首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Natural predation is an important component of integrated pest management that is often overlooked because it is difficult to quantify and perceived to be unreliable. To begin incorporating natural predation into sweet corn, Zea mays L., pest management, a predator survey was conducted and then three sampling methods were compared for their ability to accurately monitor the most abundant predators. A predator survey on sweet corn foliage in New York between 1999 and 2001 identified 13 species. Orius insidiosus (Say), Coleomegilla maculata (De Geer), and Harmonia axyridis (Pallas) were the most numerous predators in all years. To determine the best method for sampling adult and immature stages of these predators, comparisons were made among nondestructive field counts, destructive counts, and yellow sticky cards. Field counts were correlated with destructive counts for all populations, but field counts of small insects were biased. Sticky cards underrepresented immature populations. Yellow sticky cards were more attractive to C. maculata adults than H. axyridis adults, especially before pollen shed, making coccinellid population estimates based on sticky cards unreliable. Field counts were the most precise method for monitoring adult and immature stages of the three major predators. Future research on predicting predation of pests in sweet corn should be based on field counts of predators because these counts are accurate, have no associated supply costs, and can be made quickly.  相似文献   

2.
Analysis of data from point counts, a common method for monitoring bird population trends, has evolved to produce estimates of various population parameters (e.g., density, abundance, and occupancy) while simultaneously estimating detection probability. An important consideration when designing studies using point counts is to maximize detection probability while minimizing variation in detection probability both within and between counts. Our objectives were to estimate detection probabilities for three marsh songbirds, including Marsh Wrens (Cistothorus palustris), Swamp Sparrows (Melospiza georgiana), and Yellow‐headed Blackbirds (Xanthocephalus xanthocephalus), as a function of weather covariates and to evaluate temporal variability in detection probability of these three species. We conducted paired, unlimited radius, 10‐min point counts during consecutive morning and evening survey periods for our three focal species at 56 wetlands in Iowa from 20 April to 10 July 2010. Mean detection probabilities ranged from 0.272 (SE = 0.042) for Marsh Wrens to 0.365 (SE = 0.052) for Swamp Sparrows. Time of season was positively correlated with detection probability for Swamp Sparrows, but was negatively correlated with detection probability for Yellow‐headed Blackbirds, suggesting that detection probability increased during the breeding season for Swamp Sparrows and was highest early in the breeding season for Yellow‐headed Blackbirds. Understanding how detection probabilities of marsh songbirds vary throughout the breeding season allows targeted survey efforts that maximize detection probabilities for these species. Furthermore, consistent detection probabilities of marsh songbirds during morning and evening survey periods mean that investigators have more time to conduct surveys for these birds, allowing greater flexibility to increase spatial and temporal replication of surveys that could provide more precise estimates of desired population parameters.  相似文献   

3.
Tanadini LG  Schmidt BR 《PloS one》2011,6(12):e28244
Monitoring is an integral part of species conservation. Monitoring programs must take imperfect detection of species into account in order to be reliable. Theory suggests that detection probability may be determined by population size but this relationship has not yet been assessed empirically. Population size is particularly important because it may induce heterogeneity in detection probability and thereby cause bias in estimates of biodiversity. We used a site occupancy model to analyse data from a volunteer-based amphibian monitoring program to assess how well different variables explain variation in detection probability. An index to population size best explained detection probabilities for four out of six species (to avoid circular reasoning, we used the count of individuals at a previous site visit as an index to current population size). The relationship between the population index and detection probability was positive. Commonly used weather variables best explained detection probabilities for two out of six species. Estimates of site occupancy probabilities differed depending on whether the population index was or was not used to model detection probability. The relationship between the population index and detectability has implications for the design of monitoring and species conservation. Most importantly, because many small populations are likely to be overlooked, monitoring programs should be designed in such a way that small populations are not overlooked. The results also imply that methods cannot be standardized in such a way that detection probabilities are constant. As we have shown here, one can easily account for variation in population size in the analysis of data from long-term monitoring programs by using counts of individuals from surveys at the same site in previous years. Accounting for variation in population size is important because it can affect the results of long-term monitoring programs and ultimately the conservation of imperiled species.  相似文献   

4.
Abstract: Estimates of wildlife population sizes are frequently constructed by combining counts of observed animals from a stratified survey of aerial sampling units with an estimated probability of detecting animals. Unlike traditional stratified survey designs, stratum-specific estimates of population size will be correlated if a common detection model is used to adjust counts for undetected animals in all strata. We illustrate this concept in the context of aerial surveys, considering 2 cases: 1) a single-detection parameter is estimated under the assumption of constant detection probabilities, and 2) a logistic-regression model is used to estimate heterogeneous detection probabilities. Naïve estimates of variance formed by summing stratum-specific estimates of variance may result in significant bias, particularly if there are a large number of strata, if detection probabilities are small, or if estimates of detection probabilities are imprecise. (JOURNAL OF WILDLIFE MANAGEMENT 72(3):837–844; 2008)  相似文献   

5.
Abstract: The use of bird counts as indices has come under increasing scrutiny because assumptions concerning detection probabilities may not be met, but there also seems to be some resistance to use of model-based approaches to estimating abundance. We used data from the United States Forest Service, Southern Region bird monitoring program to compare several common approaches for estimating annual abundance or indices and population trends from point-count data. We compared indices of abundance estimated as annual means of counts and from a mixed-Poisson model to abundance estimates from a count-removal model with 3 time intervals and a distance model with 3 distance bands. We compared trend estimates calculated from an autoregressive, exponential model fit to annual abundance estimates from the above methods and also by estimating trend directly by treating year as a continuous covariate in the mixed-Poisson model. We produced estimates for 6 forest songbirds based on an average of 621 and 459 points in 2 physiographic areas from 1997 to 2004. There was strong evidence that detection probabilities varied among species and years. Nevertheless, there was good overall agreement across trend estimates from the 5 methods for 9 of 12 comparisons. In 3 of 12 comparisons, however, patterns in detection probabilities potentially confounded interpretation of uncorrected counts. Estimates of detection probabilities differed greatly between removal and distance models, likely because the methods estimated different components of detection probability and the data collection was not optimally designed for either method. Given that detection probabilities often vary among species, years, and observers investigators should address detection probability in their surveys, whether it be by estimation of probability of detection and abundance, estimation of effects of key covariates when modeling count as an index of abundance, or through design-based methods to standardize these effects.  相似文献   

6.
A study on populations of Glossina morsitans morsitans Westwood on Antelope Island, Lake Kariba, Zimbabwe provided Jolly-Seber (J-S) mark-recapture estimates of adult survival and Moran curve estimates of the overall survival of all developmental stages. For females, Moran survival estimates derived using ox fly-round catches showed similar trends to, but were more variable than, those calculated from J-S population estimates. Regression of one set on the other removed only 26% of the variance. Undue emphasis should not be placed on small changes in Moran survival estimates based on sequences of catches. Catch data cannot provide Moran estimates of male survival probabilities and no comparison is thus possible with estimates from the J-S data. The J-S and the Moran approaches were combined to estimate survival probabilities of the immature stages of male and female tsetse. The overall survival per three-week period averaged 45% for males and 59% for females, comprising mature adult survivals of 27 and 46%, and pooled survivals of immature stages of 59 and 77%, respectively. The high survival of immature flies is due to the sheltered, inactive nature of pupal life. Adult and overall survival probabilities were highly correlated in males (r(2) = 0.61) but less so in females (r(2) = 0.24) where capture rates were lower and variance in the results greater. Immature and overall survival was more highly correlated for both sexes, with r(2) = 0.77 and 0.53 for males and females respectively. When a fixed pupal mortality of 1% per day was assumed, estimates of the survival of young adult males suggested that these were even lower than the survival of mature flies at the harshest times of the year, but were not markedly different when overall survival was high. Assuming equal mortality in all adults enabled the estimation of pupal survival. These had high variances but there was no evidence of any difference between the survival probabilities of male and female pupae.  相似文献   

7.
ABSTRACT.   Recent declines in biodiversity stress the need for rigorous and reliable multispecies monitoring programs. A potential weakness of monitoring programs is a reliance on raw counts and the assumption either of complete detection or of constant detection probability for each species, regardless of the sampling situation. Until recently, these assumptions have largely remained untested and, therefore, to help insure accuracy, bird-monitoring programs have depended on standardization of counts and counts of longer duration. We tested the effectiveness of these strategies for providing unbiased occupancy rates using a method designed to accommodate situations where species detection probabilities are less than one and heterogeneous. We tested the effect of potential sources of heterogeneity in detection probability (vegetation structure, wind velocity, cloud cover, date, and time) on occupancy rate estimates of 13 bird species in southern France. We compared adjusted and raw occupancy rates for two sampling durations (10 and 20 min). Differences between raw and adjusted occupancy rates were low even for the shorter count duration, suggesting that standardized long counts should produce reliable estimates of occupancy rates even in the absence of correction by an appropriate method. This enhances the value of past monitoring programs where long standardized counts were used, but with designs that do not allow corrected estimates. However, we found that detection probability was heterogeneous for most species and that vegetation structure was an important source of heterogeneity. The possible effects of habitat on detection probability should be of special concern for long-term monitoring programs conducted in landscapes where habitats vary across time or space.  相似文献   

8.
An understanding of the ecological factors that regulate natural populations of Aedes aegypti mosquitoes can improve control and reduce the incidence of dengue (DF) and dengue hemorrhagic fever (DHF) in tropical areas. We investigated whether immature Ae. aegypti in water-storage containers from an urban area were under food limitation. We used starvation resistance (number of days alive without food) as an indicator of the feeding history in third-instar Ae. aegypti larvae. Resistance to starvation and other measures of immature success, such as development time, survival, and adult mass, were investigated across a wide range of feeding conditions in the laboratory. Resistance to starvation of third-instar larvae and body mass of adults emerging from pupae collected in water-storage containers in an urban area were compared with the laboratory results. If resistance to starvation and adult mass of field-collected Ae. aegypti corresponded with the lower levels of feeding in the laboratory, then food limitation could be inferred in field-collected larvae. Results showed that resistance to starvation was well correlated with previous feeding levels and with the other measures of immature success. Both resistance to starvation and adult body mass of field-collected specimens corresponded with the lower levels of feeding in the laboratory. Therefore, it was concluded that food limitation or competition is likely to be a regulatory factor in water-storage containers in the urban area. It is recommended that any control measure applied to immature Ae. aegypti in water-storage containers should eliminate all or most of the individuals, otherwise unintended, undesirable results might occur, such as the production of more and larger adults.  相似文献   

9.
The formerly endangered Kirtland's warbler (Setophaga kirtlandii) is among a growing number of conservation-reliant species that depend on active management to avoid reverting to endangered status. Because the Kirtland's warbler is a habitat specialist of young, even-aged jack pine (Pinus banksiana), managers of the recovery effort stressed creating new jack pine stands and monitoring numbers of singing males through an annual census using single visits to individual stands. Kirtland's warbler will occupy and breed in red pine (P. resinosa), but red pine has not been surveyed for Kirtland's warblers in the annual population census. Furthermore, the current monitoring approach cannot determine their species detection probability or individual detection probability, which is essential to evaluate both red pine use and the accuracy of the census. From 2016–2018 we estimated density and detection probabilities in jack pine and red pine stands through repeated visits to a limited number of stands rather than single visits to many stands. Estimates of species detection probability indicated that ≥1 male Kirtland's warbler would be detected on most sites when any were present, but individual detection probabilities were less and varied by stand type, indicating that single visits to sites would underestimate numbers and that accurate estimation of detection probability was important for estimation of density in different stand types. We offer quantitative estimates of detection probabilities for determination of Kirtland's warbler population size in jack pine versus red pine stands in the same areas and breeding seasons. Managers of Kirtland's warblers should incorporate detection probabilities into population surveys to achieve more accurate estimates of population size.  相似文献   

10.
白眉野草螟的生物学特性和监测防控对策   总被引:1,自引:0,他引:1  
【目的】白眉野草螟Agriphila aeneociliella是近年来在山东莱州市、山西泽州县等地新发现的小麦害虫,对其生物学特性进行观察和研究,以期为有效监控提供科学依据。【方法】通过田间调查、网室观察、配对饲养和灯光诱测等方法,系统研究了白眉野草螟年生活史与田间生活习性。【结果】在我国黄淮海麦区,白眉野草螟1年发生l代,11月至翌年2月以低龄幼虫越冬,3月至4月为害麦苗,5月至8月以老熟幼虫结土茧滞育越夏,9月至10月化蛹羽化、交配产卵,并孵化出幼虫越冬。成虫具有趋光性,产卵在土壤颗粒缝隙中或土表;幼虫喜趋嫩为害,田间呈点片分布;越冬幼虫抗寒性强;滞育茧不耐水淹。【结论】秋季成虫羽化期、早春低龄幼虫为害始期、夏季滞育期是白眉野草螟监测防控的关键时期。  相似文献   

11.
1. Population dynamics and feeding ecology of adult and larval alpine newts (Triturus alpestris, Laurenti) were investigated in a high-altitude karts lake to estimate their feeding pressure on the copepod Arctodiaptomus alpinuf (Imhof). Estimates of population size for reproducing adults ranged from 666 to 864 individuals in the lake during July and August. Total abundance of larvae before the onset of ice cover varied considerably between 4400 and 25400 individuals in different years. 2. Arctodiaptomus alpinus was an important prey item for adult and larval alpine newts. During the second half of their aquatic period, adult newts moved to deeper water where the copepod reached its highest densities near the sediment. Adults and larvae exhibited no periodic feeding pattern. The feeding rhythm was more synchronized among the larvae than among the adults. 3. Daily food consumption, estimated using the Elliott & Persson (1978) model, reached 4–21 mg dry biomass in adults. The daily ration of larvae was about 7% of body dry weight in the temperature range 6-11°C. Compared to published estimates of daily food consumption in salmonid fishes, the feeding pressure of newts appears low.  相似文献   

12.
The sunflower beetle, Zygogramma exclamationis (F.), is the major defoliating pest of sunflower (Helianthus annuus L.). Planting date was evaluated as a potential management tool in a variety of production regions throughout North Dakota from 1997 to 1999, for its impact on sunflower beetle population density of both adults and larvae, defoliation caused by both feeding stages, seed yield, oil content, and larval parasitism in cultivated sunflower. Results from this 3-yr study revealed that sunflower beetle adult and larval populations decreased as planting date was delayed. Delayed planting also reduced defoliation from adult and larval feeding, which is consistent with the lower numbers of the beetles present in the later seeded plots. Even a planting delay of only 1 wk was sufficient to significantly reduce feeding damage to the sunflower plant. Yield reduction caused by leaf destruction of the sunflower beetle adults and larvae was clearly evident in the first year of the study. The other component of sunflower yield, oil content, did not appear to be influenced by beetle feeding. The tachinid parasitoid, Myiopharus macellus (Rheinhard), appeared to be a significant mortality factor of sunflower beetle larvae at most locations regardless of the dates of planting, and was able to attack and parasitize the beetle at various larval densities. The results of this investigation showed the potential of delayed planting date as an effective integrated pest management tactic to reduce sunflower beetle adults, larvae, and their resulting defoliation. In addition, altering planting dates was compatible with biological control of the beetle, because delaying the planting date did not reduce the effectiveness of the parasitic fly, M. macellus, which attacks the sunflower beetle larvae.  相似文献   

13.
Herd composition counts (HCC) are commonly used to assess population status in deer. We evaluated the reliability of HCC of sika deer (Cervus nippon Temminck) using repeated counts and by comparing estimated sex ratios and calf-to-female ratios of marked deer on Nakanoshima Island, Hokkaido, Japan between April 1999 and October 2000. Although both total counts and sex and age ratios fluctuated greatly by month, seasonal changes showed a relatively small variance. This suggested that seasonal changes in behavior within sex and age classes contributed to biased ratio estimates obtained from HCC. Route counts should be used as a relative population abundance index with estimates of detection probability, especially for females. Adult sex ratios and age ratios from HCC were unbiased during the rutting season (October–November), and age ratios in spring could be used if yearlings are counted as adults.  相似文献   

14.
When estimating the size of seabird populations, count data may be biased due to various factors such as detection probability. Failing to account for detection probability in surveys may lead to an underestimate of population size and may compromise the ability to monitor trends if detection probability varies among surveys. Here, we use the double-observer method to estimate detection probability of cavity-nesting snow petrels (Pagodroma nivea) and Wilson’s storm petrels (Oceanites oceanicus) in East Antarctica. Estimates of single-visit detection probability of nesting/roosting adult snow petrels during the incubation stage of the breeding cycle ranged from 0.86 (SE = 0.04) to 0.87 (SE = 0.04) depending upon observers. Both observers found snow petrel chicks were easier to detect than adults, with estimated detection probability for chicks ranging from 0.92 (SE = 0.03) to 1.00 (SE = 0.34 × 10−5). Detection probability of adult and chick snow petrels increased as cavity volume increased. Compared to snow petrels, estimated detection probability was considerably lower for nesting/roosting Wilson’s storm petrels, ranging from 0.27 (SE = 0.09) to 0.50 (SE = 0.13) for each observer. These estimates of detection probability apply only to those individuals in the population that were potentially viewable or audible. Nevertheless, our results indicate that double-observer counts for ground surveys of cavity-nesting seabirds should improve estimates of population abundance in comparison with single-visit counts. Accounting for observer effects, habitat characteristics and stage of the breeding season on detection probability should also improve estimation of population trends.  相似文献   

15.
Capsule Repeated counts of fledged broods can provide a useful estimate of breeding success for most common woodland birds.

Aims To assess the efficacy of comparing fledged-brood survey data with territory mapping using simple mark–recapture analysis techniques to provide an estimate of breeding success for common woodland birds that does not involve finding nests.

Methods Three observers undertook territory mapping surveys of adults, followed by counts of fledged broods four times a week during May–July 2007 in two 15 ha woods each, both in southern England. Using known fledging to maturity periods, these counts were used to calculate daily detection probabilities for broods of ubiquitous species. These enabled fledged brood territory occupancy probabilities (i.e. brood to territory ratios) to be estimated that take account of the possibility that broods were present but missed by surveys.

Results Of the 19 species found in all six woods, mean daily detection probability estimates for fledged broods of 17 species ranged from 0.17 to 0.50 with significant variation between woods for 12 species, but within region/observer for four species. The mean probability of detecting a brood at least once was over 75% using four visits per week and over 50% using two visits. Only for Great Spotted Woodpeckers Dendrocopos major and Garden Warblers Sylvia borin was the fledging period too short and the daily detection probability too low to provide a reasonable estimate of the territory occupancy probability.

Conclusion Daily detection probabilities for fledged broods of most common woodland birds were sufficiently high to enable useable estimates of fledged-brood territory occupancy probabilities to be made based on a survey programme involving two or three visits per week between late May and the end June. The method used may have application as a means of providing a relatively easily derived productivity index for woodland bird monitoring programmes or for research studies.  相似文献   

16.
ABSTRACT Point counts are the most frequently used technique for sampling bird populations and communities, but have well‐known limitations such as inter‐ and intraobserver errors and limited availability of expert field observers. The use of acoustic recordings to survey birds offers solutions to these limitations. We designed a Soundscape Recording System (SRS) that combines a four‐channel, discrete microphone system with a quadraphonic playback system for surveying bird communities. We compared the effectiveness of SRS and point counts for estimating species abundance, richness, and composition of riparian breeding birds in California by comparing data collected simultaneously using both methods. We used the temporal‐removal method to estimate individual bird detection probabilities and species abundances using the program MARK. Akaike's Information Criterion provided strong evidence that detection probabilities differed between the two survey methods and among the 10 most common species. The probability of detecting birds was higher when listening to SRS recordings in the laboratory than during the field survey. Additionally, SRS data demonstrated a better fit to the temporal‐removal model assumptions and yielded more reliable estimates of detection probability and abundance than point‐count data. Our results demonstrate how the perceptual constraints of observers can affect temporal detection patterns during point counts and thus influence abundance estimates derived from time‐of‐detection approaches. We used a closed‐population capture–recapture approach to calculate jackknife estimates of species richness and average species detection probabilities for SRS and point counts using the program CAPTURE. SRS and point counts had similar species richness and detection probabilities. However, the methods differed in the composition of species detected based on Jaccard's similarity index. Most individuals (83%) detected during point counts vocalized at least once during the survey period and were available for detection using a purely acoustic technique, such as SRS. SRS provides an effective method for surveying bird communities, particularly when most species are detected by sound. SRS can eliminate or minimize observer biases, produce permanent records of surveys, and resolve problems associated with the limited availability of expert field observers.  相似文献   

17.
Counts of males displaying on breeding grounds are the primary management tool used to assess population trends in lekking grouse species. Despite the importance of male lek attendance (i.e., proportion of males on leks available for detection) influencing lek counts, patterns of within season and between season variability in attendance rates are not well understood. We used high-frequency global positioning system (GPS) telemetry data from male greater sage-grouse (Centrocercus urophasianus; n = 67) over five lekking seasons (2013–2017) at eight study sites in Nevada to estimate lek attendance rates. Specifically, we recorded daily locations of sage-grouse in relation to mapped lek boundaries and used generalized additive models to assess temporal variation in attendance rates by age class (subadult vs. adult). Average timing of peak attendance occurred on 16 April but varied from March 16, 2014 to April 21 , 2016. Overall, adult males attended leks at higher rates (0.683 at peak) and earlier in the season (19 March) than subadults (0.421 at peak on April 19). Peak attendance probability was positively related to cumulative winter precipitation. Daily probabilities of lek switching differed between adults (0.019 at peak on March 3) and subadults (0.046 at peak on March 22), and lek switching was negatively related to distance to nearest lek. Our results indicate variable patterns in lek attendance through time, and that lek switching may occur at higher rates than previously thought. We demonstrate the use of generalizable daily attendance curves to date-correct lek counts and derive estimates of male abundance, although such an approach will likely require the incorporation of information on age structure to produce robust results that are useful for population monitoring.  相似文献   

18.
When a population budget must be obtained from censuses based on replicated, sacrificed cultures, it is difficult to obtain estimates of transition probabilities and of the errors of such estimates, because there is no logical basis for pairing successive census counts. In a study of this nature estimating a population budget of immature stages of the housefly, the problem was solved by a randomization treatment of the original census results obtained at two densities. One hundred randomly generated census matrices over all census times for each density were smoothed to remove the effects of sampling error and a population budget constructed according to defined rules. Transition probabilities computed from the population budget were plotted on triangular coordinate paper and mean probabilities, 95% confidence regions for these means, and 95% equal frequency ellipses computed. All computations and the graphing of the results were carried out on a digital computer. The computer program, available from the authors, is written in FORTRAN IV and could be easily modified for similar studies.  相似文献   

19.
Effective monitoring of native bee populations requires accurate estimates of population size and relative abundance among habitats. Current bee survey methods, such as netting or pan trapping, may be adequate for a variety of study objectives but are limited by a failure to account for imperfect detection. Biases due to imperfect detection could result in inaccurate abundance estimates or erroneous insights about the response of bees to different environments. To gauge the potential biases of currently employed survey methods, we compared abundance estimates of bumblebees (Bombus spp.) derived from hierarchical distance sampling models (HDS) to bumblebee counts collected from fixed‐area net surveys (“net counts”) and fixed‐width transect counts (“transect counts”) at 47 early‐successional forest patches in Pennsylvania. Our HDS models indicated that detection probabilities of Bombus spp. were imperfect and varied with survey‐ and site‐covariates. Despite being conspicuous, Bombus spp. were not reliably detected beyond 5 m. Habitat associations of Bombus spp. density were similar across methods, but the strength of association with shrub cover differed between HDS and net counts. Additionally, net counts suggested sites with more grass hosted higher Bombus spp. densities whereas HDS suggested that grass cover was associated with higher detection probability but not Bombus spp. density. Density estimates generated from net counts and transect counts were 80%–89% lower than estimates generated from distance sampling. Our findings suggest that distance modelling provides a reliable method to assess Bombus spp. density and habitat associations, while accounting for imperfect detection caused by distance from observer, vegetation structure, and survey covariates. However, detection/non‐detection data collected via point‐counts, line‐transects and distance sampling for Bombus spp. are unlikely to yield species‐specific density estimates unless individuals can be identified by sight, without capture. Our results will be useful for informing the design of monitoring programs for Bombus spp. and other pollinators.  相似文献   

20.

Background  

Based on sensitivity analysis of the MacDonald-Ross model, it has long been argued that the best way to reduce malaria transmission is to target adult female mosquitoes with insecticides that can reduce the longevity and human-feeding frequency of vectors. However, these analyses have ignored a fundamental biological difference between mosquito adults and the immature stages that precede them: adults are highly mobile flying insects that can readily detect and avoid many intervention measures whereas mosquito eggs, larvae and pupae are confined within relatively small aquatic habitats and cannot readily escape control measures.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号