首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The structures of differentiating male germ cells in the testis of the giant freshwater prawn, Macrobrachium rosenbergii, were studied by light and electron microscopy. Based on ultrastructural characteristics, the developing male germ cells are classified into 12 stages, including spermatogonia, six phases of primary spermatocytes (leptotene, zygotene, pachytene, diplotene, diakinesis and metaphase), secondary spermatocyte, three stages of spermatids and mature sperm. During spermatogenesis, the differentiating germ cells have characteristics similar to those of other invertebrates, but they exhibit some unique characteristics during spermiogenesis. In particular, an early spermatid has a round nucleus with highly condensed heterochromatin, appearing as thick interconnecting cords throughout the nucleus. In contrast to most invertebrates and vertebrates, the chromatin begins to decondense in one-half of the nucleus at the mid spermatid stage. In the late spermatid, the chromatin becomes almost entirely decondensed with only a small crescent-shaped heterochromatin patch remaining at the anterior pole of the nucleus. Mature sperm possess an everted umbrella-shaped plate with a spike covering the anterior pole of the nucleus, whose chromatin is totally decondensed as only small traces of histones H3 and H2B remain. The acrosome appears at the ruffled border of the spike plate as small sac-like structures. Few mitochondria remain in the cytoplasm at the posterior pole.  相似文献   

2.
3.
通过透射和扫描电镜观察了白肛海地瓜(Acaudina leucoprocta)的精子发生过程及其形态结构,揭示了白肛海地瓜精子发生时期一系列变化,其精子发生分为精原细胞、初级精母细胞、次级精母细胞、精细胞、成熟精子5个时期。精原细胞体积最大。精母细胞染色质开始凝集。精细胞前顶体颗粒形成。白肛海地瓜成熟精子的超微结构为原生型,由头部、中部、尾部组成,头部圆形,最前端为顶体,核染色质凝集成团块状,中部是线粒体和中心粒复合体融合成1个超大结构,尾部长约60μm,尾部鞭毛横切面为典型的"9+2"型结构。  相似文献   

4.
东方扁虾精子发生的超微结构   总被引:2,自引:0,他引:2  
应用电镜技术研究了东方扁虾(Thenus orientalis)精子发生的全过程,精原细胞呈椭圆形,其染色质分布较均匀,线粒体集中于细胞一端形成“线粒体区”。初级精母细胞较大,染色质凝聚成块,次级精母细胞核质间常出现大的囊泡,胞质内囊泡丰富而线粒体数量却明显减少,早期精细胞核发生极化、解聚,部分胞质被抛弃。中期精细胞外观呈金字塔形,分为三区;正在形成的顶体位于塔顶,核位于塔基部,居间的细胞质基质内富含膜复合物,后期精细胞顶体进一步分化。形成顶体帽和内、外顶体物质等三个结构组份。成熟精子核呈盘状或碗状,具有5-6条内部充满微管的辐射臂。  相似文献   

5.
日本沼虾精子发生的研究   总被引:21,自引:3,他引:18  
赵云龙  堵南山 《动物学报》1997,43(3):243-248
对日本沼虾精子发生全过程的电镜观察表明:精原细胞核染色质分散,胞质内有线粒休、内质网的分布。初级精母细胞核染色质块状,不均匀地分布于核中,内质同多小泡多。次级精母细胞核染色质大多分布于核膜内侧,内质网聚集成团,精细胞分化形成精子的早期,胞核增大,核侧形成内质同多小泡的聚合体;中期的核内染色质浓缩,同时形成空囊状结构,  相似文献   

6.
7.
褶纹冠蚌精子发生的研究   总被引:12,自引:1,他引:11  
光镜和透射电镜研究结果表明:褶纹冠蚌精子发生是非同步的,精子发生经历了一系列重要的形态和结构变化,主要包括:核逐步延长、染色质浓缩、线粒体逐渐发达与融合、胞质消除以及鞭毛的形成。精原细胞胞质中含有许多致密的轴纤丝,它们后来形成鞭毛轴丝。精母细胞质中含有线粒体、中心粒、内质网和电子透明的囊泡。精细胞分化为4个时期。成熟精子属原始类型,由头部、中段和尾部三部分组成。多核结构和细胞间桥自始至终存在于精子  相似文献   

8.
斑节对虾精子发生的超微结构   总被引:15,自引:0,他引:15  
斑节对虾精子发生划分为精原细胞、初级精母细胞、次级精母细胞、精子细胞和精子五个阶段。精子发生中,从精原细胞到精子,染色质经历了从以异染色质为主变为高度凝聚态,再经解聚为弥散絮状的变化过程。同时,核从具有完整核膜变为核膜不完整。成熟的的精子含有核仁。顶体由高尔基囊泡逐渐演化而成,并向外伸长成为棘突。这是斑节对虾精子发生的主要特征。  相似文献   

9.
应用光学显微镜对唐鱼Tanichthys albonubes精巢的组织结构进行了观察.结果表明,唐鱼的精巢属于小叶型结构.性成熟唐鱼的精巢呈乳白色,长条状,左右各一,合并成“Y”型.小叶间质把精巢分成许多精小叶,每个精小叶由数个精小囊组成,精子就在精小囊中形成.同一精小叶内的精小囊不一定同步发育,但同一精小囊中的生精细胞发育是同步的.唐鱼的精子发生和形成过程经历了初级精原细胞、次级精原细胞、初级精母细胞、次级精母细胞、精子细胞和成熟精子6个阶段.精巢内同时存在初级精原细胞和次级精原细胞两种类型的精原细胞.  相似文献   

10.
锯缘青蟹精子发生的超微结构   总被引:13,自引:0,他引:13  
王艺磊  张子平 《动物学报》1997,43(3):249-254
采用透射电镜观察锯缘青蟹精子发生过程中超微结构的变化,结果表明:精原细胞椭圆形,染色质分布于核膜周围,胞质中具嵴少的线粒体,内质网小泡等。初级精母细胞染色质呈非浓缩状,胞质中具众 内质网小泡,特殊的膜系及晶格状结构。次级精母细胞核质间出现由内质小泡聚集成的腔。  相似文献   

11.
生殖细胞的发生、增殖和分化是生命科学领域研究的重要课题之一. 生殖是所有动物赖以生存的基础,精子发生是完成繁殖所必须经历的过程,其最终目的是源源不断地产生单倍体精子.精子发生过程本身是一个复杂特殊的细胞增殖与分化过程,其中减数分裂是精子发生最重要的步骤,但关于减数分裂如何精确起始的分子机制仍知之甚少.已有报道发现,维甲酸(RA)调控Stra8可能是哺乳动物减数分裂起始的机制之一,Nanos2、Boule对RA-Stra8通路具有重要的调控作用. 本文对哺乳动物精子发生中减数分裂起始的相关研究进展进行综述.  相似文献   

12.
During spermatogenesis in most animals, the basic proteins associated with DNA are continuously changing and somatic-typed histones are partly replaced by sperm-specific histones, which are then successively replaced by transition proteins and protamines. With the replacement of sperm nuclear basic proteins, nuclei progressively undergo chromatin condensation. The Chinese Mitten Crab (Eriocheir sinensis) is also known as the hairy crab or river crab (phylum Arthropoda, subphylum Crustacea, order Decapoda, and family Grapsidae). The spermatozoa of this species are aflagellate, and each has a spherical acrosome surrounded by a cup-shaped nucleus, peculiar to brachyurans. An interesting characteristic of the E. sinensis sperm nucleus is its lack of electron-dense chromatin. However, its formation is not clear. In this study, sequences encoding histones H3 and H4 were cloned by polymerase chain reaction amplification. Western blotting indicated that H3 and H4 existed in the sperm nuclei. Immunofluorescence and ultrastructural immunocytochemistry demonstrated that histones H3 and H4 were both present in the nuclei of spermatogonia, spermatocytes, spermatids and mature spermatozoa. The nuclear labeling density of histone H4 decreased in sperm nuclei, while histone H3 labeling was not changed significantly. Quantitative real-time PCR showed that the mRNA expression levels of histones H3 and H4 were higher at mitotic and meiotic stages than in later spermiogenesis. Our study demonstrates that the mature sperm nuclei of E. sinensis contain histones H3 and H4. This is the first report that the mature sperm nucleus of E. sinensis contains histones H3 and H4. This finding extends the study of sperm histones of E. sinensis and provides some basic data for exploring how decapod crustaceans form uncondensed sperm chromatin.  相似文献   

13.
Spermatogenesis and sperm ultrastructure were studied by transmission electron microscopy (TEM) and scanning electron microscopy (SEM) in the longidorid Xiphinema theresiae. All germ cell stages, except spermatogonia, are present in the testes of young adult males. The nonflagellated, slightly elongated sperm displays little intraspecific variation and, although never polarized into a head and tail region, has a remarkably precise form, with a high degree of internal organization. Incipient fingerlike pseudopodia appear in the young spermatid and increase to such an extent that the adult sperm has a conspicuous “woolly” appearance. Microfilament bundles encircle the perinuclear mitochondria in the spermatid, and seem to be closely associated with the evaginated plasma membrane, especially in the spermatozoon. A large nucleus with nuclear envelope is prominent in the spermatocyte, but the envelope is absent in the young spermatid. Mitochondria are present in all germ cell stages and undergo certain morphological changes (e.g., in size and number, presence or absence of cristae), as well as changes in intracellular movements during spermatogenesis. Membranous organelles are prominent in the spermatocyte, but disappear in the older spermatid. Annulate lamellae and a residual body (i.e., cytophore) are conspicuous in the spermatocyte and spermatid, respectively; the spermatozoon clearly lacks a refringent body (i.e., acrosome).  相似文献   

14.
应用光镜和透射电镜技术研究山羊精子发生不同阶段各级生精细胞显微、超微结构及山羊精子分化成熟过程。结果表明:山羊精子发生经历了精原细胞、初级精母细胞、次级精母细胞、精子细胞及变态精子阶段发育成成熟的精子。精原细胞期核呈椭圆形,染色质凝集成团分布于核质中,线粒体开始出现;精母细胞期有高尔基体分布;精子细胞经过核质浓缩、线粒体迁移等过程发育成成熟精子,成熟的山羊精子头部细长,核质高度浓缩,中段膨大,线粒体丰富。线粒体、中心粒对精子变态发生起重要作用,同时观察到头部与中段脱落的畸形精子。  相似文献   

15.
Spermatogenesis is a process which includes the following phases: spermatogonial stem cell proliferation and differentiation, spermatogonia, spermatocyte, spermatid and mature sperm. Spermatogenic failure is the important factor resulting in male infertility. Recent studies showed that long noncoding RNA (lncRNA) have been found to be involved in the regulation of male reproduction. However, lncRNA associated with spermatogenesis and their mechanisms of action are unclear. The aim of this study is to explore the role and molecular mechanism of lncRNA in spermatogenesis. LncRNA microarray of germ cells and bioinformatic analysis showed lncRNA Gm2044 may play potential roles in spermatogenesis. The expression level of RNA and protein were analyzed by RT-qPCR and western blotting, respectively. The interaction of lncRNA with mRNA was detected by RNA pull down and cellular proliferation was measured using CCK-8 reagent. Testis-enriched lncRNA Gm2044 is abundant in mouse spermatocytes. Gm2044 can suppress the translation of adjacent spermatogenesis-related gene Utf1 by interacting with Utf1 mRNA. Furthermore, the proliferation of mouse spermatogonia GC-1 cell line and spermatocyte GC-2 cell line was inhibited by Gm2044. CONCLUSION: LncRNA Gm2044 was identified to inhibit Utf1 mRNA translation and play important roles in spermatogenesis.  相似文献   

16.
When [1-14C]acetate was injected into rats intratesticularly in the presence of cycloheximide to inhibit protein synthesis, the label was incorporated into histone fractions F2a1 and F3 and into non-histone chromosomal proteins of each of the following stages of spermatogenesis: spermatogonia-preleptotene spermatocytes, leptotene-zygotene-pachytene-diplotene primary spermatocytes, and spermatids. Acetylation of histones was particularly active in the spermatid stages. There was no significant incorporation of acetate into the lysine-rich histone fractions F1 and X1.In early periods of in vivo incorporation of [3H]amino acids into histones the acetylated histone F2a1 fractions had higher specific activities than the main band of F2a1, but with the passage of time the label moved into the principal band to the extent that specific activities in the acetylated and principal bands were approximately equal at 6 days. However, at 24–36 days the specific activities were again higher in the acetylated bands than in the principal band of F2a1. These data support the conclusions of Candido, Louie, and Dixon, from experiments with trout testis, that acetylation of histone F2a1 may be important in the process of combination of this protein with DNA in chromatin at the spermatogonia-primary spermatocyte stage and also in the subsequent removal of this histone for replacement by protamines at the spermatid stage.[3H]Amino acids were incorporated into histone fractions X1 and F1 at approximately equal rates, and there was no evidence that one of these fractions was a precursor of the other.Chromatin of the seminiferous epithelial cells of rat testis has a firmly bound acetylase which catalyzes the in vitro acetylation of histones F3 and F2a1 by acetyl CoA.  相似文献   

17.
G R Green  D L Poccia 《Biochemistry》1988,27(2):619-625
Several physical properties of sea urchin spermatid chromatin, which contains phosphorylated Sp H1 and Sp H2B histone variants, and mature sperm chromatin, in which these histones are dephosphorylated, were compared. Density, thermal stability, average nucleosomal repeat length, and resistance to micrococcal nuclease digestion are all increased in mature sperm relative to spermatid chromatin. Since the chromatins are identical in histone variant subtypes, the altered physical properties are not a consequence of changes in histone primary structure during spermiogenesis. The data are interpreted to mean that dephosphorylation of the N-terminal regions of Sp H1 and Sp H2B in late spermatid nuclei permits strong ionic binding of these highly basic regions to the extended linker, stabilizing the highly condensed structure of sperm chromatin.  相似文献   

18.
Temporal expression of c-kit in spermatogenesis of two grasshopper species   总被引:1,自引:0,他引:1  
Two species of grasshoppers, Calliptamus abbreviatus (Ikonn.) and Shirakiacris shirakii (I. Bol.), were collected randomly in the Siping area of Jilin Province, China. By using immunohistochemical methods and statistical analysis, we observed and compared the temporal expression of c-kit protein in four representative stages of spermatogenesis of the two grasshoppers, namely: spermatogonia; primary spermatocyte; secondary spermatocyte; and mature sperm. Results showed that there was c-kit positive temporal expression at each stage of spermatogenesis, but there were different positive expression levels: (i) weak positive expression of c-kit protein appeared in spermatogonia and the positive granules were thinner; (ii) strong positive expression of c-kit protein existed in primary spermatocyte and positive granules became biggest among all developmental stages; (iii) c-kit positive expression stayed stronger in secondary spermatocyte while positive granules became thinner; (iv) there was a strong positive expression of c-kit and thinner positive granules in mature sperm, which distributed on head and tail; (v) the biggest c-kit positive granules had been found massing at the end of spermary; and (vi) significant differences of c-kit positive expression existed in spermatogenesis between two species of grasshoppers. The results indicated that c-kit protein may play a crucial role in spermatogenesis and even retain the physiological action of sperms and fertilization in grasshoppers.  相似文献   

19.
K Marushige  Y Marushige  T K Wong 《Biochemistry》1976,15(10):2047-2053
Displacement of histones from calf thymus chromatin has been studied in an attempt to postulate the mechanisms involved in the total removal of somatic-type histones during transformation of spermatid chromatin. When chromatin is saturated with protamine (protamine/DNA, 0.5), histone I becomes displaceable at 0.15-0.3 M NaCl, suggesting that direct replacement by highly basic sperm histone could be a mechanism for its removal. While histone I is the only histone which is extensively degraded upon incubation of chromatin and, therefore, proteolysis might provide an additional mechanism for the removal of this histone, acetylation of chromatin by acetic anhydride greatly increases suscpetibility of histones IIb1, IIb2, and III to the chromosomally associated protease. These histones are extensively degraded and displaced from the DNA upon incubation of the acetylated chromatin. Although histone IV is not appreciably degraded, the proteolytic removal of acetylated histone III from chromatin weakens the interaction of acetylated histone IV to the DNA, and this histone becomes dissociable at 0.3 M NaCl. A comparison of the extent of chemical acetylation of individual histones observed in this investigation with that of enzymatic acetylation which can be achieved in vivo suggests that acetylation and proteolysis could be a mechanism for the removal of histone IIb2 and III. The displacement of histones IIb1 and IV could be explained on the basis of decreased binding to DNA as a result of their acetylation together with the proteolytic removal of their respective partner histones, IIb2 and III.  相似文献   

20.
Separation of labelled nuclei by sedimentation velocity at unit gravity (Staput method) was used to study the timing of histone synthesis and replacement by testis-specific basic nuclear protein (TSP) during spermatogenesis in the mouse. Animals were injected (intratesticularly) with 1.25 micronCi per testis 3H-arginine or 2.5 micronCi per testis 3H-lysine, testis nuclei were separated, and the acid extract of each nuclear fraction was analyzed by acrylamide gel electrophoresis. The distribution of labelled histones and TSP in separated nuclei was assessed 2 h after incorporation. Changes in the labelled histone and TSP content of nuclei during subsequent differentiation (1--34 days post-label) was followed in fractions of separated testis cell nuclei and in nuclei of cauda epididymal spermatozoa. Analysis of total histone and (TSP) content indicated quantitative changes during development. Nuclei from primary spermatocytes had relatively larger amounts of histones H1 and H4. Spermatid nuclei showed a relative reduction in histones H1 and H4, coincident with the appearance of TSP in these nuclei. These results suggested that synthesis and/or removal of certain histones must occur in late primary spermatocyte and early spermatid stages of spermatogenesis. Results of labelling experiments indicated several periods of histone synthesis during spermatogenesis: (1) closely associated with the last DNA synthesis(i.e., in early primary spermatocytes), (2) late in meiotic prophase (i.e., in pachytene primary spermatocytes) and (3) simultaneous with TSP synthesis (i.e., in late spermatids). Histone H1 was more heavily labelled toward the end of the primary spermatocyte period. Histone H4 was more heavily labelled in the early primary spermatocyte period, and again at the time of TSP synthesis in spermatids. Histones synthesized before the pachytene primary spermatocyte stage appeared to be replace, but histones synthesized later in spermatogenesis appeared to be at least partially retained in epididymal spermatozoa. These results suggested that repeated specific alterations in the protein complement of the nucleus are an integral part of spermatogenic differentiation in the mouse.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号