首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A fluidized-bed reactor (FBR) was used to enrich an aerobic chlorophenol-degrading microbial culture. Long-term continuous-flow operation with low effluent concentrations selected oligotrophic microorganisms producing good-quality effluent for pentachlorophenol(PCP)-contaminated water. PCP biodegradation kinetics was studied using this FBR enrichment culture. The results from FBR batch experiments were modeled using a modified Haldane equation, which resulted in the following kinetic constants: q max = 0.41 mg PCP mg protein−1 day−1, K S = 16 μg l−1, K i = 5.3 mg l−1, and n = 3.5. These results show that the culture has a high affinity for PCP but is also inhibited by relatively low PCP concentrations (above 1.1 mg PCP l−1). This enrichment culture was maintained over 1 year of continuous-flow operation with PCP as the sole source of carbon and energy. During continuous-flow operation, effluent concentrations below 2 μg l−1 were achieved at 268 min hydraulic retention time (t HR) and 2.5 mg PCP l−1 feed concentration. An increase in loading rate by decreasing t HR did not significantly deteriorate the effluent quality until a t HR decrease from 30 min to 21 min resulted in process failure. Recovery from process failure was slow. Decreasing the feed PCP concentration and increasing t HR resulted in an improved process recovery. Received: 10 October 1996 / Received revision: 21 January 1997 / Accepted: 24 January 1997  相似文献   

2.
We have analysed the influence of the initial pH of the medium and the quantity of aeration provided during the batch fermentation of solutions of d-xylose by the yeast Hansenula polymorpha (34438 ATCC). The initial pH was altered between 3.5 and 6.5 whilst aeration varied between 0.0 and 0.3 vvm. The temperature was kept at 30 °C during all the experiments. Hansenula polymorpha is known to produce high quantities of xylitol and low quantities of ethanol. The most favourable conditions for the growth of xylitol turned out to be: an initial pH of between 4.5 and 5.5 and the aeration provided by the stirring vortex alone. Thus, at an initial pH of 5.5, the maximum specific production rate (μm) was 0.41 h−1, the overall biomass yield (Y x/s G) was 0.12 g g−1, the specific d-xylose-consumption rate (q s ) was 0.075 g g−1 h−1 (for t = 75 h), the specific xylitol-production rate (q Xy ) was 0.31 g g−1 h−1 (for t = 30 h) and the overall yields of ethanol (Y E/s G) and xylitol (Y Xy/s G) were 0.017 and 0.61 g g−1 respectively. Both q s and q Xy decreased during the course of the experiments once the exponential growth phase had finished. Received: 26 March 1998 / Received revision: 30 June 1998 / Accepted: 2 July 1998  相似文献   

3.
The behavior of Streptomyces peucetius var. caesius N47 was studied in a glucose limited chemostat with a complex cultivation medium. The steady-state study yielded the characteristic constants μ max over 0.10 h−1, Y XS 0.536 g g−1, and mS 0.54 mg g−1 h−1. The product of secondary metabolism, ɛ-rhodomycinone, was produced with characteristics Y PX 12.99 mg g−1 and m P 1.20 mg g−1 h−1. Significant correlations were found for phosphate and glucose consumption with biomass and ɛ-rhodomycinone production. Metabolic flux analysis was conducted to estimate intracellular fluxes at different dilution rates. TCA, PPP, and shikimate pathway fluxes exhibited bigger values with production than with growth. Environmental perturbation experiments with temperature, airflow, and pH changes on a steady-state chemostat implied that an elevation of pH could be the most effective way to shift the cells from growing to producing, as the pH change induced the biggest transient increase to the calculated ɛ-rhodomycinone flux.  相似文献   

4.
Short-circuit current (I sc ), transepithelial conductance (G t ), electrical capacitance (C T ) and the fluctuation in I sc were analyzed in polarized epithelial cells from the distal nephron of Xenopus laevis (A6 cell line). Tissues were incubated with Na+- and Cl-free solutions on the apical surface. Basolateral perfusate was NaCl-Ringer. Agents that increase cellular cAMP evoked increases in G t , C T , I sc and generated a Lorentzian I sc -noise. The responses could be related to active, electrogenic secretion of Cl. Arginine-vasotocin and oxytocin caused a typical peak-plateau response pattern. Stimulation with a membrane-permeant nonhydrolyzable cAMP analogue or forskolin showed stable increases in G t with only moderate peaking of I sc . Phosphodiesterase inhibitors also stimulated Cl secretion with peaking responses in G t and I sc . All stimulants elicited a spontaneous Lorentzian noise, originating from the activated apical Cl channel, with almost identical corner frequency (40–50 Hz). Repetitive challenge with the hormones led to a refractory behavior of all parameters. Activation of the cAMP route could overcome this refractoriness. All agents caused C T , a measure of apical membrane area, to increase in a manner roughly synchronous with G t . These results suggest that activation of the cAMP-messenger route may, at least partly, involve exocytosis of a vesicular Cl channel pool. Apical flufenamate depressed Cl current and conductance and apparently generated blocker-noise. However, blocking kinetics extracted from noise experiments could not be reconciled with those obtained from current inhibition, suggesting the drug does not act as simple open-channel inhibitor. Received: 20 May 1998/Revised: 8 September 1998  相似文献   

5.
The polyphasic patterns of fluorescence induction rise in pea leaves in vivo and after the treatment with ionophores have been studied using a Plant Efficiency Analyzer. To analyze in detail photosystem II (PS II) electron transfer processes, an extended PS II model was applied, which included the sums of exponential functions to specify explicitly the light-driven formation of the transmembrane electric potential (ΔΨ(t)) as well as pH in the lumen (pHL(t)) and stroma (pHS(t)). PS II model parameters and numerical coefficients in ΔΨ(t), pHL(t), and pHS(t) were evaluated to fit fluorescence induction data for different experimental conditions: leaf in vivo or after ionophore treatment at low or high light intensity. The model imitated changes in the pattern of fluorescence induction rise due to the elimination of transmembrane potential in the presence of ionophores, when ΔΨ = 0 and pHL(t), pHS(t) changed to small extent relative to control values in vivo, with maximum ΔΨ(t) ∼ 90 mV and ΔΨ(t) ∼ 40 mV for the stationary state at ΔpH ≅ 1.8. As the light intensity was increased from 300 to 1200 μmol m−2 s−1, the heat dissipation rate constants increased threefold for nonradiative recombination of P680+Phe and by ∼30% for P680+QA. The parameters ΔΨ, pHS and pHL were analyzed as factors of PS II redox state populations and fluorescence yield. The kinetic mechanism of fluorescence quenching is discussed, which is related with light-induced lumen acidification, when +QA and P680+ recombination probability increases to regulate the QA reduction.  相似文献   

6.
In many biophysical and biochemical experiments one observes the decay of some ligand population by an appropriate system of traps. We analyse this decay for a one-dimensional system of randomly distributed traps, and show that one can distinguish three different regimes. The decay starts with a fractional exponential of the form exp[−(t/t 0)1/2], which changes into a fractional exponential of the form exp[−(t/t 1)1/3] for long times, which in its turn changes into a pure exponential time dependence, i.e. exp[−t/t 2] for very long times. With these three regimes, we associate three time scales, related to the average trap density and the diffusion constant characterizing the motion of the ligands.  相似文献   

7.
The presence of an electrogenic H+-ATPase has been described in the late distal tubule, a segment which contains intercalated cells. The present paper studies the electrogenicity of this transport mechanism, which has been demonstrated in turtle bladder and in cortical collecting duct. Transepithelial PD (V t ) was measured by means of Ling-Gerard microelectrodes in late distal tubule of rat renal cortex during in vivo microperfusion. The tubules were perfused with electrolyte solutions to which 2 × 10−7 m bafilomycin or 4.6 × 10−8 m concanamycin were added. No significant increase in lumen-negative V t upon perfusion with these inhibitors as compared to control, was observed as well as when 10−3 m amiloride, 10−5 m benzamil or 3 mm Ba2+ were perfused alone or in combination. The effect of an inhibition of electrogenic H+ secretion, i.e., increase in lumen-negative V t by 2–4 mV, was observed only when Cl channels were blocked by 10−5 m 5-nitro-2-(3-phenylpropylamino) benzoic acid (NPPB). This blocker also reduced the rate of bicarbonate reabsorption in this segment from 1.21 ± 0.14 (n= 8) to 0.62 ± 0.03 (8) nmol.cm−2.sec−1 as determined by stationary microperfusion and pH measurement by ion-exchange resin microelectrodes. These results indicate that: (i) the participation of the vacuolar H+ ATPase in the establishment of cortical late distal tubule V t is minor in physiological conditions, but can be demonstrated after blocking Cl channels, thus suggesting a shunting effect of this anion; and, (ii) the rate of H+ secretion in this segment is reduced by a Cl channel blocker, supporting coupling of H+-ATPase with Cl transport. Received: 6 July 1996/Revised: 27 December 1996  相似文献   

8.
Summary The intact human reabsorptive sweat duct (RD) has been a reliable model for investigations of the functional role of “endogenous” CFTR (cystic fibrosis transmembrane conductance regulator) in normal and abnormal electrolyte absorptive function. But to overcome the limitations imposed by the use of fresh, intact tissue, we transformed cultured RD cells using the chimeric virus Ad5/SV40 1613 ori-. The resultant cell line, RD2(NL), has remained differentiated forming a polarized epithelium that expressed two fundamental components of absorption, a cAMP activated Cl conductance (Gcl) and an amiloride-sensitive Na+ conductance (GNa). In the unstimulated state, there was a low level of transport activity; however, addition of forskolin (10−5 M) significantly increased the Cl diffusion potential (Vt) generated by a luminally directed Cl gradient from − 15.3 ± 0.7 mV to −23.9 ± 1.1 mV,n=39; and decreased the transepithelial resistance (Rt) from 814.8 ± 56.3 Ω.cm2 to 750.5 ± 47.5 Ω.cm2,n=39, (n=number of cultures). cAMP activation, anion selectivity (Cl>I>gluconate), and a dependence upon metabolic energy (metabolic poisoning inhibited GCl), all indicate that the GCl expressed in RD2(NL) is in fact CFTR-GCl. The presence of an apical amiloride-sensitive GNa was shown by the amiloride (10−5 M) inhibition of GNa as indicated by a reduction of Vt and equivalent short circuit current by 78.0 ± 3.1% and 77.9 ± 2.6%, respectively, and an increase in Rt by 7.2 ± 0.8%,n=36. In conclusion, the RD2(NL) cell line presents the first model system in which CFTR-GCl is expressed in a purely absorptive tissue. It provides an opportunity to study the properties and role of CFTR in the context of absorptive function in immortalized epithelial cells.  相似文献   

9.
The Ca2+-activated maxi K+ channel was found in the apical membrane of everted rabbit connecting tubule (CNT) with a patch-clamp technique. The mean number of open channels (NP o ) was markedly increased from 0.007 ± 0.004 to 0.189 ± 0.039 (n= 7) by stretching the patch membrane in a cell-attached configuration. This activation was suggested to be coupled with the stretch-activation of Ca2+-permeable cation channels, because the maxi K+ channel was not stretch-activated in both the cell-attached configuration using Ca2+-free pipette and in the inside-out one in the presence of 10 mm EGTA in the cytoplasmic side. The maxi K+ channel was completely blocked by extracellular 1 μm charybdotoxin (CTX), but was not by cytoplasmic 33 μm arachidonic acid (AA). On the other hand, the low-conductance K+ channel, which was also found in the same membrane, was completely inhibited by 11 μm AA, but not by 1 μm CTX. The apical K+ conductance in the CNT was estimated by the deflection of transepithelial voltage (ΔV t ) when luminal K+ concentration was increased from 5 to 15 mEq. When the tubule was perfused with hydraulic pressure of 0.5 KPa, the ΔV t was only −0.7 ± 0.4 mV. However, an increase in luminal fluid flow by increasing perfusion pressure to 1.5 KPa markedly enhanced ΔV t to −9.4 ± 0.9 mV. Luminal application of 1 μm CTX reduced the ΔV t to −1.3 ± 0.6 mV significantly in 6 tubules, whereas no significant change of ΔV t was recorded by applying 33 μm AA into the lumen of 5 tubules (ΔV t =−7.2 ± 0.5 mV in control vs.ΔV t =−6.7 ± 0.6 mV in AA). These results suggest that the Ca2+-activated maxi K+ channel is responsible for flow-dependent K+ secretion by coupling with the stretch-activated Ca2+-permeable cation channel in the rabbit CNT. Received: 21 August 1997/Revised: 20 March 1998  相似文献   

10.
Our basic knowledge of the ecology, especially the age and growth of polar deep-sea biota is still scarce. This study provides first data about the age and growth of the two abundant Arctic fish species Lycodes frigidus and Lycodes squamiventer (Zoarcidae). Lycodes frigidus was caught at the deeper parts (1,546–3,576 m depth) of the HAUSGARTEN observatory (HG), west of Svalbard. The congener Lycodes squamiventer was caught at two HG stations (1,273–1,546 m) and at the H?kon Mosby Mud Volcano (HMMV, ~1,250 m), a cold seep in the southwestern Barents Sea. Age was determined by sagittal otolith increment analysis. Growth performance was assessed by fitting age–length data to a von Bertalanffy growth equation. Our data suggest that L. frigidus and L. squamiventer attain maximum ages of 33 and 21 years, respectively. Lycodes squamiventer from the HMMV had significantly higher growth rates and their maximum age and length was slightly lower compared to conspecifics from the shallow HG stations. Von Bertalanffy growth equations were L t  = 58.9 ∗ (1 − e(−0.042*t)) for L. frigidus, and L t  = 25.3 ∗ (1 − e(−0.074*t)) and L t  = 24.2 ∗ (1 − e(−0.099 * t)) for L. squamiventer from HG and the HMMV, respectively. A comparison of these data with those of eight other zoarcids indicates that growth performances are correlated with temperature: the higher the annual mean temperatures experienced, the higher the growth rates. However, maximum ages decrease with increasing temperatures.  相似文献   

11.
The energy cost per unit of distance (C s, kilojoules per metre) of the front-crawl, back, breast and butterfly strokes was assessed in 20 elite swimmers. At sub-maximal speeds (v), C s was measured dividing steady-state oxygen consumption (O2) by the speed (v, metres per second). At supra-maximal v, C s was calculated by dividing the total metabolic energy (E, kilojoules) spent in covering 45.7, 91.4 and 182.9 m by the distance. E was obtained as: E = E an+O2max t pO2max(1−e−( t p/)), where E an was the amount of energy (kilojoules) derived from anaerobic sources, O2max litres per second was the maximal oxygen uptake, α (=20.9 kJ · l O2 −1) was the energy equivalent of O2, τ (24 s) was the time constant assumed for the attainment of O2max at muscle level at the onset of exercise, and t p (seconds) was the performance time. The lactic acid component was assumed to increase exponentially with t p to an asymptotic value of 0.418 kJ · kg−1 of body mass for t p ≥ 120 s. The lactic acid component of E an was obtained from the net increase of lactate concentration after exercise (Δ[La]b) assuming that, when Δ[La]b = 1 mmol · l−1 the net amount of metabolic energy released by lactate formation was 0.069 kJ · kg−1. Over the entire range of v, front crawl was the least costly stroke. For example at 1 m · s−1, C s amounted, on average, to 0.70, 0.84, 0.82 and 0.124 kJ · m−1 in front crawl, backstroke, butterfly and breaststroke, respectively; at 1.5 m · s−1, C s was 1.23, 1.47, 1.55 and 1.87 kJ · m−1 in the four strokes, respectively. The C s was a continuous function of the speed in all of the four strokes. It increased exponentially in crawl and backstroke, whereas in butterfly C s attained a minimum at the two lowest v to increase exponentially at higher v. The C s in breaststroke was a linear function of the v, probably because of the considerable amount of energy spent in this stroke for accelerating the body during the pushing phase so as to compensate for the loss of v occurring in the non-propulsive phase. Accepted: 14 April 1998  相似文献   

12.
A method for microperfusion of isolated segments of the midgut epithelium of Drosophila larvae has been developed to characterize cellular transport pathways and membrane transporters. Stereological ultrastructural morphometry shows that this epithelium has unusually long tight junctions, with little or no lateral intercellular volume normally found in most epithelia. Amplification of the apical and basal aspects of the cells, by ≈ 17-fold and ≈ 7-fold, respectively, predicts an almost exclusively transcellular transport system for solutes. This correlates with the high lumen-negative transepithelial potential (Vt) of 38 to 45 mV and high resistance (Rt) of 800 to 1400 Ω • cm2 measured by terminated cable analysis, in contrast to other microperfused epithelia like the renal proximal tubule. Several blockers (amiloride 10−4 M, ouabain 10−4 M, bumetanide 10−4 M), K+-free solutions, or organic solutes such as D-glucose 10 mM or DL-alanine 0.5 mM failed to affect Vt or Rt. Bafilomycin-A1 (3 to 5 μM) decreased Vt by ≈ 40% and short-circuit current (Isc) by ≈ 50%, and decreased intracellular pH when applied from the basal side only, consistent with an inhibition of an electrogenic V-H+-ATPase located in the basal membrane. Gradients of H+ were detected by pH microelectrodes close to the basal aspect of the cells or within the basal extracellular labyrinth. The apical membrane is more conductive than the basal membrane, facilitating secretion of base (presumably HCO3), driven by the basal V-H+-ATPase.  相似文献   

13.
We used tritium-labeled water to measure total body water, water influx (which approximated oxidative water production) and water efflux in free-flying tippler pigeons (Columba livia) during flights that lasted on average 4.2 h. At experimental air temperatures ranging from 18 to 27 °C, mean water efflux by evaporation and excretion [6.3 ± 1.3 (SD) ml · h−1, n = 14] exceeded water influx from oxidative water and inspired air (1.4 ± 0.7 ml · h−1, n = 14), and the birds dehydrated at 4.9 ± 0.9 ml · h−1. This was not significantly different from gravimetrically measured mass loss of 6.2 ± 2.1 g · h−1 (t = 1.902, n = 14, P>0.05). This flight-induced dehydration resulted in an increase in plasma osmolality of 4.3 ± 3.0 mosmol · kg−1 · h−1 during flights of 3–4 h. At 27 °C, the increase in plasma osmolality above pre-flight levels (ΔP osm = 7.6±4.29 mosmol · kg−1 · h−1, n = 6) was significantly higher than that at 18 °C (ΔP osm = 0.83±2.23 mosmol · kg−1 · h−1, (t = 3.43, n = 6, P < 0.05). Post-flight haematocrit values were on average 1.1% lower than pre-flight levels, suggesting plasma expansion. Water efflux values during free flight were within 9% of those in the one published field study (Gessaman et al. 1991), and within the range of values for net water loss determined from mass balance during wind tunnel experiments (Biesel and Nachtigall 1987). Our net water loss rates were substantially higher than those estimated by a simulation model (Carmi et al. 1992) suggesting some re-evaluation of the model assumptions is required. Accepted: 8 April 1997  相似文献   

14.
The aim of this study was to examine whether the alkalosis-induced improvement in supramaximal performance could be explained by a less-altered muscle metabolic status. Eight subjects first performed exhausting exercise at 120% peak oxygen uptake after ingesting either a placebo (PLC) or sodium citrate (CIT) at a dose of 0.5 g · kg−1 body mass to determine exhaustion time (t exh). They then, performed exercise (Lim-EX) at the same relative intensity lasting PLCt exh minus 20 s in both treatments. Samples were taken from vastus lateralis muscle at rest (90-min after the ingestion) and at the end of Lim-EX. Arterial blood samples were obtained at rest (immediately prior to and 90 min after ingesting the drug) and during the 20-min post-exercise recovery. The t exh was significantly increased by CIT [PLC 258 (SD 29) s, CIT 297 (SD 45) s]. The CIT raised the rest [citrate] in blood [PLC 0.11 (SD 0.01) mmol · l−1, CIT 0.34 (SD 0.07) mmol · l−1] and in muscle [PLC 0.78 (SD 0.23) mmol · kg−1 dry mass, CIT 1.00 (SD 0.21) mmol · kg−1 dry mass]. Resting muscle pH and buffering capacity were unchanged by CIT. The same fall in muscle pH was observed during Lim-EX in the two conditions. This was associated with similar variations in both the cardio-respiratory response and muscle energy and metabolism status in spite of a better blood acid-base status after CIT. Thus, CIT would not seem to allow the alkalinization of the muscle cytosolic compartment. Though sodium citrate works in a similar way to NaHCO3 on plasma alkalinization and exercise performance, the exact nature of the mechanisms involved in the delay of exhaustion could be different and remains to be elucidated. Accepted: 26 November 1996  相似文献   

15.
Unidirectional flux rates of Ca2+ across gastrointestinal tissues from sheep and goats were measured in vitro by applying the Ussing-chamber technique. Except for the sheep duodenum, mucosal to serosal Ca2+ flux rates (J ms) exceeded respective flux rates in the opposite direction (J sm) in both species and in all segments of the intestinal tract. This resulted in net Ca2+ flux rates␣(J net = J ms − J sm) ranging between −2 and 9 nmol · cm−2 · h−1 in sheep and between 10 and 15 nmol cm−2 · h−1 in goats. In sheep, only J net in jejunum, and in goats, J netin duodenum and jejunum were significantly different from zero. Using sheep rumen wall epithelia, significant J net of Ca2+ of around 5 nmol · cm−2 · h−1 could be detected. Since the experiments were carried out in the absence of an electrochemical gradient, significant net Ca2+ absorption clearly indicates the presence of active mechanisms for Ca2+ transport. Dietary Ca depletion caused increased calcitriol plasma concentrations and induced significant stimulations of net Ca2+ absorption in goat rumen. J net of Ca2+ across goat rumen epithelia was significantly reduced by 1 mmol · l −1 verapamil in the mucosal buffer solution. In conclusion, there is clear evidence for the rumen as a main site for active Ca2+ absorption in small ruminants. Stimulation of active Ca2+ absorption by increased plasma calcitriol levels and inhibition by mucosal verapamil suggest mechanistic and regulatory similarities to active Ca2+ transport as described for the upper small intestines of monogastric species. Accepted: 31 July 1996  相似文献   

16.
The relationship between body temperature (T b) and the plasma concentrations of arginine vasotocin (AVT) and angiotensin II (AII) was examined in conscious, adult Pekin ducks. Exposure of birds to an ambient temperature of 40 °C for 3 h increased T b by about 1.5 °C and increased breathing rate five-fold. Plasma osmolality was elevated from the normothermic value of 294.9 ± 1.4 mosmol kg−1 by about 8 mosmol kg−1 Circulating AVT levels increased by about 2 pg ml−1 from a basal concentration of 4.98 ± 0.15 pg ml−1, a rise which could be accounted for by the change in osmotic status. Plasma AII concentrations were unchanged from the pre-heat exposure value of 31.8 ± 3.4 pg ml−1. Time control birds, exposed only to an ambient temperature of 22 °C demonstrated no significant changes in any of the measured variables. The results suggest that an increased T b has no direct effect on the circulating concentrations of AVT or AII in ducks. Accepted: 2 June 1997  相似文献   

17.
Age and growth of the nototheniid fishTrematomus bernacchii Boulenger 1902 were estimated by reading the sagittal otoliths of 457 adult specimens caught off Terra Nova Bay (Ross Sea) in the austral summer 1990–1991. Annuli in ground and polished otoliths were examined using a dissecting microscope under reflected light. The Von Bertalanffy growth equation was Lt=273.5 [1 − e−0.109(t+2.10)] for males (n=122) and Lt=422.2 [1 − e−0.055(t+1.92)] for females (n=211) where L is total length in millimetres. Maximum estimated age was 21 years for females and 16 years for males. This is in agreement with the hypothesis that considers slow growth and old age as a typical feature of Antarctic fishes.  相似文献   

18.
The age, growth, and population structure of the smooth clam Callista chione were determined from samples collected by hydraulic dredge and SCUBA at four locations in the eastern Adriatic during 2007 and 2008. The age of 436 clam shells was determined from internal growth lines present in shell sections, and the timing of growth line formation was ascertained from monthly collections of clams to occur between August and September when sea water temperatures were maximal. In addition, age of 30 older individuals was verified with acetate peels of polished and etched shell sections. Differences were apparent in the age structure and growth rates of clams collected from the four locations studied. Von Bertalanffy growth (VBG) curves obtained for clams from these locations were L t  = 72.4 (1−e−0.25(t − 2.68)) (Rab Island), L t  = 74.5 (1−e−0.15(t + 0.57)) (Pag Bay), L t  = 79.3 (1−e−0.34(t − 0.97)) (Cetina estuary), and L t  = 82.5 (1−e−0.11(t + 2.88)) (Kaštela Bay). The age of the clams ranged between 3 and 44 years; median clam ages were similar at three of the four locations (14, 12, and 12 years, respectively), but was significantly lower in the Cetina estuary (4 years). The VBG growth constants recorded from clams were within the range of values obtained for this species by previous authors. The observed local differences in population structure indicate different levels of exploitation and illustrate the need to establish long-term strategies for a sustainable exploitation of smooth clams in the Croatian Adriatic.  相似文献   

19.
A method for measuring the gas temperature in an oxygen plasma by spectroscopy of the electronic transition from the O2(b 1Σ g + , v = 0) metastable state of molecular oxygen into the O2(X 3Σ g , v = 0) ground state is considered in detail. The method is verified experimentally for the plasma of dc glow discharge in pure oxygen. It is shown that the gas temperature can be determined by analyzing high-resolution spectra of the P branch of this transition, no matter whether its fine structure (P P and P Q branches) is resolved or masked, provided that the rotational structure of the spectrum is resolved. The feasibility of the method proposed in 1999 by P. Maco and P. Veis for determining the gas temperature from the ratio between the intensity maxima of the R and P branches of the O2(b 1Σ g + , v = 0) → O2(X 3Σ g , v = 0) transition in a poorly resolved spectrum was studied experimentally. It is shown that, in order to use this method, it is necessary to know the spectrograph instrumental function. The effect of the spatial inhomogeneity of the temperature and concentration of O2(b 1Σ g + ) molecules on the accuracy of integral (over the plasma volume) measurements of the gas temperature is investigated using spatially resolved spectroscopy of the O2(b 1Σ g + , v = 0) → O2(X 3Σ g , v = 0) transition. It is shown that precise measurements of the temperature require that the optical measurement system be thoroughly adjusted in order for the temperature and concentration of the emitting particles to vary insignificantly over the optically selected volume. Original Russian Text ? S.M. Zyryanov, D.V. Lopaev, 2007, published in Fizika Plazmy, 2007, Vol. 33, No. 6, pp. 563–574.  相似文献   

20.
Guo J  Zhou J  Wang D  Xiang X  Yu H  Tian C  Song Z 《Biodegradation》2006,17(4):341-346
Some experiments were conducted to study some electrochemical factors affecting the bacterial reduction (cleavage) of azo dyes, knowledge of which will be useful in the wastewater treatments of azo dyes. A common mixed culture was used as a test organism and the reductions of Acid Yellow 4, 11, 17 and Acid Yellow BIS were studied. It was found that the azo dyes were reduced at different rates, which could be correlated with the reduction potential of the azo compounds in cyclic voltammetric experiments. Acid Yellow BIS (E r − 616.75 mV) was reduced at the highest rate of 0.0284 mol g dry cell weight−1 h−1, Acid Yellow 11 (E r − 593.25 mV) at 0.0245 mol g dry cell weight−1 h−1 and Acid Yellow 4 (E r − 513 mV) at 0.0178 mol g dry cell weight−1 h−1. At the same time, the decolourization rate of Acid Yellow 17 (E r − 627.5 mV) was 0.0238 mol g dry cell weight−1 h−1, which was affected by the nature of chlorine substituent. Reduction of these azo dyes did not occur under aeration conditions. These studies with a common mixed culture indicate that the reduction of azo dyes may be influenced by the chemical nature of the azo compound. The reduction potential is a preliminary tool to predict the decolourization capacity of oxidative and reductive biocatalysts.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号