首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
B S Bunney  A A Grace 《Life sciences》1978,23(16):1715-1727
Antipsychotic drugs produce most of their clinical effects, both therapeutic and adversive, in a time-dependent manner which, depending upon the effect, can take days to years to develop. Using extracellular single unit recording and microiontophoretic techniques, we investigated the effect of chronic haloperidol (CHAL) treatment (0.5 mg/kg/day s.c. × 22 d) on nigral dopaminergic (DA) neuronal activity. These effects were compare to those obtained in control animals, animals acutely treated with haloperidol (AHAL), and animals which had been treated for 21 days but not tested until a week after haloperidol had been discontinued (CHAL+l). CHAL treatment resulted in an almost total absence of spontaneously firing nigral DA cells. “Silent” DA cells became active when GABA or DA was applied microiontophoretically but they were unresponsive to glutamic acid. I.V. apomorphine also caused the DA cells to fire. Destruction of nigro-striatal feedback pathways by injection of kainic acid into the caudate nucleus prior to CHAL treatment prevented the disappearance of dopamine cell activity on the lesioned side. In AHAL animals a significantly greater number of spontaneously firing DA cells were found than in controls. In control animals inhibited DA cells could be activated by microiontophoretic glutamic acid or i.v. haloperidol but not by GABA.These results suggest that CHAL treatment causes an increase in the activity of DA cells to the point that the great majority go into apparent tonic depolarization block. This effect appears to be mediated via striato-nigral feedback pathways. AHAL treatment appears to activate DA cells that are normally inactive as well as accelerate the firing rate of spontaneously firing DA neurons. The possible relevance of these findings to the time-dependent neurological side effects induced by haloperidol is discussed.  相似文献   

2.
Chronic treatment of rats with haloperidol (4 weeks, 0.5 or 1 mg/kg) resulted in a significant attenuation of the large DOPAC rise seen in the corpus striatum after acute treatment. This tolerance effect was observed both shortly following termination of chronic treatment and on challenge with a low dose (0.1 mg/kg) of the drug 6–8 days later. In contrast, acute haloperidol treatment resulted in only a small and nonsignificant elevation of DOPAC levels in the substantia nigra, while chronic treatment caused a larger and significant increase in levels of the metabolite. Moreover, the latter effect was also observed in response to haloperidol challenge 6–8 days after discontinuation of drug treatment. The differential pattern of response in these two brain regions is discussed in relation to possible mechanisms mediating striatal tolerance and to recent observations regarding changes in nigral dopamine cell firing after chronic haloperidol treatment.  相似文献   

3.
This work studied the effects of ethanol in the absence and presence of haloperidol under two experimental conditions. In protocol 1, rats were treated daily with ethanol (4 g/kg, p.o.) for 7 days, and received only haloperidol (1 mg/kg, i.p.) from the 8th day to the 14th day. In protocol 2, animals received ethanol, and the treatment continued with ethanol and haloperidol from the 8th day to the 14th day. Results show increases in alanine transaminase (ALT; 48% and 55%) and aspartate transaminase (AST; 32% and 22%) levels after ethanol or haloperidol (14 days) treatments, as compared with controls. Apolipoprotein A-1 (APO A1) levels were increased by haloperidol, after 7- (148%) but not after 14-day treatments, as compared with controls. Levels of lipoprotein (high-density lipoprotein (HDL-C)) tended to be increased only by ethanol treatment for 14 days. ALT (80%) and AST (43%) levels were increased in the haloperidol plus ethanol group (protocol 2), as compared with controls. However, an increase in APO A1 levels was observed in the haloperidol group pretreated with ethanol (protocol 1), as compared with controls and ethanol 7-day treatments. Triglyceride (TG) levels were increased in the combination of ethanol and haloperidol in protocol 1 (234%) and 2 (106%), as compared with controls. Except for a small decrease in haloperidol groups, with or without ethanol, as related to ethanol alone, no other effect was observed in HDL-C levels. In conclusion, we showed that haloperidol might be effective in moderating lipid alterations caused by chronic alcohol intake.  相似文献   

4.
Nigral and striatal GABA contents were assayed in male rats treated chronically with haloperidol or sulpiride, two dopamine-receptor blocking agents that have different neuropharmacological spectra in regard to their biochemical, behavioural, and clinical properties. No great difference was observed between the chronic effects of haloperidol and sulpiride on nigral and striatal GABA content. However, low doses (30 μg/kg, intraperitoneally) of the dopamine-receptor agonist apomorphine, injected 12 h after the discontinuation of chronic haloperidol or chronic sulpiride treatment, induced opposite changes in nigral GABA levels suggesting the existence of a different “status” of the dopamine receptors during the 12 h-period following the withdrawal of haloperidol or sulpiride.  相似文献   

5.
Albino rats were injected once daily with chlorpromazine (20 mg/kg) or haloperidol (3 mg/kg) for 100 days, and were sacrificed 24 hours or 35 days after the last injection. Brains were frozen rapidly in liquid nitrogen, after which the mesolimbic area (containing nucleus accumbens and olfactory tubercle) and striatum were dissected from each frozen brain. Amino acids were quantitated in the mesolimbic area, and GAD enzyme activity was measured in the striatum. Chronic administration of chlorpromazine and haloperidol did not alter brain GABA content or GAD activity in the treated rats, as compared to saline-injected controls, either 1 or 35 days after injections ended. However, a significant elevation of aspartate content and reduction of glycine content was found after chronic administration of haloperidol. These data suggest that alterations which may be found in the GABA system in autopsied brain from psychotic patients do not result from previous antipsychotic drug therapy.  相似文献   

6.
A Pilc  K G Lloyd 《Life sciences》1984,35(21):2149-2154
Amitryptyline (10 mg/kg), desipramine (5 mg/kg), citalopram (10 mg/kg) and viloxazine (10 mg/kg) were administered to rats either acutely (decapitation 1 hr after i.p. injection) or subacutely (by subcutaneous minipump implantation for 18 days followed by decapitation 24 hr after removal). After acute administration there was not any consistent alteration in GABA levels, GAD activity, 3H GABA "A" or 3H-GABA "B" receptor binding or 3H-nipecotic acid binding to the recognition site for GABA uptake in the frontal cortex or hippocampus. Upon subacute antidepressant drug infusion, GABA levels, GAD activity and 3H-GABA-"A" binding showed only scattered differences in drug treated animals as compared to saline treated rats. However, 3H-GABA "B" binding in the frontal cortex was consistently elevated after all drug treatments (in % of control: amitryptyline = 155%; desipramine = 151%; citalopram = 173%; viloxazine = 189%). Scatchard analysis showed that this was due to a Bmax increase without an effect in Kd. These findings were reproduced by subacute administration of pargyline, a MAO inhibitor. These data suggest that GABA "B" receptors may be involved in the mechanism of action of antidepressant drugs and provide a link between GABAergic and monoaminergic hypotheses of depression.  相似文献   

7.
Previous data (1) have shown that L-DOPA increases the duration of the clonic phase of post-decapitation convulsions (PDC) in mice. It was suggested that this effect is produced by depleting 5-hydroxytryptamine (5-HT) in the inhibitory bulbospinal pathways and thus enhancing reflex activity in the spinal cord. If this were true then L-DOPA administration should not influence clonic PDC in animals whose 5-HT pathways were destroyed. We therefore tested the effects of L-DOPA on mice 3 weeks after pretreatment with the 5-HT neurotoxin, 5,6-dihydroxytryptamine (5, 6-DHT) (50 μg/kg, intracerebroventricularly). All mice were given the peripheral decarboxylase inhibitor, Ro 4-4602. 5,6-DHT halved the brain 5-HT levels and significantly increased the duration of clonic PDC. The administration of L-DOPA (320 mg/kg i.p.) to 5,6 DHT treated mice did not produce any further significant increases in duration. The administration of 5-hydroxytryptophan (5-HTP) (100 mg/kg, i.v.) to 5,6-DHT treated mice, however, increased 5-HT to above control levels and reduced convulsions to control levels. Administration of both 5-HTP and L-DOPA to 5,6-DHT treated mice resulted in 5-HT levels and convulsion times which were also not significantly different from the controls. These data give additional indication that intact 5-HT nerve terminals are necessary for L-DOPA to prolong the duration of clonic PDC.  相似文献   

8.
Abstract— The present study was designed to examine the effects of chronic cocaine administration on the extracellular response of serotonin (5-HT) and dopamine (DA) to a peripheral cocaine injection using in vivo brain microdialysis in awake rats. Two different dual probe preparations were used: One group of animals had guide cannulae aimed at the ventral tegmental area (VTA) and nucleus accumbens (N ACC) and a second group of animals had guide cannulae aimed at the dorsal raphe nucleus (DRN) and N ACC. Rats from both groups were given daily injections of either cocaine (20 mg/kg i.p.) or saline (0.9%; 0.05 ml/kg i.p.) for 10 consecutive days. On day 11, baseline dialysate levels of DA, 5-HT, dihydroxyphenylacetic acid, and 5-hydroxyindoleacetic acid were obtained from either the N ACC and VTA or the N ACC and DRN, followed by a 10 mg/kg i.p. cocaine injection and an additional 150 min of dialysate sampling. The percent baseline increases of both 5-HT and DA were significantly higher in the N ACC, VTA, and DRN of animals that received daily injections of cocaine compared with saline controls ( p < 0.05, in each region). Maximum dialysate 5-HT concentrations after cocaine challenge were significantly higher in the N ACC and VTA ( p < 0.05) and DRN ( p < 0.01) of chronically treated animals compared with saline controls. Maximum dialysate DA concentrations were significantly higher in the N ACC and DRN ( p < 0.05) of chronically treated animals compared with saline controls. There was no significant difference between acute and chronic animals in the maximum dialysate DA concentration from the VTA after cocaine challenge. 5-HT was significantly more sensitized in the 5-HT cell body region (DRN) than the N ACC terminal field ( p < 0.05), whereas DA was significantly more sensitized in the N ACC terminal field than the DA cell bodies of the VTA ( p < 0.05).  相似文献   

9.
Paul D. Thut 《Life sciences》1977,21(3):423-432
Mice were trained to avoid foot shock by turning a drum mounted in the wall of a behavioral chamber. L-DOPA (178 to 320 mg/kg i.p.) and D-DOPA (320 to 1000 mg/kg, i.p.) but not L-3-0-methyl-DOPA (178 to 560 mg/kg, i.p.) significantly reduced the number of responses made by the animals. Pretreatment with Ro. 4-4602 (50 mg/kg, i.p.), a peripheral DOPA-decarboxylase inhibitor, enhanced the depressant effect of L-DOPA but not that of D-DOPA. Inhibition of central DOPA-decarboxylase (Ro. 4-4602, 500 mg/kg, i.p.) partially reduced the depressant effect of L-DOPA but not that of D-DOPA These results suggest that only part of the depressant action of L-DOPA is due to its central decarboxylation.  相似文献   

10.
The influence of L-DOPA and reserpine on extracellular dopamine (DA) levels in the striatum of intact and dopaminergic denervated rats was studied using the brain microdialysis technique. In intact rats, reserpine (5 mg/kg s.c.) reduced extracellular DA levels to 4% of basal values. L-DOPA (50 mg/kg i.p.) had no effect on extracellular DA levels in reserpine-pretreated rats. In rats with 6-hydroxydopamine-induced lesion of the nigrostriatal dopaminergic system, basal levels of extracellular DA were low but markedly increased by L-DOPA (50 mg/kg i.p.). In 6-hydroxydopamine-lesioned rats, pretreatment with reserpine (5 mg/kg s.c.) diminished L-DOPA (50 mg/kg i.p.)-induced increases in extracellular DA levels to 16% of those obtained in denervated animals not pretreated with reserpine (p<0.01). These results suggest that in the intact striatum, extracellular DA stems mainly from vesicular storage sites and that in the striatum with dopaminergic denervation, a large part of the L-DOPA-derived extracellular DA is also derived from a vesicular pool that is released by an exocytosis mechanism.  相似文献   

11.
R J Carey 《Life sciences》1991,48(13):1303-1308
Chronic L-DOPA treatment of Parkinson's disease frequently leads to the development of motoric overstimulation and hyperkinetic movements. To investigate this problem in the laboratory, rats surgically altered by unilateral 6-hydroxydopamine lesions (6-OHDA) were chronically treated with one L-DOPA (10 mg/kg i.p.) injection per day for 20 days. In this 6-OHDA rotation model, the unilateral dopamine denervation results in a profound contralateral sensory-motor neglect and the animals spontaneously rotate in a direction ipsilateral to the dopamine depleted hemisphere. Initially, the L-DOPA treatment did not alter the response bias but after several weeks, the response bias was reversed and the animals rotated in the formerly akinetic direction, contralaterally, at a significantly higher level. Using this overstimulation effect as an analogue of the clinically observed L-DOPA overstimulation, animals were given naloxone in conjunction with the L-DOPA treatment. Naloxone (0.10, 0.25 and 0.50 mg/kg i.p.) produced a dose related decrease in the L-DOPA induced contralateral rotation. Consistent with an expected selective effect on the L-DOPA induced rotation, a dose related increase in ipsilateral rotation was observed. These results suggest that naloxone can attenuate the overstimulation effect of L-DOPA and that this effect is not attributable to non-specific response suppression effects.  相似文献   

12.
P D Thut  N R Myslinski 《Life sciences》1976,19(10):1569-1578
L-DOPA (320 mg/kg, i.p.) increased the duration of the clonic phase of post-decapitation convulsions (PDC) by 60% in mice pretreated with the peripheral decarboxylase inhibitor, Ro 4-4602 (50 mg/kg, i.p.). Assays of brains at the time of decapitation showed a 300% increase in dopamine (DM), an 80% reduction in serotonin (5-HT) and no change in norepinephrine (NE) levels. The effect of L-DOPA on PDC was not blocked by haloperidol (0.5 – 5.0 mg/kg), a blocker of DM receptors, nor by diethyldithiocarbamate (400 mg/kg) an inhibitor of NE synthesis. Parachlorophenylalanine (300 mg/kg × 3 days) produced an 80% reduction in 5-HT and a prolongation of PDC similar to that observed after L-DOPA. Prolongation of PDC was also seen after the 5-HT antagonists methysergide (5 mg/kg) and cinanserin (10 mg/kg), but not after cyproheptadine (10 mg/kg). The 5-HT precursor, 5-hydroxytryptophan (100 mg/kg), produced no change in PDC when used alone but inhibited L-DOPA's prolongation of PDC. The results suggest that L-DOPA acts by depleting 5-HT in bulbospinal pathways and thus enhancing reflex activity in the spinal cord.  相似文献   

13.
The current study measured extracellular fluid (ECF) levels of excitatory amino acids before and during the onset of thiamine deficiency-induced pathologic lesions. Male Sprague-Dawley rats were treated with daily pyrithiamine (0.25 mg/kg i.p.) and a thiamine-deficient diet (PTD). Microdialysates were simultaneously collected from probes inserted acutely via guide cannulae into right paracentral and ventrolateral nuclei of thalamus and left hippocampus of PTD and pair-fed controls. Hourly samples were collected from unanesthetized and freely moving animals. Basal levels obtained at a prelesion stage (day 12 of PTD treatment) were unchanged from levels in pairfed controls. In samples collected 4–5 h after onset of seizures (day 14 of PTD), the levels of glutamate were elevated an average 640% of basal levels in medial thalamus and 200% in hippocampus. Glutamine levels declined, taurine and glycine were elevated, and aspartate, GABA, and alanine were unchanged during this period. Within 7 h after seizure onset glutamine was undetectable in both areas, whereas glutamate had declined to ~200% in thalamus and 70% in hippocampus. No significant change in glutamate, aspartate, or other amino acids was observed in dialysates collected from probes located in undamaged dorsal-lateral regions of thalamus. Number of neurons within ventrolateral nucleus of thalamus was significantly greater in PTD animals in which the probe was dialyzed compared with nondialyzed, suggesting that removal of excitatory amino acids was protective. No significant pathologic damage was evident in hippocampus. Pretreatment with MK-801 completely blocked the rise of ECF glutamate and significantly reduced the pathologic damage within thalamus of PTD rats and produced a significant decrease in ECF glutamate in control rats.  相似文献   

14.
The antinociceptive effect of acutely and chronically (every brain elimination half-life time) administered metapramine, a tricyclic antidepressant without anticholinergic or cardiotoxic effects, was studied in three different pain tests. In the hot plate test, its action was more potent when jumping was used as a pain parameter (acute ED50 = 19 +/- 3 mg/kg, i.p.) than when pain was assessed by licking of forepaws (only 20 mg/kg, i.p. was weakly active). Five chronic doses of 15 mg/kg were as active in the tail-flick test as an acute dose of 20 mg/kg (only active dose). Metapramine was more effective in the PBQ-induced writhing test after acute (ED50 = 9.9 +/- 0.1 mg/kg, i.p.) and chronic administration. A significant linear correlation was found between the effect in this test and plasma and overall brain levels of metapramine. No correlation was observed with levels of its three desmethylated metabolites. The usefullness of using a well-defined pattern of administration based on pharmacokinetic parameters and the involvement of monoaminergic mechanisms and of some metabolites of metapramine are discussed.  相似文献   

15.
Rats administered chronic neuroleptics for 6–7 weeks-- haloperidol (2.5 mg/rat or 1 mg/kg), clozapine (25 mg/kg), or thioridazine (20 mg/kg)--after termination of chronic drug treatment exhibited greater apomorphine-induced stereotyped behavior than their saline controls. Rats treated with thioridazine or clozapine, but not haloperidol, also showed increases in locomotor activity during withdrawal. These findings indicate that behavioral supersensitivity may develop after chronic clozapine treatment as well as after chronic haloperidol.  相似文献   

16.
Trazodone was tested for its ability to elevate serum prolactin levels in mature female rats. When the drug was administered acutely to female rats at doses up to 80 mg/kg ip, it induced a clear rise in serum prolactin levels, with a minimum effective dose of 20 mg/kg; blood trazodone levels at these doses were between 1.6–2.4 μg/ml. However, trazodone could not be considered to be a potent stimulator of prolactin secretion, since the injection of haloperidol at 2 mg/kg elevated serum prolactin to values twice those seen in animals receiving the 80 mg/kg dose of trazodone. When trazodone was administered chronically in the diet for two or four weeks, at an average daily dose of 80 mg/kg, serum trazodone levels were found to be 100–200 ng/ml when measured at each stage of the estrous cycle. Serum prolactin levels in trazodone-treated animals, however, did not differ from those in control rats. Moreover, drug-treated animals showed normal proestrus surges in serum prolactin. The results of these studies thus indicate that acutely, at very high doses, trazodone probably can stimulate prolactin secretion modestly in female rats. However, when consumed chronically at 80 mg/kg/day, the drug has no effects on serum prolactin levels. Therefore, if trazodone stimulates prolactin secretion by altering neurotransmission across dopamine and/or serotonin synapses in brain, it is probably not potent in these actions, at least as concerns those dopamine and serotonin neurons that influence the secretion of prolactin.  相似文献   

17.
A novel gastric pentadecapeptide BPC 157 with different beneficial activities and anticonvulsant effect interacting with GABAergic system could improve diazepam efficacy coadministered (10 microg/kg, 10 ng/kg i.p.) with diazepam (5.0 mg/kg i.p.) twice daily for 10 days, since diazepam chronic medication would otherwise predispose for diazepam- tolerance/withdrawal development (shorter latency to convulsion after convulsant). In diazepam chronically treated mice, it attenuated diazepam tolerance (provoked by later acute administration of diazepam together with convulsant) and postponed physical dependence/withdrawal effects (provoked by later administration of isoniazid). In tolerance assay, at 42 h after the end of conditioning regimen, shorter preconvulsive latencies than in healthy (non-diazepam conditioned) mice following isoniazid (800 mg/kg i.p.) (as hallmark of tolerance) were observed if diazepam (5.0 mg/kg i.p.) was again given acutely to mice previously conditioned with diazepam alone (use of picrotoxin 3.0 mg/kg i.p., as convulsant, with acute application of diazepam in previously diazepam conditioned mice did not lead to tolerance hallmark). This was completely avoided in diazepam+BPC 157 10 microg or diazepam+BPC 157 10 ng chronically treated animals. In physical dependence assay (isoniazid challenge assessed at 6, 14, 42 and 72 h after conditioning medication), when compared to diazepam non-conditioned healthy mice, in diazepam conditioned mice residual anticonvulsive activity was not present already at the earliest post-conditioning interval (i.e., not different latency to isoniazid-convulsions), whereas shorter preconvulsive latencies (as physical dependence/withdrawal hallmark) were noted in diazepam conditioned mice following isoniazid challenge at 42 h and at 72 h after end of conditioning treatment. In diazepam+BPC 157 10 microg- conditioned mice, a residual anticonvulsive activity (i.e., longer latency to isoniazid convulsion) was noted at 6 h post-conditioning, whereas shorter preconvulsive latencies appeared only at 72 h-post-conditioning period. In conclusion, taken together these data (lack of tolerance development (tolerance studies), prolonged residual anticonvulsive activity, and postponed physical dependence/withdrawal hallmark in diazepam+BPC 157 chronically treated mice) with common benzodiazepines tolerance/withdrawal knowledge, it could be speculated that BPC 157 acts favoring the natural homeostasis of the GABA receptor complex as well as enhancing the GABAergic transmission, and having a mechanism at least partly different from those involved in diazepam tolerance/withdrawal, it may be likely used in further therapy of diazepam tolerance and withdrawal.  相似文献   

18.
The effects of a prolonged treatment with cyclo (Leu-Gly) and/or haloperidol on biochemical parameters indicative of striatal dopamine target cell supersensitivity have been investigated in the rat. When given acutely, cyclo (Leu-Gly) (2 mg/kg sc) did not affect striatal homovanillic acid, dihydroxyphenylacetic acid and acetylcholine levels both under basal conditions or after acute haloperidol (1 mg/kg ip) treatment. When given concomitantly with haloperidol (infused by means of osmotic minipumps at a rate of 2.5 μg/h sc) for 14 days, cyclo (Leu-Gly) (2 mg/kg sc once daily) failed to prevent the fall of striatal dopamine metabolites observed 2 days following withdrawal and the tolerance to the elevation of dopamine metabolites which occurs in response to challenge with the neuroleptic during withdrawal. Prolonged treatment with cyclo (Leu-Gly) also failed to affect the tolerance to the decrease of striatal acetylcholine levels which occurs under chronic haloperidol treatment. These data suggest that the mechanism whereby cyclo (Leu-Gly) inhibits the development of neuroleptic-induced dopaminergic supersensitivity does not involve an action of the peptide on nigro-striatal dopaminergic and striatal cholinergic neurons and is probably exerted distally to both dopaminergic and cholinergic synapses.  相似文献   

19.
The bioavailabilities of aspirin (acetylsalicylic acid) and of salicylic acid were studied in male Wistar rats after acute and chronic administration of a Capsicum annuum extract, containing 100 mg of capsaicin per gram. With a single administration of 100 mg/kg of the extract, aspirin blood levels remained unchanged, but salicylic acid bioavailability was reduced in 44% compared with control animals. With a single administration of 300 mg/kg of the extract, aspirin blood levels were undetectable while salicylic acid bioavailability was reduced in 59%. Chronic administration once daily for 4 weeks of 100 and 300 mg/kg of the extract resulted in undetectable aspirin blood levels, while salicylic acid bioavailability was reduced in 63 and 76%, respectively, compared with controls. Results show that Capsicum ingestion reduces oral drug bioavailability, likely as a result of the gastrointestinal effects of capsaicin.  相似文献   

20.
Vriend J  Dreger L 《Life sciences》2006,78(15):1707-1712
Haloperidol, an antipsychotic drug, was tested for its effects on the in situ activity of nigrostriatal and hypothalamic tyrosine hydroxylase, in control male Syrian hamsters and in those receiving a high daily dose of melatonin. After receiving daily ip injections (1.25 mg/kg ip) of haloperidol for 21 days, the animals were sacrificed and brain tissue collected for analysis of dopamine and metabolites by HPLC with electrochemical detection. In situ activity of tyrosine hydroyxlase (TH) activity was determined by measuring the accumulation of L-Dopa after administration of the L amino acid decarboxylase inhibitor, mhydroxybenzylhydrazine. Tissue content of dopamine and its metabolites, DOPAC and HVA, was depressed in striatum of animals receiving haloperidol, and tyrosine hydroxylase (TH) activity was significantly decreased 20-24 h after the last injection (from 1823 +/- 63 to 1139 +/- 85 pg l-dopa/mg tissue). The decrease in TH activity in striatum was significantly inhibited by daily injections of a high dose of melatonin (2.5 mg/kg ip) (from 1139 +/- 85 to 1560 +/- 116 pg L-dopa/mg tissue). In the substantia nigra and in the hypothalamus, on the other hand, haloperidol significantly increased the activity of tyrosine hydroxylase. Melatonin administration did not significantly influence TH activity in the substantia nigra, but inhibited TH activity in the hypothalamus and in the pontine brainstem. One explanation for these data is that chronic haloperidol administration in Syrian hamsters increases TH activity in hypothalamus and substantia nigra, but decreases TH activity in striatum by a mechanism involving D2 presynaptic receptors and a melatonin sensitive kinase which regulates TH phosphorylation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号