首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Phosphite dehydrogenase (PTDH) catalyzes the unusual oxidation of phosphite to phosphate with the concomitant reduction of NAD(+) to NADH. PTDH shares significant amino acid sequence similarity with D-hydroxy acid dehydrogenases (DHs), including strongly conserved catalytic residues His292, Glu266, and Arg237. Site-directed mutagenesis studies corroborate the essential role of His292 as all mutants of this residue were completely inactive. Histidine-selective inactivation studies with diethyl pyrocarbonate provide further evidence regarding the importance of His292. This residue is most likely the active site base that deprotonates the water nucleophile. Kinetic analysis of mutants in which Arg237 was changed to Leu, Lys, His, and Gln revealed that Arg237 is involved in substrate binding. These results agree with the typical role of this residue in D-hydroxy acid DHs. However, Glu266 does not play the typical role of increasing the pK(a) of His292 to enhance substrate binding and catalysis as the Glu266Gln mutant displayed an increased k(cat) and unchanged pH-rate profile compared to those of wild-type PTDH. The role of Glu266 is likely the positioning of His292 and Arg237 with which it forms hydrogen bonds in a homology model. Homology modeling suggests that Lys76 may also be involved in substrate binding, and this postulate is supported by mutagenesis studies. All mutants of Lys76 display reduced activity with large effects on the K(m) for phosphite, and Lys76Cys could be chemically rescued by alkylation with 2-bromoethylamine. Whereas a positively charged residue is absolutely essential for activity at the position of Arg237, Lys76 mutants that lacked a positively charged side chain still had activity, indicating that it is less important for binding and catalysis. These results highlight the versatility of nature's catalytic scaffolds, as a common framework with modest changes allows PTDH to catalyze its unusual nucleophilic displacement reaction and d-hydroxy acid DHs to oxidize alcohols to ketones.  相似文献   

2.
3.
In order to understand the mechanisms of ligand binding and interaction between two commercial drugs (ligands), zanamivir and oseltamivir and H5N1 Influenza Virus Neuraminidase subtype N1, a three-dimensional model of N1-ligand (GenBank accession no. AAS654617) was initially generated by homology modeling using the 13 high-resolution X-ray structures of neuraminidase N2 and N9 as the template. With the aid of the molecular mechanics and molecular dynamics methods, the final implicit solvent refined model was obtained. It was, then, assessed by PROCHECK, PROSA and VERIFY3D. With this model, a flexible docking study was performed. The results show strong hydrogen bond interactions between the glycerol side chains of zanamivir and Arg29 of the N1. Common hydrogen bonds between the carboxyl groups and Arg279 were found for both drugs. It was also found that the Glu30, Asp62, Arg63, Arg204, Trp310, Tyr313, Glu336, Ile338, Trp348, Ala349 were observed to facilitate the enzyme-ligand non-bonding interactions as they are located within the radius of 5 Å from all atoms of both drugs. Charge distribution was evaluated using the semi-empirical AM1 method. The results show that the total net charges of the –NH side chain of zanamivir is less negative than that of oseltamivir. This is in contrast to what is observed for the amide and alkyl (ether/glycerol) side chains. In comparison of the binding free energies between the X-ray N2-ligand and N9-ligand complexes, N1-ligand binding is found to be less potent than N2 and N9 subtypes, while N2-ligand and N9-ligand are roughly comparable. In addition, it is interesting to observe that the binding free energies for all three subtypes of the zanamivir complexes are lower than those of oseltamivir.  相似文献   

4.
A gene encoding a thermostable Acremonium ascorbate oxidase (ASOM) was randomly mutated to generate mutant enzymes with altered pH optima. One of the mutants, which exhibited a significantly higher activity in the pH range 4.5-7 compared to ASOM, had a Gln183Arg substitution in the region corresponding to SBR1, one of the substrate binding regions of the zucchini enzyme. The other mutant with almost the same pH profile as Gln183Arg had a Thr527Ala substitution near the type 3 copper center and became more sensitive to azide than ASOM. Site-directed mutagenesis in the substrate binding regions with reference to the amino acid sequences of plant enzymes led to isolation of mutants shifted upward in the pH optimum; Val193Pro and Val193Pro/Pro190Ile increased the pH optimum by 1 and 0.5 units, respectively, while retaining the near-wild-type thermostability and azide sensitivity. The homology model of ASOM constructed from the zucchini enzyme coordinates suggested that replacement of Val193 by Pro could disturb the ion pair networks among Arg309, Glu192, Arg194 and Glu311. This perturbation could affect either the molecular recognition between the substrate and ASOM or the electron transfer from the substrate to the type 1 copper center, leading to the alkaline shift of the catalytic activity of the mutant enzyme. The other mutations, Val193Pro/Pro190Ile, could also induce similar structural perturbations involving the ion pair networks.  相似文献   

5.
Fibroblast activation protein (FAP) and dipeptidyl peptidase-4 (DPP-4) are highly homologous serine proteases of the prolyl peptidase family and therapeutic targets for cancer and diabetes, respectively. Both proteases display dipeptidyl peptidase activity, but FAP alone has endopeptidase activity. FAP Ala657, which corresponds to DPP-4 Asp663, is important for endopeptidase activity; however, its specific role remains unclear, and it is unknown whether conserved DPP-4 substrate binding residues support FAP endopeptidase activity. Using site-directed mutagenesis and kinetic analyses, we show here that Ala657 and five conserved active site residues (Arg123, Glu203, Glu204, Tyr656, and Asn704) promote FAP endopeptidase activity via distinct mechanisms of transition state stabilization (TSS). The conserved residues provide marked TSS energy for both endopeptidase and dipeptidyl peptidase substrates, and structural modeling supports their function in binding both substrates. Ala657 also stabilizes endopeptidase substrate binding and additionally dictates FAP reactivity with transition state inhibitors, allowing tight interaction with tetrahedral intermediate analogues but not acyl-enzyme analogues. Conversely, DPP-4 Asp663 stabilizes dipeptidyl peptidase substrate binding and permits tight interaction with both transition state analogues. Structural modeling suggests that FAP Ala657 and DPP-4 Asp663 confer their contrasting effects on TSS by modulating the conformation of conserved residues FAP Glu204 and DPP-4 Glu206. FAP therefore requires the combined function of Ala657 and the conserved residues for endopeptidase activity.  相似文献   

6.
Binz T  Bade S  Rummel A  Kollewe A  Alves J 《Biochemistry》2002,41(6):1717-1723
The botulinum neurotoxin type A (BoNT/A) light chain (LC) acts as zinc endopeptidase. The X-ray structure of the toxin demonstrated that Zn(2+) is coordinated by His(222) and His(226) of the Zn(2+) binding motif HisGluXXHis and Glu(261), whereas Glu(223) coordinates the water molecule required for hydrolysis as the fourth ligand. Recent analysis of a cocrystal of the BoNT/B LC and its substrate synaptobrevin 2 suggested that Arg(362) and Tyr(365) of the homologous BoNT/A may be directly involved in catalysis. Their role and that of Glu(350) which is also found in the vicinity to the active site were analyzed by site-directed mutagenesis. Various replacements of Arg(362) and substitution of Tyr(365) with Phe resulted in 79- and 34-fold lower k(cat)/K(m) values, respectively. These changes were provoked by decreased catalytic rates (k(cat)) and not by alterations of ground state substrate binding as evidenced by largely unchanged K(d) and K(m) values. None of these mutations affected the overall secondary structure or zinc content of the LC. These findings suggest that the guanidino group of Arg(362) and the hydroxyl group of Tyr(365) together accomplish transition state stabilization as was proposed for thermolysin, being the prototypical member of the gluzincin superfamily of metalloproteases. Mutation of Glu(350) dramatically diminished the hydrolytic activity which must partly be attributed to an altered active site fine structure as demonstrated by an increased sensitivity toward heat-induced denaturing and a lower Zn(2+) binding affinity. Glu(350) apparently occupies a central position in the active site and presumably positions His(222) and Arg(362).  相似文献   

7.
The multidrug resistance protein 1 (MRP1) mediates drug and organic anion efflux across the plasma membrane. The 17 transmembrane (TM) helices of MRP1 are linked by extracellular and cytoplasmic (CL) loops of various lengths and two cytoplasmic nucleotide binding domains. In this study, three basic residues clustered at the predicted TM15/CL7 interface were investigated for their role in MRP1 expression and activity. Thus, Arg1138, Lys1141, and Arg1142 were replaced with residues of the same or opposite charge, expressed in human embryonic kidney cells, and the properties of the mutant proteins were assessed. Neither Glu nor Lys substitutions of Arg1138 and Arg1142 affected MRP1 expression; however, all four mutants showed a decrease in organic anion transport with a relatively greater decrease in leukotriene C4 and glutathione transport. These mutations also modulated MRP1 ATPase activity as reflected by a decreased vanadate-induced trapping of 8-azido-[32P]ADP. Mutation of Lys1141 to either Glu or Arg reduced MRP1 expression, and routing to the plasma membrane was impaired. However, only the Glu-substituted Lys1141 mutant showed a decrease in organic anion transport, and this was associated with decreased substrate binding and vanadate-induced trapping of 8-azido-ADP. These studies identified a cluster of basic amino acids likely at the TM15/CL7 interface as a region important for both MRP1 expression and activity and demonstrated that each of the three residues plays a distinct role in the substrate specificity and catalytic activity of the transporter.  相似文献   

8.
Purified site-directed mutants of Sinorhizobium meliloti CECT 4114 l-N-carbamoylase (SmLcar) in which Glu132, His230, Asn279 and Arg292 were replaced have been studied by kinetic methods and isothermal titration calorimetry (ITC). The importance of His230, Asn279 and Arg292 residues in the recognition of N-carbamoyl-l-alpha-amino acids has been proved. The role of Glu132 has been confirmed in substrate hydrolysis. ITC has confirmed two Ni atoms per monomer of wild type enzyme, and two equal and independent substrate binding sites (one per monomer). Homology modelling of SmLcar supports the importance of His87, His194, His386, Glu133 and Asp98 in metal binding. A comprehensive reaction mechanism is proposed on the basis of binding experiments measured by ITC, kinetic assays, and homology of the active centre with beta-alanine synthase from Saccharomyces kluyveri and other enzymes.  相似文献   

9.
Free fatty acid receptor 1 (FFAR1) is a member of a previously characterized cluster of orphan G protein-coupled receptors (GPCRs). Later, this orphan receptor was identified as a target of medium- to long-chain free fatty acids in β-cells of the pancreas. Administration of FFAR1 agonists has been proved to potentiate glucose-stimulated insulin secretion from pancreatic β-cells. It was reported that some thiazolidinediones (TZDs), the best studied PPARγ agonists, are also able to stimulate FFAR1 in a dose-dependent manner. In the present study, a homology model of the human FFAR1 was constructed and inserted into a pre-equilibrated DPPC/TIP3P membrane system. This system was then simulated for 20 ns in complex with the FFAR1 agonist GW9085, as well as rosiglitazone and pioglitazone. We noticed that the salt bridge between Glu172 and Arg258 and the H bond between Glu145 and His153 could be responsible for the stabilization of the receptor in the inactive state. Moreover, we described for the first time the binding mode of TZDs in the binding site of FFAR1. The thiazolidinedione head forms a hydrogen bonding network with the critical polar residues in the binding site, Arg258 and Asn244, while the rest of the molecule is embedded into the receptor hydrophobic pocket. Based on this modeling study, we arrived at a proposal of the pharmacophore required for binding to both PPARγ and FFAR1. Insights gained from this investigation should provide future directions for the design of novel dual acting antidiabetic agents.  相似文献   

10.
The human Theta class glutathione transferase GSTT2-2 has a novel sulfatase activity that is not dependent on the presence of a conserved hydrogen bond donor in the active site. Initial homology modeling and the crystallographic studies have identified three conserved Arg residues that contribute to the formation of (Arg107 and Arg239), and entry to (Arg242), a sulfate binding pocket. These residues have been individually mutated to Ala to investigate their potential role in substrate binding and catalysis. The mutation of Arg107 had a significant detrimental effect on the sulfatase reaction, while the Arg242 mutation caused only a small reduction in sulfatase activity. Surprisingly, the Arg239 had an increased activity resulting from a reduction in stability. Thus, Arg239 appears to play a role in maintaining the architecture of the active site. Electrostatic calculations performed on the wild-type and mutant forms of the enzyme are in good agreement with the experimental results. These findings, along with docking studies, suggest that prior to conjugation, the location of 1-menaphthyl sulfate, a model substrate for the sulfatase reaction, is approximately midway between the position ultimately occupied by the naphthalene ring of 1-menaphthylglutathione and the free sulfate. It is further proposed that the Arg residues in and around the sulfate binding pocket have a role in electrostatic substrate recognition.  相似文献   

11.
By taking advantage of the recently published furin structure, whose catalytic domain shares high homology with other proprotein convertases, we designed mutations in the catalytic domain of PC2, altering residues Ser206, Thr271, Asp278, ArgGlu282, AlaSer323, Leu341, Asn365, and Ser380, which are both conserved and specific to this convertase, and substituting residues specific to PC1 and/or furin. In order to investigate the determinants of PC2 specificity, we have tested the mutated enzymes against a set of proenkephalin-derived substrates, as well as substrates representing Arg, Ala, Leu, Phe, and Glu positional scanning variants of a peptide B-derived substrate. We found that the exchange of the Ser206 residue with Arg or Lys led to a total loss of activity. Increased positive charge of the substrate generally resulted in an increased specificity constant. Most intriguingly, the RE281GR mutation, corresponding to a residue placed distantly in the S6 pocket, evoked the largest changes in the specificity pattern. The D278E and N356S mutations resulted in distinct alterations in PC2 substrate preferences. However, when other residues that distinguish PC2 from other convertases were substituted with PC1-like or furin-like equivalents, there was no significant alteration of the PC2 specificity pattern, suggesting that the overall structure of the substrate binding cleft rather than individual residues specifies substrate binding.  相似文献   

12.
The multidrug resistance protein MRP1 is an ATP-dependent transporter of organic anions and chemotherapeutic agents. A significant number of ionizable amino acids are found in or proximal to the 17 transmembrane (TM) helices of MRP1, and we have investigated 6 of these at the cytoplasmic interface of TM13-17 for their role in MRP1 expression and transport activity. Opposite charge substitutions of TM13 Arg(1046) and TM15 Arg(1131) did not alter MRP1 expression nor did they substantially affect activity. In contrast, opposite charge substitutions of TM16 Arg(1202) and Glu(1204) reduced protein expression by >80%; however, MRP1 expression was not affected when Arg(1202) and Glu(1204) were replaced with neutral or same-charge residues. In addition, organic anion transport levels of the R1202L, R1202G, and R1202K mutants were comparable with wild-type MRP1. In contrast, organic anion transport by E1204L was substantially reduced, whereas transport by E1204D was comparable with wild-type MRP1, with the notable exception of GSH. Opposite charge substitutions of TM16 Arg(1197) and TM17 Arg(1249) did not affect MRP1 expression but substantially reduced transport. Mutants containing like-charge substitutions of Arg(1197) or Arg(1249) were also transport-inactive and no longer bound leukotriene C(4). In contrast, substrate binding by the transport-compromised E1204L mutant remained intact. Furthermore, vanadate-induced trapping of azido-ADP by E1204L was dramatically increased, indicating that this mutation may cause a partial uncoupling of the catalytic and transport activities of MRP1. Thus, Glu(1204) serves a dual role in membrane expression of MRP1 and a step in its catalytic cycle subsequent to initial substrate binding.  相似文献   

13.
P-type ATPases are ubiquitously abundant enzymes involved in active transport of charged residues across biological membranes. The KdpB subunit of the prokaryotic Kdp-ATPase (KdpFABC complex) shares characteristic regions of homology with class II-IV P-type ATPases and has been shown previously to be misgrouped as a class IA P-type ATPase. Here, we present the NMR structure of the AMP-PNP-bound nucleotide binding domain KdpBN of the Escherichia coli Kdp-ATPase at high resolution. The aromatic moiety of the nucleotide is clipped into the binding pocket by Phe(377) and Lys(395) via a pi-pi stacking and a cation-pi interaction, respectively. Charged residues at the outer rim of the binding pocket (Arg(317), Arg(382), Asp(399), and Glu(348)) stabilize and direct the triphosphate group via electrostatic attraction and repulsion toward the phosphorylation domain. The nucleotide binding mode was corroborated by the replacement of critical residues. The conservative mutation F377Y produced a high residual nucleotide binding capacity, whereas replacement by alanine resulted in low nucleotide binding capacities and a considerable loss of ATPase activity. Similarly, mutation K395A resulted in loss of ATPase activity and nucleotide binding affinity, even though the protein was properly folded. We present a schematic model of the nucleotide binding mode that allows for both high selectivity and a low nucleotide binding constant, necessary for the fast and effective turnover rate realized in the reaction cycle of the Kdp-ATPase.  相似文献   

14.
Viper venom hyaluronidase (VV-HYA) inhibitors have long been used as therapeutic agents for arresting the local and systemic effects caused during its envenomation. Henceforth, to understand its structural features and also to identify the best potential inhibitor against it the present computational study was undertaken. Structure-based homology modeling of VV-HYA followed by its docking and free energy-based ranking analysis of ligand, the MD simulations of the lead complex was also performed. The sequence analysis and homology modeling of VV-HYA revealed a distorted (β/α)8 folding as in the case of hydrolases family of proteins. Molecular docking of the resultant 3D structure of VV-HYA with known inhibitors (compounds 1–25) revealed the importance of molecular recognition of hotspot residues (Tyr 75, Arg 288, and Trp 321) other than that of the active site residues. It also revealed that Trp 321 of VV-HYA is highly important for mediating π–π interactions with ligands. In addition, the molecular docking and comparative free energy binding analysis was investigated for the VV-HYA inhibitors (compounds 1–25). Both molecular docking and relative free energy binding analysis clearly confirmed the identification of sodium chromoglycate (compound 1) as the best potential inhibitor against VV-HYA. Molecular dynamics simulations additionally confirmed the stability of their binding interactions. Further, the information obtained from this work is believed to serve as an impetus for future rational designing of new novel VV-HYA inhibitors with improved activity and selectivity.  相似文献   

15.
The class A beta-lactamase PER-1, which displays 26% identity with the TEM-type extended-spectrum beta-lactamases (ESBLs), is characterized by a substrate profile similar to that conferred by these latter enzymes. The role of residues Ala164, His170, Ala171, Asn179, Arg220, Thr237 and Lys242, found in PER-1, was assessed by site-directed mutagenesis. Replacement of Ala164 by Arg yielded an enzyme with no detectable beta-lactamase activity. Two other mutants, N179D and A164R+N179D, were also inactive. Conversely, a mutant with the A171E substitution displayed a substrate profile very similar to that of the wild-type enzyme. Moreover, the replacement of Ala171 by Glu in the A164R enzyme yielded a double mutant which was active, suggesting that Glu171 could compensate for the deleterious effect of Arg164 in the A164R+A171E enzyme. A specific increase in kcat for cefotaxime was observed with H170N, whereas R220L and T237A displayed a specific decrease in activity towards the same drug and a general increase in affinity towards cephalosporins. Finally, the K242E mutant displayed a kinetic behaviour very similar to that of PER-1. Based on three-dimensional models generated by homology modelling and molecular dynamics, these results suggest novel structure-activity relationships in PER-1, when compared with those previously described for the TEM-type ESBLs.  相似文献   

16.
The peptide transporter (PTR) family represents a group of proton-coupled secondary transporters responsible for bulk uptake of amino acids in the form of di- and tripeptides, an essential process employed across species ranging from bacteria to humans. To identify amino acids critical for peptide transport in a prokaryotic PTR member, we have screened a library of mutants of the Escherichia coli peptide transporter YdgR using a high-throughput substrate uptake assay. We have identified 35 single point mutations that result in a full or partial loss of transport activity. Additional analysis, including homology modeling based on the crystal structure of the Shewanella oneidensis peptide transporter PepT(so), identifies Glu(56) and Arg(305) as potential periplasmic gating residues. In addition to providing new insights into transport by members of the PTR family, these mutants provide valuable tools for further study of the mechanism of peptide transport.  相似文献   

17.
刘志刚  邓贝  杨波  胡征 《生物信息学》2013,11(2):130-135
运用同源模建的方法构建了pACY1三维结构模型,并在能量最小化后对模型进行分子动力学模拟和结构合理性评估。同源模建生成了50个原始模型,经过PROCHECK评测后,筛选出模型A、B进行能量最小化,并得到模型A1、B1。分子动力学模拟结果表明模型B1二聚体结构较稳定。PROCHECK、ProSa以及WHATIF检测结果验证了模型B1属于合理性结构。得到的猪氨基酰化酶Ⅰ(pACY1)的三维结构,为研究其结构与功能关系打下基础。  相似文献   

18.
The 97-kDa molecular chaperone valosin-containing protein (VCP) belongs to a highly conserved AAA family and forms a hexameric structure that is essential for its biological functions. The AAA domain contains highly conserved motifs, the Walker A, Walker B, and the second region of homology (SRH). Although Walker A and B motifs mediate ATP binding and hydrolysis, respectively, the function of the SRH in VCP is not clear. We examined the significance of the SRH in VCP, especially the conserved Arg(359) and Arg(362) in the first AAA domain, D1 and Arg(635) and Arg(638) in the second AAA domain, D2. We show that Arg(359) and Arg(362) in D1 are critical for maintaining the hexameric structure and the ability to bind the polyubiquitin chains. Although the rest of the tested SRH mutants retain the hexameric structure, all of them exhibit severely reduced ATPase activity. Tryptophan fluorescence analysis showed that all of the tested mutants can bind to ATP or ADP. Thus, the reduced ATPase activity likely results from the hampered communications among protomers during hydrolysis. Moreover, when the ATPase-defective mutant R635A or R638A is mixed with the Walker A mutant of D2, the ATPase activity is partially restored, suggesting that Arg(635) and Arg(638) can stimulate the ATPase activity of the neighboring protomer. Interestingly, mutation of Arg(359) and Arg(362) uncouples the inhibitory effect of p47, a VCP co-factor, on the ATPase activity of VCP. Therefore, the Arg residues allow D1 to take on a specific conformation that is required for substrate binding and co-factor communications. Taken together, these results demonstrate that the conserved Arg residues in the SRH of both D1 and D2 play critical roles in communicating the conformational changes required for ATP hydrolysis, and SRH in D1 also contributes to substrate binding and co-factor communications.  相似文献   

19.
1-acyl-sn-glycero-3-phosphate (AGP) acyltransferases (AGPAT) are involved in de novo biosynthesis of glycerolipids, such as phospholipids and triacylglycerol. Alignment of amino acid sequences from AGPAT, sn-glycerol-3-phosphate acyltransferase, and dihydroxyacetonephosphate acyltransferase reveals four regions with strong homology (acyltransferase motifs I-IV). The invariant amino acids within these regions may be part of a catalytically important site in this group of acyl-CoA acyltransferases. However, in human AGPAT1 a transmembrane domain is predicted to separate motif I on the cytosolic side from motifs II-III on the lumenal side, with motif IV near surface of the membrane. The topology of motifs I and III was confirmed by experiments with recombinant AGPAT1 containing potential glycosylation site near the motifs. This topology conflicts with the expectation that catalytically important sites are near one another, raising questions of whether the acyltransferase motifs really are important for AGPAT catalysis, and how substrates access motifs II-III on the lumenal side of the endoplasmic reticulum membrane. Using human AGPAT1 as a model, we have examined the catalytic roles of highly conserved residues in the four acyltransferase motifs by site-directed mutagenesis. Modifications of the sidechain structures of His104, Asp109, Phe146, Arg149, Glu178, Gly179, Thr180, Arg181 and Ile208 all affected AGPAT1 activity, indicating that the acyltransferase motifs indeed are important for AGPAT catalysis. In addition, we examined substrate accessibility to the catalytic domain of human AGPAT1 using a competition assay. Lysophosphatidic acid (LPA) with fatty acid chains shorter than 10 carbons did not access the catalytic domain, suggesting that LPA hydrophobicity is important. In contrast, short chain acyl-CoAs did access the catalytic domain but did not serve as the second substrate. These results suggest that motifs II and III are involved in LPA binding and motifs I and IV are involved in acyl-CoA binding.  相似文献   

20.
A putative deoxyuridine triphosphatase (dUTPase) gene from chlorella virus PBCV-1 was cloned, and the recombinant protein was expressed in Escherichia coli. The recombinant protein has dUTPase activity and requires Mg(2+) for optimal activity, while it retains some activity in the presence of other divalent cations. Kinetic studies of the enzyme revealed a K(m) of 11.7 microM, a turnover k(cat) of 6.8 s(-1), and a catalytic efficiency of k(cat)/K(m) = 5.8 x 10(5) M(-1) s(-1). dUTPase genes were cloned and expressed from two other chlorella viruses IL-3A and SH-6A. The two dUTPases have similar properties to PBCV-1 dUTPase except that IL-3A dUTPase has a lower temperature optimum (37 degrees C) than PBCV-1 dUTPase (50 degrees C). The IL-3A dUTPase differs from the PBCV-1 enzyme by nine amino acids, including two amino acid substitutions, Glu81-->Ser81 and Thr84-->Arg84, in the highly conserved motif III of the proteins. To investigate the difference in temperature optima between the two enzymes, homology modeling and docking simulations were conducted. The results of the simulation and comparisons of amino acid sequence suggest that adjacent amino acids are important in the temperature optima. To confirm this suggestion, three site-directed amino acid substitutions were made in the IL-3A enzyme: Thr84-->Arg84, Glu81-->Ser81, and Glu81-->Ser81 plus Thr84-->Arg84. The single substitutions affected the optimal temperature for enzyme activity. The temperature optimum increased from 37 to 55 degrees C for the enzyme containing the two amino acid substitutions. We postulate that the change in temperature optimum is due to reduction in charge and balkiness in the active cavity that allows more movement of the ligand and protein before the enzyme and substrate complex is formed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号