. N-glycans were isolated from AM and CAM cells of 10-day-old chicken embryonated eggs and their structures were analyzed by multi-dimensional HPLC mapping and MALDI-TOF-MS techniques. Terminal N-acetylneuraminic acid contents in the two cell types were similar. However, molar percents of α2→3 linkage preferentially bound by avian influenza virus were 27.2 in CAM cells and 15.4 in AM cells, whereas those of α2→6 linkage favored by human influenza virus were 8.3 (CAM) and 14.2 (AM). Molar percents of sulfated glycans, recognized by human influenza virus, in CAM and AM cells were 3.8 and 12.7, respectively. These results have revealed structures and molar percents of N-glycans in CAM and AM cells important in determining human and avian influenza virus infection and viral adaptation.  相似文献   

10.
4-O-Acetylated, 7-O-acetylated, and 9-O-acetylated 4-methylumbelliferyl-alpha-N-acetyl-neuraminic acids (Neu4,5Ac2-MU, Neu5,7Ac2-MU, Neu5,9Ac2-MU) were tested as substrates of sialidases of Vibrio cholerae and of Clostridium perfringens. Both sialidases were unable to hydrolyse Neu4,5Ac2-MU. This compound at 1 mM concentration did not inhibit significantly the cleavage of Neu5Ac-MU, the best substrate tested. The 4-O-acetylated sialic acid glycoside is hydrolysed slowly by the sialidase from fowl plague virus. The relative substrate specificity, reflected in V/Km of the Vibrio cholerae sialidase is Neu5Ac-MU much greater than Neu5,7Ac2-MU approximately Neu5,9Ac2-MU and of the clostridial enzyme it is Neu5Ac-MU greater than Neu5,9Ac2-MU greater than Neu5,7Ac2-MU. The affinities of both enzymes for the side-chain O-acetylated sialic acid derivatives are higher than for Neu5Ac-MU. The artificial, well-defined substrates, described here, provide the opportunity to quantify the influence of sialic acid O-acetylation on the hydrolysis of sialoglycoconjugates without the side effects introduced by other parts of more complex glycans.  相似文献   

11.
Sialic acids are a family of negatively charged monosaccharides which are commonly presented as the terminal residues in glycans of the glycoconjugates on eukaryotic cell surface or as components of capsular polysaccharides or lipooligosaccharides of some pathogenic bacteria. Due to their important biological and pathological functions, the biosynthesis, activation, transfer, breaking down, and recycle of sialic acids are attracting increasing attention. The understanding of the sialic acid metabolism in eukaryotes and bacteria leads to the development of metabolic engineering approaches for elucidating the important functions of sialic acid in mammalian systems and for large-scale production of sialosides using engineered bacterial cells. As the key enzymes in biosynthesis of sialylated structures, sialyltransferases have been continuously identified from various sources and characterized. Protein crystal structures of seven sialyltransferases have been reported. Wild-type sialyltransferases and their mutants have been applied with or without other sialoside biosynthetic enzymes for producing complex sialic acid-containing oligosaccharides and glycoconjugates. This mini-review focuses on current understanding and applications of sialic acid metabolism and sialyltransferases.  相似文献   

12.
Terminal sialylation of therapeutic glycoprotein is important for biological activity and in vivo stability. The enzyme α2,3-sialyltransferase is the key enzyme that links sialic acids to the termini of glycans in the Chinese hamster ovary (CHO) cell line. Terminal sialylation is affected by numerous factors, but the elements that regulate α2,3-sialyltransferase are not known. We investigated the relationship between α2,3-sialyltransferase activity, ammonium concentration, and cell attachment area-based cell concentration in a recombinant human erythropoietin (rhEPO)-producing CHO cell line. We found that ammonium in the culture medium had almost no effect on α2,3-sialyltransferase activity, but that the activity was affected by cell attachment area-based cell concentration; α2,3-sialyltransferase activity and terminal sialylation of rhEPO decreased with increasing the cell concentration. These results demonstrate that the cell attachment area-based cell concentration is an important factor that affects 2,3-sialyltransferase activity and terminal sialylation of CHO cells.  相似文献   

13.
Many glycan-binding proteins in animals and pathogens recognize sialic acid or its modified forms, but their molecular recognition is poorly understood. Here we describe studies on sialic acid recognition using a novel sialylated glycan microarray containing modified sialic acids presented on different glycan backbones. Glycans terminating in β-linked galactose at the non-reducing end and with an alkylamine-containing fluorophore at the reducing end were sialylated by a one-pot three-enzyme system to generate α2-3- and α2-6-linked sialyl glycans with 16 modified sialic acids. The resulting 77 sialyl glycans were purified and quantified, characterized by mass spectrometry, covalently printed on activated slides, and interrogated with a number of key sialic acid-binding proteins and viruses. Sialic acid recognition by the sialic acid-binding lectins Sambucus nigra agglutinin and Maackia amurensis lectin-I, which are routinely used for detecting α2-6- and α2-3-linked sialic acids, are affected by sialic acid modifications, and both lectins bind glycans terminating with 2-keto-3-deoxy-D-glycero-D-galactonononic acid (Kdn) and Kdn derivatives stronger than the derivatives of more common N-acetylneuraminic acid (Neu5Ac) and N-glycolylneuraminic acid (Neu5Gc). Three human parainfluenza viruses bind to glycans terminating with Neu5Ac or Neu5Gc and some of their derivatives but not to Kdn and its derivatives. Influenza A virus also does not bind glycans terminating in Kdn or Kdn derivatives. An especially novel aspect of human influenza A virus binding is its ability to equivalently recognize glycans terminated with either α2-6-linked Neu5Ac9Lt or α2-6-linked Neu5Ac. Our results demonstrate the utility of this sialylated glycan microarray to investigate the biological importance of modified sialic acids in protein-glycan interactions.  相似文献   

14.
Sialic acid-containing compounds play a key role in the initial steps of the paramyxovirus life cycle. As enveloped viruses, their entry into the host cell consists of two main events: binding to the host cell and membrane fusion. Virus adsorption occurs at the surface of the host cell with the recognition of specific receptor molecules located at the cell membrane by specific viral attachment proteins. The viral attachment protein present in some paramyxoviruses (Respirovirus, Rubulavirus and Avulavirus) is the HN glycoprotein, which binds to cellular sialic acid-containing molecules and exhibits sialidase and fusion promotion activities. Gangliosides of the gangliotetraose series bearing the sialic acid N-acetylneuraminic (Neu5Ac) on the terminal galactose attached in α2-3 linkage, such as GD1a, GT1b, and GQ1b, and neolacto-series gangliosides are the major receptors for Sendai virus. Much less is known about the receptors for other paramyxoviruses than for Sendai virus. Human parainfluenza viruses 1 and 3 preferentially recognize oligosaccharides containing N-acetyllactosaminoglycan branches with terminal Neu5Acα2-3Gal. In the case of Newcastle disease virus, has been reported the absence of a specific pattern of the gangliosides that interact with the virus. Additionally, several works have described the use of sialylated glycoproteins as paramyxovirus receptors. Accordingly, the design of specific sialic acid analogs to inhibit the sialidase and/or receptor binding activity of viral attachment proteins is an important antiviral strategy. In spite of all these data, the exact nature of paramyxovirus receptors, apart from their sialylated nature, and the mechanism(s) of viral attachment to the cell surface are poorly understood. The authors would like to dedicate this review to Prof. José A. Cabezas, recently retired who, as well being our mentor and colleague, introduced us into the fascinating field of sialic acid-containing glycoconjugates and viral sialidases at a time when just a very small number of scientists were paying attention to this important field of research. Also, he has been for us a continuous source of inspiration and friendship to us. The ganglioside nomenclature of Svennerholm [1] is used.  相似文献   

15.
Virtually all cell surface proteins and many cell membrane lipids are glycosylated, creating a cell surface glycocalyx. The glycan chains attached to cell surface glycoproteins and glycolipids are complex structures with specific additions that determine functions of the glycans in cell–cell communication and cell sensing of the environment. One type of specific modification of cell surface glycans is decoration of glycan termini by sialic acids. On T cells, these terminal sialic acid residues are involved in almost every aspect of T cell fate and function, from cell maturation, differentiation, and migration to cell survival and cell death. The roles that sialylated glycans play in T cell development and function, including binding to specific sialic acid-binding lectins, are reviewed here.  相似文献   

16.
Host sialoglycans and bacterial sialidases: a mucosal perspective   总被引:1,自引:0,他引:1  
Sialic acids are nine-carbon-backbone sugars that occupy outermost positions on vertebrate cells and secreted sialoglycoproteins. These negatively charged hydrophilic carbohydrates have a variety of biological, biophysical and immunological functions. Mucosal surfaces and secretions of the mouth, airway, gut and vagina are especially sialoglycan-rich. Given their prominent positions and important functions, a variety of microbial strategies have targeted host sialic acids for adherence, mimicry and/or degradation. Here we review the roles of bacterial sialidases (neuraminidases) during colonization and pathogenesis of mammalian mucosal surfaces. Evidence is presented to support the myriad roles of mucosal sialoglycans in protecting the host from bacterial infection. In opposition, many bacteria hydrolyse sialic acids during associations with the gastrointestinal, oral, respiratory and reproductive tracts. Sialidases promote bacterial survival in mucosal niche environments in several ways, including: (i) nutritional benefits of sialic acid catabolism, (ii) unmasking of cryptic host ligands used for adherence, (iii) participation in biofilm formation and (iv) modulation of immune function. Bacterial sialidases are among the best-studied enzymes involved in pathogenesis and may also drive commensal and/or symbiotic host associations. Future studies should continue to define host substrates of bacterial sialidases and the mechanisms of their pathologic, commensal and symbiotic interactions with the mammalian host.  相似文献   

17.
Sialidases or neuraminidases are enzymes that catalyze the cleavage of terminal sialic acids from oligosaccharides and glycoconjugates. They play important roles in bacterial and viral infection and have been attractive targets for drug development. Structure-based drug design has led to potent inhibitors against neuraminidases of influenza A viruses that have been used successfully as approved therapeutics. However, selective and effective inhibitors against bacterial and human sialidases are still being actively pursued. Guided by crystal structural analysis, several derivatives of 2-deoxy-2,3-didehydro-N-acetylneuraminic acid (Neu5Ac2en or DANA) were designed and synthesized as triazole-linked transition state analogs. Inhibition studies revealed that glycopeptide analog E-(TriazoleNeu5Ac2en)-AKE and compound (TriazoleNeu5Ac2en)-A were selective inhibitors against Vibrio cholerae sialidase, while glycopeptide analog (TriazoleNeu5Ac2en)-AdE selectively inhibited Vibrio cholerae and A. ureafaciens sialidases.  相似文献   

18.
Herein we report the synthesis of N-acetyl neuraminic acid derivatives as 4-methylumbelliferyl glycosides and their use in fluorometrically quantifying human and bacterial sialidase activity and substrate specificities. We found that sialidases in the human promyelocytic leukemic cell line HL60 were able to cleave sialic acid substrates with fluorinated C-5 modifications, in some cases to a greater degree than the natural N-acetyl functionality. Human sialidases isoforms were also able to cleave unnatural substrates with bulky and hydrophobic C-5 modifications. In contrast, we found that a bacterial sialidase isolated from Clostridium perfringens to be less tolerant of sialic acid derivatization at this position, with virtually no cleavage of these glycosides observed. From our results, we conclude that human sialidase activity is a significant factor in sialic acid metabolic glycoengineering efforts utilizing unnatural sialic acid derivatives. Our fluorogenic probes have enabled further understanding of the activities and substrate specificities of human sialidases in a cellular context.  相似文献   

19.
Cervical mucins are glycosylated proteins that form a protective cervical mucus. To understand the role of mucin glycans in Candida albicans infection, oligosaccharides from mouse cervical mucins were analyzed by liquid chromatography-mass spectrometry. Cervical mucins carry multiple α(1-2)fucosylated glycans, but α(1,2)fucosyltransferase Fut2-null mice are devoid of these epitopes. Epithelial cells in vaginal lavages from Fut2-null mice lacked Ulex europaeus agglutinin-1 (UEA-I) staining for α(1-2)fucosylated glycans. Hysterectomy to remove cervical mucus eliminated UEA-I and acid mucin staining in vaginal epithelial cells from wild type mice indicating the cervix as the source of UEA-I positive epithelial cells. To assess binding of α(1-2) fucosylated glycans on C. albicans infection, an in vitro adhesion assay was performed with vaginal epithelial cells from wild type and Fut2-null mice. Vaginal epithelial cells from Fut2-null mice were found to bind increased numbers of C. albicans compared to vaginal epithelial cells obtained from wild type mice. Hysterectomy lessened the difference between Fut2-null and wild type mice in binding of C. ablicans in vitro and susceptibility to experimental C. albicans vaginitis in vivo. We generated a recombinant fucosylated MUC1 glycanpolymer to test whether the relative protection of wild type mice compared to Fut2-null mice could be mimicked with exogenous mucin. While a small portion of the recombinant MUC1 epitopes displayed α(1-2)fucosylated glycans, the predominant epitopes were sialylated due to endogenous sialyltransferases in the cultured cells. Intravaginal instillation of recombinant MUC1 glycanpolymer partially reduced experimental yeast vaginitis suggesting that a large glycanpolymer, with different glycan epitopes, may affect fungal burden.  相似文献   

20.
The glycan chains attached to cell surfaces or to single proteins are highly dynamic structures with various functions. The glycan chains of mammals and of some microorganisms often terminate in sialic acids or α-1,3-galactose. Although these two sugars are completely distinct, there are several similarities in their biological and medical importance. First, one type of sialic acid, N-glycolylneuraminic acid, and the galactose bound by an α-1,3-linkage to LacNAc, that forms an α-gal epitope, were both eliminated in human evolution, resulting in the production of antibodies to these sugars. Both of these evolutionary events have consequences connected with the consumption of foods of mammalian origin, causing medical complications of varying severity. In terms of ageing, sialic acids prevent the clearance of glycoproteins and circulating blood cells, whereas cryptic α-gal epitopes on senescent red blood cells contribute to their removal from circulation. The efficiency of therapeutic proteins can be increased by sialylation. Another common feature is the connection with microorganisms since sialic acids and α-gal epitopes serve as receptors on host cells and can also be expressed on the surfaces of some microorganisms. Whereas, the sialylation of IgG antibodies may help to treat inflammation, the expression of the α-gal epitope on microbial antigens increases the immunogenicity of the corresponding vaccines. Finally, sialic acids and the α-gal epitope have applications in cancer immunotherapy. N-glycolylneuraminic acid is a powerful target for cancer immunotherapy, and the α-gal epitope increases the efficiency of cancer vaccines. The final section of this article contains a brief overview of the methods for oligosaccharide chain synthesis and the characteristics of sialyltransferases and α-1,3-galactosyltransferase.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号