首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Mitogenic action of LPA in prostate   总被引:4,自引:0,他引:4  
The lipid growth factor lysophosphatidic acid (LPA) elicits multiple cellular responses, including cell growth and survival. LPA acts upon target cells by activating its cognate receptors, which belong to the G protein-coupled endothelial differentiation gene (EDG) family. To date, three known LPA receptors, termed LPA1, LPA2 and LPA3, have been molecularly characterized and cloned. Here, we review recent data describing the molecular steps involved in the LPA receptor-mediated activation of mitogenic extracellular signal-regulated kinase (ERK) pathway in prostate cancer. Induction of ERK by LPA proceeds via Gbetagamma-dependent activation of tyrosine kinases, including the epidermal growth factor (EGF) receptor and c-Src. Further, LPA-induced ERK activation involves matrix metalloproteinases (MMPs), which cause the release of active EGFR ligands. Finally, we present data demonstrating a correlation between the mitogenic effects of LPA and expression of the lp(A1) gene in the prostate cancer cells.  相似文献   

2.
The mechanisms by which androgens stimulate proliferation of prostate cancer cells are poorly understood. It has been proposed that androgen stimulation may induce the mitogen-activated protein (MAP) kinase system in prostate cancer cells and lead to cellular proliferation. We attempted to evaluate the role of the extracellular signal-regulated kinase (ERK) pathway in the stimulation by androgens of prostate cancer cell proliferation. Androgen-sensitive prostate cancer cell line (LNCaP) cells plated on sterile glass coverslips were treated with 10(-8) M dihydrotestosterone (DHT) or epidermal growth factor (EGF) (10 ng/ml) for periods ranging from 1 min to 96 h. The proliferative index of the cells, evaluated by immunoperoxidase staining of cells with an antibody to Ki-67, was increased at least two-fold at all time points from 5 min to 48 h following exposure to either DHT or EGF. Immunohistochemical evaluation of ERK1/2 and pERK (activated ERK) demonstrated high levels of ERK1/2 in untreated LNCaP cells, while pERK was expressed at much lower levels. Following treatment with DHT, no change in staining intensity for either ERK1/2 or pERK was observed, while treatment with EGF resulted in no change in ERK1/2, but significantly increased cytoplasmic staining for pERK at all time points beyond 2 min. These results were confirmed by Western blot analysis of ERK1/2 and pERK expression in these cell lines following treatment with DHT or EGF. Our findings suggest that the proliferative response of prostate cancer cells to androgens, unlike the proliferative response to EGF, is not mediated by the activation of ERK1/2, and that currently undefined pathways other than those involving ERK1/2 are involved.  相似文献   

3.
The mechanisms by which androgens stimulate proliferation of prostate cancer cells are poorly understood. It has been proposed that androgen stimulation may induce the mitogen-activated protein (MAP) kinase system in prostate cancer cells and lead to cellular proliferation. We attempted to evaluate the role of the extracellular signal-regulated kinase (ERK) pathway in the stimulation by androgens of prostate cancer cell proliferation. Androgen-sensitive prostate cancer cell line (LNCaP) cells plated on sterile glass coverslips were treated with 10?8 M dihydrotestosterone (DHT) or epidermal growth factor (EGF) (10 ng/ml) for periods ranging from 1 min to 96 h. The proliferative index of the cells, evaluated by immunoperoxidase staining of cells with an antibody to Ki-67, was increased at least two-fold at all time points from 5 min to 48 h following exposure to either DHT or EGF. Immunohistochemical evaluation of ERK1/2 and pERK (activated ERK) demonstrated high levels of ERK1/2 in untreated LNCaP cells, while pERK was expressed at much lower levels. Following treatment with DHT, no change in staining intensity for either ERK1/2 or pERK was observed, while treatment with EGF resulted in no change in ERK1/2, but significantly increased cytoplasmic staining for pERK at all time points beyond 2 min. These results were confirmed by Western blot analysis of ERK1/2 and pERK expression in these cell lines following treatment with DHT or EGF. Our findings suggest that the proliferative response of prostate cancer cells to androgens, unlike the proliferative response to EGF, is not mediated by the activation of ERK1/2, and that currently undefined pathways other than those involving ERK1/2 are involved.  相似文献   

4.
The mechanisms by which androgens stimulate proliferation of prostate cancer cells are poorly understood. It has been proposed that androgen stimulation may induce the mitogen-activated protein (MAP) kinase system in prostate cancer cells and lead to cellular proliferation. We attempted to evaluate the role of the extracellular signal-regulated kinase (ERK) pathway in the stimulation by androgens of prostate cancer cell proliferation. Androgen-sensitive prostate cancer cell line (LNCaP) cells plated on sterile glass coverslips were treated with 10-8 M dihydrotestosterone (DHT) or epidermal growth factor (EGF) (10 ng/ml) for periods ranging from 1 min to 96 h. The proliferative index of the cells, evaluated by immunoperoxidase staining of cells with an antibody to Ki-67, was increased at least two-fold at all time points from 5 min to 48 h following exposure to either DHT or EGF. Immunohistochemical evaluation of ERK1/2 and pERK (activated ERK) demonstrated high levels of ERK1/2 in untreated LNCaP cells, while pERK was expressed at much lower levels. Following treatment with DHT, no change in staining intensity for either ERK1/2 or pERK was observed, while treatment with EGF resulted in no change in ERK1/2, but significantly increased cytoplasmic staining for pERK at all time points beyond 2 min. These results were confirmed by Western blot analysis of ERK1/2 and pERK expression in these cell lines following treatment with DHT or EGF. Our findings suggest that the proliferative response of prostate cancer cells to androgens, unlike the proliferative response to EGF, is not mediated by the activation of ERK1/2, and that currently undefined pathways other than those involving ERK1/2 are involved.  相似文献   

5.
Prostate cancer cell migration is an essential event both in the progression of prostate cancer and in the steps leading to metastasis. We report here that lysophosphatidic acid (LPA), a potent bioactive phospholipid, induces prostate cancer PC3 cell migration via the activation of the LPA(1) receptor, which is linked to a PTX-sensitive activation mechanism of the mitogen-activated protein kinases (MAPK). Our results demonstrate that parallel activation of ERK1/2 and p38, but not JNK, is responsible for LPA-stimulated PC3 cell migration. Furthermore, using small interfering RNA (siRNA) technology, and overexpressing dominant-negative mutants of p38 MAPK isotypes of alpha, beta, gamma and delta, we have identified that the activation of ERK2 (p42) and p38alpha, but not of ERK1 and the other isoforms of p38 MAPK, is required for LPA-induced migration. Our study provides the first evidence for a functional role of p42 and p38alpha in LPA-induced mammalian cell migration, and also demonstrates, for the first time, that the receptor LPA(1) mediates prostate cancer cell migration. The results of the present study suggest that LPA, the receptor LPA(1), ERK2 and p38alpha are important regulators for prostate cancer cell invasion and thus could play a significant role in the development of metastasis.  相似文献   

6.
Grb2-associated binder-1 (Gab1) is a multisite docking protein containing a pleckstrin homology (PH) domain, multiple potential tyrosine phosphorylation sites, and several proline-rich sequences. Gab1 becomes tyrosine-phosphorylated in cells stimulated with growth factors, cytokines, and ligands for G protein-coupled receptors. A major Gab1-binding protein detected in cells treated with extracellular stimuli is the tyrosine phosphatase, SHP2. Although the role of SHP2-Gab1 interaction in cell signaling has not yet been characterized, SHP2 is known to mediate mitogen-activated protein (MAP) kinase activation induced by the epidermal growth factor (EGF). However, the mechanism by which the SHP2 phosphatase exerts a positive signaling role remains obscure. In this study, we prepared Gab1 mutants lacking the SHP2 binding site (Gab1Y627F), the phosphatidylinositol 3-kinase (PI3K) binding sites (Gab1DeltaPI3K), and the PH domain (Gab1DeltaPH). Expression of Gab1Y627F blocked the extracellular signal-regulated kinase-2 (ERK2) activation by lysophosphatidic acid (LPA) and EGF. Conversely, expression of the wild-type Gab1 in HEK293 cells augmented the LPA receptor Edg2-mediated ERK2 activation. Whereas the PH domain was required for Gab1 mediation of ERK2 activation by LPA, it was not essential for EGF-induced ERK2 activation. Expression of Gab1DeltaPI3K had no apparent effect on ERK2 activation by LPA and EGF in the cells that we have examined. These results establish a role for Gab1 in the LPA-induced MAP kinase pathway and clearly demonstrate that Gab1-SHP2 interaction is essential for ERK2 activation by LPA and EGF. These findings also suggest that the positive role of SHP2 in the MAP kinase pathway depends on its interaction with Gab1.  相似文献   

7.
8.
We made stable cell lines overexpressing PLD1 (GP-PLD1) from GP+envAm12 cell, a derivative of NIH 3T3 cell. PLD1 activity and extracellular signal-regulated kinase (ERK) phosphorylation were enhanced in GP-PLD1 cells by the treatment of lysophosphatidic acid (LPA). In contrast, these LPA-induced effects were attenuated with the pretreatment of pertussis toxin (PTX) or protein kinase C (PKC) inhibitor. Moreover, accumulation of phosphatidic acid (PA), a product of PLD action, potentiated the LPA-induced ERK activation in GP-PLD1 cells while blocking of PA production with the treatment of 1-butanol attenuated LPA-induced ERK phosphorylation. From these results, we suggest that LPA activate PLD1 through pertussis toxin-sensitive G protein and PKC-dependent pathways, then PA produced from PLD1 activation facilitate ERK phosphorylation.  相似文献   

9.
Extracellular signal-regulated kinases (ERKs) play important physiological roles in proliferation, differentiation and gene expression. ERK5 is twice the size of ERK1/2, the amino-terminal half contains the kinase domain that shares the homology with ERK1/2 and TEY activation motif, whereas the carboxy-terminal half is unique. In this study, we examined the cross-talk mechanism between G-protein-coupled receptors (GPCRs) and receptor tyrosine kinases, focusing on ERK1/2 and 5. The pretreatment of rat pheochromocytoma cells (PC12) with pertussis toxin (PTX) specifically enhanced epidermal growth factor (EGF)-induced ERK5 phosphorylation. In addition, lysophosphatidic acid (LPA) attenuated the EGF-induced ERK5 phosphorylation in LPA(1) receptor- and G(i/o)-dependent manners. On the other hand, LPA alone activated ERK1/2 via Gbetagamma subunits and Ras and potentiated EGF-induced ERK1/2 phosphorylation at late time points. These results suggest G(i/o) negatively regulates ERK5, while it positively regulates ERK1/2. LPA did not affect cAMP levels after EGF treatment, and the reagents promoting cAMP production such as forskolin and cholera toxin also attenuated the EGF-induced ERK5 phosphorylation, indicating that the inhibitory effect of LPA on ERK5 inhibition via G(i/o) is not due to inhibition of adenylyl cyclase by Galpha(i/o). However, the inhibitory effect of LPA on ERK5 was abolished in PC12 cells stably overexpressing C-terminus of GPCR kinase2 (GRK2), and overexpression of Gbeta(1) and gamma(2) subunits also suppressed ERK5 phosphorylation by EGF. In response to LPA, Gbetagamma subunits interacted with EGF receptor in a time-dependent manner. These results strongly suggest that LPA negatively regulates the EGF-induced ERK5 phosphorylation through Gbetagamma subunits.  相似文献   

10.
Xiao D  Qu X  Weber HC 《Cellular signalling》2003,15(10):945-953
Bombesin and its mammalian homologue gastrin-releasing peptide have been shown to be highly expressed and secreted by neuroendocrine cells in prostate cancer, and are thought to be related to the carcinogenesis and progression of this disease. We found, in this study, bombesin specifically induced mitogen-activated protein (MAP) kinase activation as shown by increased extracellular regulated kinase (ERK) phosphorylation and epidermal growth factor (EGF) receptor transactivation in prostate cancer cells, which express functional gastrin-releasing peptide receptor. The transactivation of EGF receptor was required for bombesin-induced ERK phosphorylation. Furthermore, non-receptor tyrosine kinase Src and cellular Ca2+ were shown to be involved in bombesin-induced EGF receptor transactivation and ERK phosphorylation. Inhibition of either EGF receptor transactivation or ERK activation blocked bombesin-induced DNA synthesis in these cells. Taken together, these data suggest bombesin may act as a mitogen in prostate cancer by activating MAP kinase pathway via EGFR transactivation.  相似文献   

11.
The Ras-extracellular signal-regulated kinase (ERK) cascade is an important signaling module in cells. One regulator of the Ras-ERK cascade is phosphatidic acid (PA) generated by phospholipase D (PLD) and diacylglycerol kinase (DGK). Using a newly developed PA biosensor, PASS (phosphatidic acid biosensor with superior sensitivity), we found that PA was generated sequentially by PLD and DGK in epidermal growth factor (EGF)-stimulated HCC1806 breast cancer cells. Inhibition of PLD2, one of the two PLD members, was sufficient to eliminate most of the PA production, whereas inhibition of DGK decreased PA production only at the later stages of EGF stimulation, suggesting that PLD2 precedes DGK activation. The temporal production of PA by PLD2 is important for the nuclear activation of ERK. While inhibition of both PLD and DGK had no effect on the overall ERK activity, inhibition of PLD2 but not PLD1 or DGK blocked the nuclear ERK activity in several cancer cell lines. The decrease of active ERK in the nucleus inhibited the activation of Elk1, c-fos, and Fra1, the ERK nuclear targets, leading to decreased proliferation of HCC1806 cells. Together, these findings reveal that PA production by PLD2 determines the output of ERK in cancer cell growth factor signaling.  相似文献   

12.
The regulation of adrenal function, including aldosterone production from adrenal glomerulosa cells, is dependent on a variety of G protein-coupled receptors (GPCRs) and receptor tyrosine kinases (RTKs). In many cell types, GPCR-mediated MAPK activation is mediated through transactivation of RTKs, in particular the epidermal growth factor (EGF) receptor (EGF-R). However, the extent to which this cross-communication between GPCRs and RTKs is operative in the adrenal glomerulosa has not been defined. Bovine adrenal glomerulosa cells express receptors for lysophosphatidic acid (LPA) and EGF. In cultured bovine adrenal glomerulosa cells, LPA, which is predominantly coupled to Gi and partially to Gq/protein kinase C alpha and epsilon, caused phosphorylation of Src (at Tyr416), proline-rich tyrosine kinase (Pyk2 at Tyr402), EGF-R, protein kinase B/Akt, extracellularly regulated signal kinases 1/2, and their dependent protein, p90 ribosomal S6 kinase. Overexpression of dominant negative mutants of Ras or EGF-R, and selective inhibition of EGF-R kinase with AG1478, significantly reduced LPA-induced ERK1/2 phosphorylation. However, this was not impaired by inhibition of matrix metalloproteinase (MMP) and heparin-binding EGF. LPA-induced ERK1/2 activation occurs predominantly through EGF-R transactivation by Gi/Src and partly through activation of protein kinase C, which acts downstream of EGF-R and Ras. In contrast, LPA-induced phosphorylation of Shc and ERK1/2 in clonal hepatocytes (C9 cells) was primarily mediated through MMP-dependent transactivation of the EGF-R. These observations in adrenal glomerulosa and hepatic cells demonstrate that LPA phosphorylates ERK1/2 through EGF-R transactivation in a MMP-dependent or -independent manner in individual target cells. This reflects the ability of GPCRs expressed in cell lines and neoplastic cells to utilize distinct signaling pathways that can elicit altered responses compared with those of native tissues.  相似文献   

13.
We investigated the mechanism of lysophosphatidic acid (LPA) signaling in ovarian theca cells and observed that stimulation with this bioactive lipid markedly enhanced Thr/Tyr phosphorylation of the MAPK ERK1/2. Activation of ERK was transient, showing a peak at 5 min that declined thereafter, and was not associated with a concomitant nuclear translocation of the enzyme, suggesting that a cytosolic tyrosine phosphatase may be responsible for switching off the signal. Epidermal growth factor (EGF)-induced activation of the enzyme in the same cell system was more rapid (peaking at 1 min), sustainable for at least 60 min, and could be suppressed by prior treatment with either pertussis toxin or a noncompetitive inhibitor of Ras acceptor protein, manumycin A. This functional inhibition of either Gi or Ras failed, however, to affect the LPA-induced ERK-phosphorylation. Surprisingly, functional inhibition of Rho-GTPase, in C3-exotoxin-lipofected cells, markedly reduced LPA-stimulated phosphorylation of ERK, without affecting the EGF-induced stimulation of MAPK. Theca cells labeled with anti-LPA1/edg2-type antibody showed a distinct cell surface labeling, which is reflected in the expression of (LPA1)-type LPA receptors at both mRNA and protein levels. The findings indicate that LPA transiently stimulates MAPK ERK in LPA1/edg2-expressing theca cells and suggest an alternative mechanism regulating the activation of ERK that differs from the canonical EGF-Ras-MAPK kinase pathway.  相似文献   

14.
Phospholipase D (PLD) hydrolyzes phosphatidylcholine into phosphatidic acid (PA), a lipidic mediator that may act directly on cellular proteins or may be metabolized into lysophosphatidic acid (LPA). We previously showed that PLD contributed to the mitogenic effect of endothelin-1 (ET-1) in a leiomyoma cell line (ELT3 cells). In this work, we tested the ability of exogenous PA and PLD from Streptomyces chromofuscus (scPLD) to reproduce the effect of endogenous PLD in ELT3 cells and the possibility that these agents acted through LPA formation. We found that PA, scPLD, and LPA stimulated thymidine incorporation. LPA and scPLD induced extracellular signal-regulated kinase (ERK(1/2)) mitogen-activated protein kinase activation. Using Ki16425, an LPA(1)/LPA(3) receptor antagonist and small interfering RNA targeting LPA(1) receptor, we demonstrated that scPLD acted through LPA production and LPA(1) receptor activation. We found that scPLD induced LPA production by hydrolyzing lysophosphatidylcholine through its lysophospholipase D (lysoPLD) activity. Autotaxin (ATX), a naturally occurring lysoPLD, reproduced the effects of scPLD. By contrast, endogenous PLD stimulated by ET-1 failed to produce LPA. These results demonstrate that scPLD stimulated ELT3 cell proliferation by an LPA-dependent mechanism, different from that triggered by endogenous PLD. These data suggest that in vivo, an extracellular lysoPLD such as ATX may participate in leiomyoma growth through local LPA formation.  相似文献   

15.
In many cell types, G-protein-coupled receptor (GPCR)-induced Erk1/2 MAP kinase activation is mediated via receptor tyrosine kinase (RTK) transactivation, in particular via the epidermal growth factor (EGF) receptor. Lysophosphatidic acid (LPA), acting via GPCRs, is a mitogen and MAP kinase activator in many systems, and LPA can regulate adipocyte proliferation. The mechanism by which LPA activates the Erk1/2 MAP kinase is generally accepted to be via EGF receptor transactivation. In primary cultures of brown pre-adipocytes, EGF can induce Erk1/2 activation, which is obligatory and determinant for EGF-induced proliferation of these cells. Therefore, we have here examined whether LPA, via EGF transactivation, can activate Erk1/2 in brown pre-adipocytes. We found that LPA could induce Erk1/2 activation. However, the LPA-induced Erk1/2 activation was independent of transactivation of EGF receptors (or PDGF receptors) in these cells (whereas in transformed HIB-1B brown adipocytes, the LPA-induced Erk1/2 activation indeed proceeded via EGF receptor transactivation). In the brown pre-adipocytes, LPA instead induced Erk1/2 activation via two distinct non-transactivational pathways, one Gi-protein dependent, involving PKC and Src activation, the other, a PTX-insensitive pathway, involving PI3K (but not Akt) activation. Earlier studies showing LPA-induced Erk1/2 activation being fully dependent on RTK transactivation have all been performed in cell lines and transfected cells. The present study implies that in non-transformed systems, RTK transactivation may not be involved in the mediation of GPCR-induced Erk1/2 MAP kinase activation.  相似文献   

16.
This study examined the premise that the atherogenic lipoprotein, beta-migrating very low density lipoprotein (betaVLDL), might activate the mitogen-activated protein (MAP) kinases ERK1/ERK2, thereby contributing to the induction of smooth muscle cell proliferation in atherosclerosis. The data show that betaVLDL activates rabbit smooth muscle cell ERK1/ERK2. Interestingly, ERK1/ERK2 activation is mediated by G protein-coupled receptors that transactivate the epidermal growth factor (EGF) receptor. betaVLDL-induced MAP kinase activation depends on Ras and Src activity as well as protein kinase C. The inhibition of lysosomal degradation of betaVLDL has no effect on ERK1/ERK2 activation. The contribution of betaVLDL-induced activation of ERK1/ERK2 to smooth muscle cell proliferation was also explored. betaVLDL induces expression of egr-1 and c-fos mRNA. Despite its ability to stimulate early gene expression, betaVLDL alone is unable to inspire quiescent cells into S phase. When added in conjunction with EGF, however, stimulation of [(3)H]thymidine incorporation into DNA and an increase in histone gene expression are observed. Moreover, betaVLDL plus EGF synergistically induce cyclin D1 expression and down-regulate p27(KIP1) expression. The addition of either betaVLDL or EGF stimulates a robust activation of ERK1/ERK2, but the addition of both agents simultaneously sustains the activation for a longer time period. Inhibition of MAP kinase kinase, pertussis toxin-sensitive G proteins, the EGF receptor, or protein kinase C blocks betaVLDL plus EGF-induced proliferation, demonstrating that activation of the betaVLDL-induced signaling pathway results in smooth muscle cell proliferation.  相似文献   

17.
18.
Du J  Sun C  Hu Z  Yang Y  Zhu Y  Zheng D  Gu L  Lu X 《PloS one》2010,5(12):e15940

Background

Enhanced motility of cancer cells is a critical step in promoting tumor metastasis. Lysophosphatidic acid (LPA), representing the major mitogenic activity in serum, stimulates migration in various types of cancer cells. However, the underlying signaling mechanisms for LPA-induced motility of cancer cells remain to be elucidated.

Methodology/Principal Findings

In this study, we found that LPA dose-dependently stimulated migration of MDA-MB-231 breast cancer cells, with 10 µM being the most effective. LPA also increased ERK activity and the MEK inhibitor U0126 could block LPA-induced ERK activity and cell migration. In addition, LPA induced PAK1 activation while ERK activation and cell migration were inhibited by ectopic expression of an inactive mutant form of PAK1 in MDA-MB-231 cells. Furthermore, LPA increased PI3K activity, and the PI3K inhibitor LY294002 inhibited both LPA-induced PAK1/ERK activation and cell migration. Moreover, in the breast cancer cell, LPA treatment resulted in remarkable production of reactive oxygen species (ROS), while LPA-induced ROS generation, PI3K/PAK1/ERK activation and cell migration could be inhibited by N-acetyl-L-Cysteine, a scavenger of ROS.

Conclusions/Significance

Taken together, this study identifies a PI3K/PAK1/ERK signaling pathway for LPA-stimulated breast cancer cell migration. These data also suggest that ROS generation plays an essential role in the activation of LPA-stimulated PI3K/PAK1/ERK signaling and breast cancer cell migration. These findings may provide a basis for designing future therapeutic strategy for blocking breast cancer metastasis.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号