首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Synthesis of pulmonary surfactant-associated glycoproteins of Mr 28,000-36,000 (SP-A) and Mr 42,000-46,000 (proSP-B) has been identified in a continuous cell line derived from a human lung adenocarcinoma. SP-A was detected by immunoblot analysis, ELISA assay and by [35S]methionine labelling of the cells. SP-A was secreted into the media as an endoglycosidase F sensitive glycoprotein which co-migrated with the isoforms of SP-A identified in human lavage fluid by 2D-IEF-SDS-PAGE. Hybridization of cellular RNA with SP-A-specific cDNA identified an abundant 2.2 kb mRNA species, identical to that observed in human lung. SP-A RNA and protein content were markedly inhibited by dexamethasone in a dose-dependent fashion. Under identical culture conditions, synthesis of a distinct surfactant protein, SP-B, was markedly stimulated by the glucocorticoid. The SP-B precursor was secreted into the media as heterogeneous Mr 42,000-46,000 protein, pI 4.6-5.1, and was sensitive to endoglycosidase F. Synthesis of proSP-B was enhanced by the glucocorticoid in a dose-dependent fashion and was associated with increased SP-B mRNA of 2.0 kb detected by Northern blot analysis. The cell line secreted proSP-B as Mr 42,000-46,000 glycosylated protein and did not process the precursor to the Mr 7000-8000 surfactant peptide. In summary, a human adenocarcinoma cell line has been identified which synthesizes and secretes two surfactant-associated proteins, SP-A and proSP-B. Glucocorticoid enhanced SP-B but inhibited SP-A expression in this cell line. The identification of a continuous cell line secreting surfactant proteins may be useful in the study of synthesis and secretion of these important proteins and for production of the proteins for clinical uses.  相似文献   

2.
Surfactant proteolipid SP-B is a hydrophobic protein of Mr = 8000 identified in organic solvent extracts of pulmonary surfactant. Analysis of the human SP-B RNA predicts that the active surfactant peptide is derived by proteolysis of an Mr = 40,000 precursor. In the present work, characteristics of synthesis, secretion and processing of SP-B were demonstrated in a pulmonary adenocarcinoma cell line by immunoprecipitation of radiolabelled precursors. Treatment of cells with tunicamycin resulted in synthesis and secretion of unglycosylated proSP-B of Mr = 39,000. Immunoprecipitation of protein produced by in vitro translation of human lung poly(A)+ RNA detected an Mr = 40,000 protein; the size discrepancy is likely related to cleavage of a leader signal sequence. Endoglycosidase-H-sensitive precursors of Mr = 41,000-43,000, pI = 5.1-5.4 were the first isoforms detected within the cells and were processed to endoglycosidase-H-resistant isoforms and secreted. Neuraminidase and endoglycosidase-F-sensitive forms of proSP-B were first detected in the media at 60 min as Mr = 42-46,000 isoforms with pI = 4.6-5.1. Proteolytically processed isoforms of proSP-B were detected primarily in the media and were generated by cleavage of an amino-terminal Mr = 16,000 peptide resulting in Mr = 27,000-33,000 isoforms (pH = 5.6-6.8). The Mr = 27,000-33,000 isoforms were sensitive to neuraminidase, resulting in isoforms with pH = 6.0-6.8. Digestion of the Mr = 27,000-33,000 peptide with endoglycosidase-F resulted in isoforms of Mr = 23,000, pH = 6.0-6.8. The endoglycosidase-F-resistant peptide of Mr = 16,000, pI = 4.2-4.4 was identified with an antiserum generated against synthetic peptides derived from the amino-terminal domain, as deduced from the SP-B DNA sequence. Further proteolytic processing of the Mr = 27,000-33,000 isoforms to the Mr = 8000 peptide detected in surfactant was not observed in this cell line. Thus, in the H441-4 cells (a cell line with morphologic features of Clara cells), SP-B is synthesized as a preproprotein which undergoes cleavage of a signal sequence and addition of asparagine-linked carbohydrate; proSP-B is secreted by processes which are independent of glycosylation. SP-B peptides of Mr = 27,000-33,000 and Mr = 16,000, representing carboxy and amino-terminal domains, accumulate in the media.  相似文献   

3.
Lipid extracts of bovine pulmonary surfactant, which retain many of the biophysical characteristics of natural surfactant, contain approx. 98% lipid and 2% protein, as determined by amino acid analysis. Polyacrylamide/urea gel electrophoresis reveals that lipid extract surfactant contained a major apoprotein band with apparent Mr 3500 and minor apoprotein bands with apparent Mr 15,000 and 7000. After reduction, the 15 kDa band disappears and is replaced by a prominent band with apparent Mr = 5000. Reduction also results in a relative diminution of the 7 kDa band and a relative increase in the intensity of the 3.5-kDa band. Edman degradation reveals two major peptide sequences which have been designated surfactant-associated peptide (N-terminal Phe) and surfactant-associated peptide (N-terminal Leu) and a minor sequence designated surfactant-associated peptide (N-terminal Ile). The latter surfactant-associated peptide appears to be related to the N-terminal Leu peptide but lacks the terminal Leu. N-Terminal analysis by dansylation demonstrates that the 15 and 5 kDa (reduced) apoprotein species contain N-terminal Phe, Leu and Ile. The 3.5 and 7 kDa bands contain only N-terminal Leu and Ile. Chromatography of lipid extracts on silicic acid columns gives rise to fraction I, which contains protein and phosphatidylglycerol, and fraction II, which contains protein, phosphatidylglycerol and phosphatidylethanolamine. Fraction I was primarily composed of the 15-kDa apoproteins, while fraction II contained mainly the 3.5 and 7 kDa apoproteins. Both fractions exhibited biophysical activity after reconstitution with dipalmitoylphosphatidylcholine. These results indicate that lipid extracts contain an oligomer of 15 kDa containing surfactant-associated peptide (N-terminal Phe) and surfactant-associated peptides (N-terminal Leu or Ile) which interact through sulfhydryl and perhaps other bonds. Lipid extracts also contain 3.5 kDa monomers of surfactant-associated peptides with N-terminal Leu and N-terminal Ile which can dimerize through sulfhydryl and perhaps hydrophobic interactions.  相似文献   

4.
Two newly described surfactant proteolipids (SPL), Phe and pVal, are produced by proteolytic processing of distinct precursors of Mr = 40,000 and 22,000, respectively. These proteins are structurally related and intimately associated with surfactant phospholipids. We now demonstrate the expression of both SPL(Phe) and SPL(pVal) in explants of human fetal lung from 16-24 weeks of gestation. Content, synthesis, and mRNA for the proteolipids were low prior to organ culture of fetal lung. Induction of synthesis of the proteolipids occurred rapidly in explant culture in the absence of exogenous hormones and was enhanced by addition of dexamethasone. Increased synthesis of the proteolipids was detected by enzyme-linked immunosorbent assay and by [35S]methionine incorporation into the glycosylated Mr = 40,000-43,000 SPL (Phe) precursor. The response to dexamethasone occurred rapidly and contrasted with effects of dexamethasone on the expression of surfactant-associated protein- (SAP) 35, a distinct surfactant glycoprotein. 8-Br-cAMP did not significantly increase proteolipid content but markedly increased synthesis of SAP-35 in identical cultures. Increased proteolipid content was associated with increased mRNA for each protein as determined by the Northern blot analysis. Proteolipid RNA was also increased by 8-Br-cAMP, however, not to the extent observed with the glucocorticoid. Immunohistochemical analysis of fetal lung with anti-proteolipid antiserum confirmed that the dexamethasone-enhanced synthesis of the proteins by Type II epithelial cells. The time and hormone dependence of the regulation of expression of both SPL(Phe) and SPL(pVal) precursors were distinct from that of SAP-35. Expression of the surfactant proteolipids increased during explant culture of human fetal lung and was further enhanced by glucocorticoid. Developmental and hormonal regulation of the surfactant proteolipids may be important factors in surfactant function at birth.  相似文献   

5.
In hyaline membrane disease of premature infants, lack of surfactant leads to pulmonary atelectasis and respiratory distress. Hydrophobic surfactant proteins of Mr = 5,000-14,000 have been isolated from mammalian surfactants which enhance the rate of spreading and the surface tension lowering properties of phospholipids during dynamic compression. We have characterized the amino-terminal amino acid sequence of pulmonary proteolipids from ether/ethanol extracts of bovine, canine, and human surfactant. Two distinct peptides were identified and termed SPL(pVal) and SPL(Phe). An oligonucleotide probe based on the valine-rich amino-terminal amino acid sequence of SPL(pVal) was utilized to isolate cDNA and genomic DNA encoding the human protein, termed surfactant proteolipid SPL(pVal) on the basis of its unique polyvaline domain. The primary structure of a precursor protein of 20,870 daltons, containing the SPL(pVal) peptide, was deduced from the nucleotide sequence of the cDNAs. Hybrid-arrested translation and immunoprecipitation of labeled translation products of human mRNA demonstrated an Mr = 22,000 precursor protein, the active hydrophobic peptide being produced by proteolytic processing to Mr = 5,000-6,000. Two classes of cDNAs encoding SPL(pVal) were identified. mRNA of approximately 900 bases was identified on Northern analysis of fetal and adult RNA. Human SPL(pVal) mRNA was more abundant in the adult than in fetal lung. The SPL(pVal) gene locus was assigned to chromosome 8.  相似文献   

6.
Lipid extracts of bovine pulmonary surfactant contain two very hydrophobic surfactant-associated proteins (SP) designated SP-B (15 kDa nonreduced) and SP-C (3.5 kDa). These two low molecular weight apoproteins were delipidated and purified on silica SEP-PAK cartridges using various reagents. Dansylation studies revealed that the 15 kDa apoprotein has three N-termini: Phe, Leu and Ile, while the 3.5 kDa apoprotein has two N-termini: Leu and Ile. In either protein, only a very small amount of N-Ile is present. Quantitative N-terminal dansylation analysis of the 15 kDa protein indicated that Phe and Leu (plus Ile) are present in a 1:1 ratio. Carboxy-terminal analysis showed that the 15 kDa protein contains C-terminal Gly, and the 3.5 kDa protein contains C-terminal Leu. Gas-phase amino terminal sequencing of the 15 kDa protein revealed almost exclusively the Phe-polypeptide (SP-B). These results suggest that the 15 kDa apoprotein is not an oligomer of SP-B and SP-C. The reason that analysis of SP-B reveals N-terminal Leu and Ile by dansylation which cannot be confirmed by amino acid sequencing is not known.  相似文献   

7.
Antibodies were raised in rabbits against synthetic peptides corresponding to the N-terminal (residues 1-15) and the C-terminal (residues 477-492) regions of the human erythrocyte glucose transporter. The antisera recognized the intact transporter in enzyme-linked immunosorbent assays (ELISA) and Western blots. In addition, the anti-C-terminal peptide antibodies were demonstrated, by competitive ELISA and by immunoadsorption experiments, to bind to the native transporter. Competitive ELISA, using intact erythrocytes, unsealed erythrocyte membranes, or membrane vesicles of known sidedness as competing antigen, showed that these antibodies bound only to the cytoplasmic surface of the membrane, indicating that the C terminus of the protein is exposed to the cytoplasm. On Western blots, the anti-N-terminal peptide antiserum labeled the glycosylated tryptic fragment of the transporter, of apparent Mr = 23,000-42,000, showing that this originates from the N-terminal half of the protein. The anti-C-terminal peptide antiserum labeled higher Mr precursors of the Mr = 18,000 tryptic fragment, although not the fragment itself, indicating that the latter, with its associated cytochalasin B binding site, is derived from the C-terminal half of the protein. Antiserum against the intact transporter recognized the C-terminal peptide on ELISA, and the Mr = 18,000 fragment but not the glycosylated tryptic fragment on Western blots.  相似文献   

8.
Surfactant protein A (SP-A) is the most abundant of the surfactant-associated proteins. SP-A is involved in the formation of tubular myelin, the modulation of the surface tension-reducing properties of surfactant phospholipids, the metabolism of surfactant phospholipids, and local pulmonary host defense. We hypothesized that elimination of SP-A would alter the regulation of SP-B gene expression and the formation of tubular myelin. Midtrimester human fetal lung explants were cultured for 3-5 days in the presence or absence of an antisense 18-mer phosphorothioate oligonucleotide (ON) complementary to SP-A mRNA. After 3 days in culture, SP-A mRNA was undetectable in antisense ON-treated explants. After 5 days in culture, levels of SP-A protein were also decreased by antisense treatment. SP-B mRNA levels were not affected by the antisense SP-A ON treatment. However, there was decreased tubular myelin formation in the antisense SP-A ON-treated tissue. We conclude that selective elimination of SP-A mRNA and protein results in a decrease in tubular myelin formation in human fetal lung without affecting SP-B mRNA. We speculate that SP-A is critical to the formation of tubular myelin during human lung development and that the regulation of SP-B gene expression is independent of SP-A gene expression.  相似文献   

9.
Pulmonary surfactant isolated by lavage can be separated into large aggregates (LA) and small aggregates (SA). Pulse labeling experiments have shown that the LA subtype is the precursor of the SA subtype. Conversion of LA to SA can be demonstrated in vitro using the technique of surface area cycling. The precise mechanisms of surfactant subtype conversion remain unknown. We have previously reported a decline in surfactant-associated protein B (SP-B) during in vitro subtype conversion of canine surfactant. This led to the hypothesis that SP-B may be degraded by a serine protease 'convertase' during cycling. The current studies used a quantitative slot-blot assay to investigate the fates of SP-A and SP-B during in vitro cycling. These studies confirmed some SP-A is present in SA, but SP-B is confirmed to LA. Conversion leads to an apparent loss of SP-B during cycling. However, SP-B can be recovered from the walls of polypropylene and Teflon tubes by washing with chloroform:methanol. Recovered SP-B migrated on non-reducing tricine gels as a single band with an apparent molecular weight of 17 kDa, corresponding to intact SP-B dimer. Reconstitution studies demonstrated that the recovered SP-B retained its surface active properties as determined on a pulsating bubble surfactometer. We conclude in vitro surface area cycling of canine LA results in the dissociation of SP-B from surfactant lipids resulting in an apparent decline in SP-B levels.  相似文献   

10.
To determine whether small hydrophobic surfactant peptides (SP-B and SP-C) participate in recycling of pulmonary surfactant phospholipid, we determined the effect of these peptides on transfer of 3H- or 14C-labelled phosphatidylcholine from liposomes to isolated rat alveolar Type II cells and Chinese hamster lung fibroblasts. Both natural and synthetic SP-B and SP-C markedly stimulated phosphatidylcholine transfer to alveolar Type II cells and Chinese hamster lung fibroblasts in a dose- and time-dependent fashion. Effects of the peptides on phospholipid uptake were dose-dependent, but not saturable and occurred at both 4 and 37 degrees C. Uptake of labelled phospholipid into a lamellar body fraction prepared from Type II cells was augmented in the presence of SP-B. Neither SP-B nor SP-C augmented exchange of labelled plasma membrane phosphatidylcholine from isolated Type II cells or enhanced the release of surfactant phospholipid when compared to liposomes without SP-B or SP-C. Addition of native bovine SP-B and SP-C to the phospholipid vesicles perturbed the size and structure of the vesicles as determined by electron microscopy. To determine the structural elements responsible for the effect of the peptides on phospholipid uptake, fragments of SP-B were synthesized by solid-phase protein synthesis and their effects on phospholipid uptake assessed in Type II epithelial cells. SP-B (1-60) stimulated phospholipid uptake 7-fold. A smaller fragment of SP-B (15-60) was less active and the SP-B peptide (40-60) failed to augment phospholipid uptake significantly. Like SP-B and SP-C, surfactant-associated protein (SP-A) enhanced phospholipid uptake by Type II cells. However, SP-A failed to significantly stimulate phosphatidylcholine uptake by Chinese hamster lung fibroblasts. These studies demonstrate the independent activity of surfactant proteins SP-B and SP-C on the uptake of phospholipid by Type II epithelial cells and Chinese hamster lung fibroblasts in vitro.  相似文献   

11.
A comparative study of lung surfactant associated proteins was undertaken to determine which mammalian species would best serve as models for investigating alterations of the human lung surfactant system. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis of purified surfactants in the presence of dithiothreitol revealed that surfactant invariably contains at least one peptide with molecular weight of 30 000-40 000. In the absence of disulfide reducing agents, the above peptides were in the form of high-molecular-weight proteins (greater than 400 kDa) in primates and cat, whereas in dog, rat and rabbit, the protein was a 72 kDa dimer. The 30-40 kDa peptide subunits were isolated from human, rat and dog surfactants and found to contain four or five residues of hydroxyproline. Antisera to either the human 34 kDa peptide or high-molecular-weight proteins reacted with the high-molecular-weight bands, the 34 kDa subunit and at least six intermediate disulfide-linked forms separated from purified human surfactant by electrophoresis under nonreducing conditions. Following electrophoresis in the presence of dithiothreitol, both antisera detected the 34 kDa peptide as well as other peptides ranging in molecular weight from 23 000 to 160 000. The isolated 34 kDa peptide readily reaggregated into disulfide-linked forms including 68 and 100 kDa complexes which were not reduced by 40 mM dithiothreitol. We conclude that the 34 kDa surfactant-associated peptide forms a complex system of monomeric and multimeric proteins, which varies among the species and could conceivably vary in distribution during lung development or disease.  相似文献   

12.
Pulmonary surfactant contains at least three unique proteins: SP-A, SP-B and SP-C. SP-B and SP-C from bovine surfactant are markedly hydrophobic and have molecular masses between 3 and 26 kDa. We identify surfactant proteins under nonreducing conditions on polyacrylamide gels with approximate molecular mass of 5, 14, 26 kDa (SP-5, 14, 26) when organic solvent-soluble material is eluted from a Sephadex LH-20 size exclusion column followed by separation on a high-performance reverse-phase chromatography system. These bands correspond to monomeric SP-C, oligomeric SP-C and oligomeric SP-B, respectively. Computer analysis (Eisenberg-hydrophobic moment) of sequences for these proteins suggests that SP-B contains surface-seeking amphiphilic segments. In contrast, SP-C resembles a more hydrophobic transmembrane anchoring peptide. Dispersions containing dipalmitoylphosphatidylcholine, phosphatidylglycerol, palmitic acid and multimeric SP-B and SP-C duplicate the surface activity of natural surfactant when assayed in a pulsating bubble surfactometer. We speculate that oligomers of SP-B and monomers and oligomers of SP-C may act cooperatively in affecting surfactant function. An important function of SP-B and SP-C may be to affect the ordering of surfactant lipids so that rates of transport of surfactant lipids to the hypophase surface in the alveoli are enhanced.  相似文献   

13.
To investigate the role of the pulmonary surfactant-associated proteins SP-A and SP-B, the respective monoclonal antibody (anti-A or anti-B) was added to porcine pulmonary surfactant at a weight ratio of 1:2, and the mixtures were tested on surfactant-deficient immature newborn rabbits (gestational age 26 days). Under pentobarbital sodium anesthesia and mechanical ventilation with a 25-cmH2O peak insufflation pressure, the tidal volumes of the animals given surfactant alone and of those given surfactant containing anti-A were 27.9 +/- 5.1 and 25.1 +/- 9.6 (SD) ml/kg, respectively, whereas that of those given surfactant with anti-B was 5.8 +/- 3.6 ml/kg (P less than 0.05). The surface adsorption times of surfactant alone and of anti-A-containing surfactant were less than 0.8 s compared with greater than 120 s (P less than 0.01) for anti-B-containing surfactant. The anti-B suppressed the surfactant activity until the weight ratio was decreased to 2:100. The role of SP-A could not be clarified, but it was concluded that SP-B is an essential factor for surfactant activity.  相似文献   

14.
During lung development type II alveolar epithelial cells produce extracellular pulmonary surfactant. Polyclonal antibodies were produced against nonserum proteins associated with human surfactant. The present studies were designed (i) to determine if mouse surfactant proteins were antigenically cross-reactive with polyclonal antibodies directed against human surfactant proteins; and (ii) to determine surfactant protein localization during fetal, neonatal, and adult mouse lung development. Two-dimensional gel electrophoresis studies in conjunction with immunologic techniques provided evidence that mouse and human surfactant proteins shared antigenic determinants. The major monomeric form of mouse surfactant protein in a glycoprotein of approximately Mr 35,000 under reducing conditions. A less abundant form was identified as a Mr 45,000 polypeptide. Immunohistochemical localization showed that type II cells contain surfactant protein at Theiler stage 26. A gradient of immunostaining was localized within alveolar surfaces. The antigen was not detected in heart, blood vessels, or pulmonary interstitial cells. Surfactant protein was detected lining alveolar surfaces in mature adult lung. The distribution of this protein during fetal and neonatal lung morphogenesis suggests that this extracellular constituent of pulmonary surfactant may be extremely useful as a phenotypic marker with which to evaluate normal and abnormal lung development.  相似文献   

15.
Pulmonary surfactant is a complex mixture of phospholipids and four surfactant-associated proteins (SP-A, SP-B, SP-C and SP-D). The biological functions of SP-A and SP-D are primarily twofold, namely surfactant homeostasis and host defense. The hydrophobic surfactant proteins, SP-B and SP-C, are required for achieving the optimal surface tension reducing properties of surfactant by promoting the rapid adsorption of surfactant phospholipids along the alveolar surface. Despite the promising findings, only little is known about the extrapulmonary distribution of these proteins. Therefore, in this study, the presence of SP-A, SP-B, SP-C and SP-D in early human placenta has been investigated. First-trimester placental tissues (22–56 days) were obtained from women undergoing curettage during normal pregnancies. In parallel tissue sections, vimentin, cytokeratin-7 and CD-68 immunostainings were used for the identification of mesenchymal cells, trophoblast cells and Hofbauer cells, respectively. According to immunohistochemistry (IHC) results, SP-A, SP-B, SP-C and SP-D immunoreactivities with different staining intensities were observed in trophoblastic layers of chorionic villous tree, trophoblastic cell columns, stromal cells, Hofbauer cells, angiogenic cell cords and vascular endothelium. Fetal hematopoietic cells showed a variable staining pattern for all four surfactant proteins ranging from none to strong intensity. Western blotting of tissue extracts confirmed our IHC results. The presence of surfactant glycoproteins in early human placenta may yield a very important feature of surfactants during first trimester and enables further studies of the role of surfactants in various pregnancy complications.  相似文献   

16.
17.
18.
We have performed molecular dynamics simulations of the interactions of the peptide SP-B(1-25), which is a truncated version of the full pulmonary surfactant protein SP-B, with dipalmitoylphosphatidylcholine monolayers, which are the major lipid components of lung surfactant. Simulations of durations of 10-20 ns show that persistent hydrogen bonds form between the donor atoms of the protein and the acceptors of the lipid headgroup and that these bonds determine the position, orientation, and secondary structure of the peptide in the membrane environment. From an ensemble of initial conditions, the most probable equilibrium orientation of the alpha-helix of the peptide is predicted to be parallel to the interface, matching recent experimental results on model lipid mixtures. Simulations of a few mutated analogs of SP-B(1-25) also suggest that the charged amino acids are important in determining the position of the peptide in the interface. The first eight amino acids of the peptide, also known as the insertion sequence, are found to be essential in reducing the fluctuations and anchoring the peptide in the lipid/water interface.  相似文献   

19.
20.
SP-B, a protein absolutely required to maintain the lungs open after birth, is synthesized in the pneumocytes as a precursor containing C-terminal and N-terminal domains flanking the mature sequence. These flanking-domains are cleaved to produce mature SP-B, coupled with its assembly into pulmonary surfactant lipid-protein complexes. In the present work we have optimized over-expression in Escherichia coli and purification of rproSP-B(DeltaC), a recombinant form of human proSP-B lacking the C-terminal flanking peptide, which is still competent to restore SP-B function in vivo. rProSP-B(DeltaC) has been solubilized, purified and refolded from bacterial inclusion bodies in amounts of about 4 mg per L of culture. Electrophoretic mobility, immunoreactivity, N-terminal sequencing and peptide fingerprinting all confirmed that the purified protein had the expected mass and sequence. Once refolded, the protein was soluble in aqueous buffers. Circular dichroism and fluorescence emission spectra of bacterial rproSP-B(DeltaC) indicated that the protein is properly folded, showing around 32% alpha-helix and a mainly hydrophobic environment of its tryptophan residues. Presence of zwitterionic or anionic phospholipids vesicles caused changes in the fluorescence emission properties of rproSP-B(DeltaC) that were indicative of lipid-protein interaction. The association of this SP-B precursor with membranes suggests an intrinsic amphipathic character of the protein, which spontaneously adsorbs at air-liquid interfaces either in the absence or in the presence of phospholipids. The analysis of the structure and properties of recombinant proSP-B(DeltaC) in surfactant-relevant environments will open new perspectives on the investigation of the mechanisms of lipid and protein assembly in surfactant complexes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号