共查询到20条相似文献,搜索用时 0 毫秒
1.
Gibberellin-enhanced indole-3-acetic acid biosynthesis: D-Tryptophan as the precursor of indole-3-acetic acid 总被引:1,自引:0,他引:1
David M. Law 《Physiologia plantarum》1987,70(4):626-632
Stem segments excised from light-grown Pisum sativum L. (cv. Little Marvel) plants elongated in the presence of indole-3-acetic acid and its precursors, except for L-tryptophan, which required the addition of gibberellin A, for induction of growth. Segment elongation was promoted by D-tryptophan without a requirement for gibberellin, and growth in the presence of both D-tryptophan and L-tryptophan with gibberellin A3, was inhibited by the D-aminotransferase inhibitor D-cycloserine. Tryp-tophan racemase activity was detected in apices and promoted conversion of L-tryptophan to the D isomer; this activity was enhanced by gibberellin A3. When applied to apices of intact untreated plants, radiolabeled D-tryptophan was converted to indole-3-acetic acid and indoleacetylaspartic acid much more readily than L-tryptophan. Treatment of plants with gibberellin A3, 3 days prior to application of labeled tryptophan increased conversion of L-tryptophan to the free auxin and its conjugate by more than 3-fold, and led to labeling of N-malonyl-D-tryptophan. It is proposed that gibberellin increases the biosynthesis of indole-3-acetic acid by regulating the conversion of L-tryptophan to D-tryptophan, which is then converted to the auxin. 相似文献
2.
A search was made for conjugates of indole-3-acetic acid (IAA) in rice (Oryza sativa) using liquid chromatography-electrospray ionization-tandem mass spectrometry (LC-ESI-MS/MS) in order to elucidate unknown metabolic pathways for IAA. N-beta-d-Glucopyranosyl indole-3-acetic acid (IAA-N-Glc) was found in an alkaline hydrolysate of rice extract. A quantitative analysis of 3-week-old rice demonstrated that the total amount of IAA-N-Glc was equal to that of IAA. A LC-ESI-MS/MS-based analysis established that the major part of IAA-N-Glc was present as bound forms with aspartate and glutamate. Their levels were in good agreement with the total amount of IAA-N-Glc during the vegetative growth of rice. Further detailed analysis showed that both conjugates highly accumulated in the root. The free form of IAA-N-Glc accounted for 60% of the total in seeds but could not be detected in the vegetative tissue. An incorporation study using deuterium-labeled compounds showed that the amino acid conjugates of IAA-N-Glc were biosynthesized from IAA-amino acids. IAA-N-Glc and/or its conjugates were also found in extracts of Arabidopsis, Lotus japonicus, and maize, suggesting that N-glucosylation of indole can be the common metabolic pathway of IAA in plants. 相似文献
3.
Ephraim Epstein Scott J. Nissen Ellen G. Sutter 《Journal of Plant Growth Regulation》1991,10(1-4):97-100
The role of auxins in induction of roots byAgrobacterium rhizogenes was studied in carrot root disks. Transformed roots were produced on root disks by inoculation withA. rhizogenes, A4. Measurement of indole-3-acetic acid (IAA) by gas chromatography-mass spectrometry (GC-MS) indicated that there was a significant increase in the concentration of IAA in transformed callus and induced roots compared with initial IAA concentrations in carrot disks. Indole-3-butyric acid (IBA) was found to occur naturally in carrot roots. The presence of IBA, a potent root inducer, must be taken into account when assessing the role of auxin during transformation and induction of roots byA. rhizogenes. 相似文献
4.
Oded Sagee Arieh Maoz Rudiger Mertens Raphael Goren Joseph Riov 《Physiologia plantarum》1986,68(2):265-270
An enzyme-linked immunosorbent assay (ELISA) using polyclonal antibodies, which were raised against indole-3-acetic acid (IAA) conjugated to bovine serum albumin (BSA) via the indolic nitrogen (IAA-N1 -BSA), has been developed. The sensitivity and specificity of these antibodies were compared to those of polyclonal and monoclonal antibodies raised against IAA conjugated to BSA via C1 of the carboxyl group (IAA-C1 -BSA). The sensitivity of the assays improved in the following order: monoclonal antibodies > antibodies to IAA-C1 -BSA > antibodies to IAA-C1 -BSA. Antibodies against IAA-C1 -BSA had less cross-reactivity to indoles structurally related to IAA, excluding indole-3-pyruvic acid. A rapid and effective method for purification of IAA in citrus tissues before analysis by ELISA is described. Values of IAA in citrus ( Citrus sinensis [L.] Osbeck cv. Shamouti orange) shoot tips obtained with all three antibodies were similar. However, in leaf tissues which contain lower amounts of IAA compared to shoot tips, monoclonal antibodies gave higher values of IAA than polyclonal antibodies. Estimation of free IAA levels in purified extracts of citrus shoot tips, very young leaves, and mature leaves was ca 380, 248, and 74 ng (g fresh weight)−1 respectively. 相似文献
5.
Ephraim Epstein Scott J. Nissen Ellen G. Sutter 《Journal of Plant Growth Regulation》1991,10(1):97-100
The role of auxins in induction of roots byAgrobacterium rhizogenes was studied in carrot root disks. Transformed roots were produced on root disks by inoculation withA. rhizogenes, A4. Measurement of indole-3-acetic acid (IAA) by gas chromatography-mass spectrometry (GC-MS) indicated that there was a significant increase in the concentration of IAA in transformed callus and induced roots compared with initial IAA concentrations in carrot disks. Indole-3-butyric acid (IBA) was found to occur naturally in carrot roots. The presence of IBA, a potent root inducer, must be taken into account when assessing the role of auxin during transformation and induction of roots byA. rhizogenes. 相似文献
6.
In roots of sweet potato (Ipomoea batatas Lam. cv. Kokei 14),the metabolic response to wounding was remarkable in the proximalside and developed in the acropetal direction. We assumed thatthe polarity resulted from the increase in polar movement ofindoleacetic acid (IAA) (1977, Plant Physiol. 60: 563566).Transport of IAA and change of the IAA level in the woundedtissue of sweet potato roots were investigated. Transport ofthe label from 14C-IAA was obviously polarized in the acropetaldirection. 14C-IAA administered to the wounded tissue was mainlymetabolized into two conjugates of IAA. The amount of IAA inthe wounded tissue, determined by the spectrofluorometric method,increased about 3-fold after 18 hr of incubation prior to thedevelopment of activities of some enzymes. The increase in IAAcontent was not affected with aseptic incubation, therefore,the possibility of IAA production by microorganisms on the woundedtissue was excluded. The results obtained strongly support ourhypothesis that IAA plays an important role in the metabolicresponse to wounding. (Received May 2, 1979; ) 相似文献
7.
A new method for the concurrent extraction and quantification of tryptophan (Trp), tryptamine (T), indole-3-acetic acid (IAA), serotonin (5-HT), and 5-hydroxyindole-3-acetic acid (5-HIAA) in samples of rat brain is presented. Homogenization is carried out in 0.1 n HCl containing 1 n KCl and 0.2% NaHSO3. After centrifugation at 100,000g, the supernatant is percolated through a column of XAD-2 resin, eluted with distilled methanol, and the resulting eluate is evaporated to dryness. The dry residue is then derivatized to yield the pentafluoropropionated (PFP) and methylpentafluoropropionated (Me-PFP) derivatives. Identification and quantification is readily achieved by gas chromatography-mass fragmentographic analysis on a OV-17 or Dexsil 300 column. Endogenous levels in whole rat brain established by this method are IAA, 13,1 ± 2.0 ng/g (n = 6); T, less than 380 pg/g (n = 6); Trp, 4.16 ± 0.23 μg/g (n = 6); 5-HIAA, 442 ± 24 ng/g (n = 6); and 5-HT, 526 ± 81 ng/g (n = 5). 相似文献
8.
Summary High perfomance liquid chromatography (HPLC) of the products of [5-3H] tryptophan metabolism byFrankia sp. Avc I1 indicates that small amounts of [3H] indole-3-acetic acid (IAA) are excreted into the growth medium.Frankia has a limited capacity for the catabolism of [2-14C]IAA and the product that accumulates is different from that detected inRhizobium japonicum cultures following inoculation with [2-14C]IAA. The data imply that the rate of turnover of IAA is much more rapid inRhizobium thanFrankia and that the two organisms employ different routes for the catabolism of IAA. 相似文献
9.
10.
The oxidation of IAA by peroxidase (1) and by more specific oxidases (2) leads to the formation of products which may have physiological activity (3, 4). The colorimetric estimation of IAA oxidation products involving reaction with p-dimethylaminocinnamaldehyde (DMACA) is reported to be more sensitive than other end point determinations such as the Salkowski and Ehrlich procedures which monitor the disappearance of IAA (5). These methods are end point procedures and, as such, are awkward and time consuming and present difficulties in obtaining kinetic data and measuring lag times. IAA oxidation has also been monitored by measuring 14CO2 released from [1-14C] IAA (6) and uv spectral shifts during oxidation of IAA were reported by Meudt (3). The present paper reports a new procedure for the assay of horseradish peroxidase catalyzed oxidation of IAA. The assay procedure is based on the continuous measurement of a fluorescent product of the reaction. 相似文献
11.
Oxindole-3-acetic acid (OxIAA) has been identified in germinating seeds of Scots pine (Pinus sylvestris) using gas chromatography-mass spectrometry. Seeds germinated for 5 d contained 2.7 ng OxIAA·g-1 (dry weight) whereas ungerminated seeds contained 0.2 ng·g-1. Isotopically labelled OxIAA was formed in seeds incubated with [1-14C]-, [2-14C]- or [2H5]indole-3-acetic acid.Abbreviations DDC
sodium diethyldithiocarbamate
- GC
gas chromatography
- HPLC
high-performance liquid chromatography
- IAA
indole-3-acetic acid
- MS
mass spectrometry
- OxIAA
oxindole-3-acetic acid
- PVP
polyvinylpyrrolidone
- TMS
trimethylsilyl 相似文献
12.
Victoriano Valpuesta Miguel A. Quesada Cristina Sánchez-Roldán Horacio A. Tigier Antonio Heredia Martin J. Bukovac 《Journal of Plant Growth Regulation》1989,8(4):255-261
Changes in indole-3-acetic acid (IAA) content of peach (Prunus persica L. Batsch cv. Merry) seeds were followed during fruit development. The highest concentration of IAA, 2.7 g/g fresh weight, was found at the beginning of Stage III of fruit development, approximately 50–60 days after anthesis. The IAA-decarboxylating capacity of crude extracts of seeds was also greatest at 55–60 days after anthesis. Four soluble peroxidase isoenzymes were found on anionic electrophoresis. There were no marked changes in two isoenzymes (R
f 0.23 and 0.51), which were present in all three stages of fruit growth. There was a marked increase in a band atR
f 0.59 between Stages II and III, and a decrease in a band atR
f 0.68 from Stages II to III. Neither band (R
f 0.59 and 0.68) was present at Stage I. 相似文献
13.
Levels of endogenous indole-3-acetic acid and indole-3-acetyl-aspartic acid during adventitious rooting in avocado microcuttings 总被引:1,自引:0,他引:1
Garca-Gmez M.L.; Snchez-Romero C.; Barcel-Munoz A.; Heredia A.; Pliego-Alfaro F. 《Journal of experimental botany》1994,45(6):865-870
Quantification of endogenous IAA and lAAsp was carried out duringadventitious root formation in avocado microcuttings. Both auxinand conjugate were monitored in control cuttings (rooted inthe absence of auxin) as well as in cuttings treated with arooting promotor (IBA) or an auxin transport inhibitor (TIBA).Additionally, a histological study to follow root differentiationwas carried out. In control cuttings IAA levels remained constantthroughout the rooting process, however, in IB A-treated cuttingsIAA levels increased 2-fold during the first 6 d. Addition of200 µM TIBA induced a slight decrease of IAA levels andinhibited root formation. As for IAAsp levels, both control and IBA-treated cuttings showeda big increase before root differentiation occurred and as theprocess went on, a progressive decrease took place. However,in TIBA-treated cuttings IAAsp levels not only did not increasebut diminished progressively during the process. The role ofauxin conjugates during the rooting process of avocado is discussed. Key words: Avocado, IAA, IAAsp, rooting 相似文献
14.
Park WJ Kriechbaumer V Möller A Piotrowski M Meeley RB Gierl A Glawischnig E 《Plant physiology》2003,133(2):794-802
We isolated two nitrilase genes, ZmNIT1 and ZmNIT2, from maize (Zea mays) that share 75% sequence identity on the amino acid level. Despite the relatively high homology to Arabidopsis NIT4, ZmNIT2 shows no activity toward beta-cyano-alanine, the substrate of Arabidopsis NIT4, but instead hydrolyzes indole-3-acetonitrile (IAN) to indole-3-acetic acid (IAA). ZmNIT2 converts IAN to IAA at least seven to 20 times more efficiently than AtNIT1/2/3. Quantitative real-time polymerase chain reaction revealed the gene expression of both nitrilases in maize kernels where high concentrations of IAA are synthesized tryptophan dependently. Nitrilase protein and endogenous nitrilase activity are present in maize kernels together with the substrate IAN. These results suggest a role for ZmNIT2 in auxin biosynthesis. 相似文献
15.
A new enzyme, named indole-3-aldehyde oxidase (IAldO), was identified in citrus ( Citrus sinensis L. Osbeck cv. Shamouti) leaves. The enzyme was partially purified by (NH4 )2 SO4 fractionation. Sephadex G-200 gel filtration and DEAE-cellulose ion exchange chromatography. IAldO catalyzes the oxidation of indole-3-aldehyde (IAld) to indole-3-carboxylic acid (ICA) with the production of H2 O2 . The enzyme is highly specific for IAld. The apparent KM of the enzyme for IAld is 19 μ M . The optimum oxidation of IAld occurs at pH 7. 5. The molecular mass of the enzyme, as determined by Sepharose-6B gel filtration, is about 200 kDa. Based on inhibitor studies, it is concluded that IAldO is not a flavin-linked oxidase and there is no requirement for free sulfhydryl groups or divalent cations for maximum activity. The enzyme is strongly inhibited by benzaldehyde. Ethylene pretreatment, wounding and aging of leaf tissues did not affect enzyme activity, suggesting that the enzyme is constitutive in citrus tissues. 相似文献
16.
The polar transport of the natural auxins indole-3-butyric acid (IBA) and indole-3-acetic acid (IAA) has been described in Arabidopsis (Arabidopsis thaliana) hypocotyls using radioactive tracers. Because radioactive assays alone cannot distinguish IBA from its metabolites, the detected transport from applied [3H]IBA may have resulted from the transport of IBA metabolites, including IAA. To test this hypothesis, we used a mass spectrometry-based method to quantify the transport of IBA in Arabidopsis hypocotyls by following the movement of [13C1]IBA and the [13C1]IAA derived from [13C1]IBA. We also assayed [13C6]IAA transport in a parallel control experiment. We found that the amount of transported [13C1]IBA was dramatically lower than [13C6]IAA, and the IBA transport was not reduced by the auxin transport inhibitor N-1-naphthylphthalamic acid. Significant amounts of the applied [13C1]IBA were converted to [13C1]IAA during transport, but [13C1]IBA transport was independent of IBA-to-IAA conversion. We also found that most of the [13C1]IBA was converted to ester-linked [13C1]IBA at the apical end of hypocotyls, and ester-linked [13C1]IBA was also found in the basal end at a level higher than free [13C1]IBA. In contrast, most of the [13C6]IAA was converted to amide-linked [13C6]IAA at the apical end of hypocotyls, but very little conjugated [13C6]IAA was found in the basal end. Our results demonstrate that the polar transport of IBA is much lower than IAA in Arabidopsis hypocotyls, and the transport mechanism is distinct from IAA transport. These experiments also establish a method for quantifying the movement of small molecules in plants using stable isotope labeling. 相似文献
17.
Comparison of movement and metabolism of indole-3-acetic acid and indole-3-butyric acid in mung bean cuttings 总被引:2,自引:0,他引:2
Indole-3-butyric acid (IBA) was much more effective than indole-3-acetic acid (IAA) in inducing adventitious root formation in mung bean ( Vigna radiata L.) cuttings. Prolonging the duration of treatment with both auxins from 24 to 96 h significantly increased the number of roots formed. Labelled IAA and IBA applied to the basal cut surface of the cuttings were transported acropetally. With both auxins, most radioactivity was detected in the hypocotyl, where roots were formed, but relatively more IBA was found in the upper sections of the cuttings. The rate of metabolism of IAA and IBA in these cuttings was similar. Both auxins were metabolized very rapidly and 24 h after application only a small fraction of the radioactivity corresponded to the free auxins. Hydrolysis with 7 M NaOH indicates that conjugation is the major pathway of IAA and IBA metabolism in mung bean tissues. The major conjugate of IAA was identified tentatively as indole-3-acetylaspartic acid, whereas IBA formed at least two major conjugates. The data indicate that the higher root-promoting activity of IBA was not due to a different transport pattern and/or a different rate of conjugation. It is suggested that the IBA conjugates may be a better source of free auxin than those of IAA and this may explain the higher activity of IBA. 相似文献
18.
Catabolism of indole-3-acetic acid and 4- and 5-chloroindole-3-acetic acid in Bradyrhizobium japonicum.
下载免费PDF全文

Some strains of Bradyrhizobium japonicum have the ability to catabolize indole-3-acetic acid. Indoleacetic acid (IAA), 4-chloro-IAA (4-Cl-IAA), and 5-Cl-IAA were metabolized to different extents by strains 61A24 and 110. Metabolites were isolated and analyzed by high-performance liquid chromatography and conventional mass spectrometry (MS) methods, including MS-mass spectroscopy, UV spectroscopy, and high-performance liquid chromatography-MS. The identified products indicate a novel metabolic pathway in which IAA is metabolized via dioxindole-3-acetic acid, dioxindole, isatin, and 2-aminophenyl glyoxylic acid (isatinic acid) to anthranilic acid, which is further metabolized. Degradation of 4-Cl-IAA apparently stops at the 4-Cl-dioxindole step in contrast to 5-Cl-IAA which is metabolized to 5-Cl-anthranilic acid. 相似文献
19.
《Phytochemistry》1972,11(12):3393-3402
When indole-3-acetic acid (IAA) was oxidized in the presence of Mn2+ and 2,4-dichlorophenol by a crude corn extract shown to contain IAA oxidase and by non-enzymic oxidation with Mn3+, 10 products of the reaction could be extracted by CH2Cl2 and separated by TLC. Four of these products, 3-hydroxy-methyloxindole, 3-methyleneoxindole, indole-3-aldehyde, and the 3-indolylmethyl ester of indole-3-acetic acid had been previously identified as reaction products. In addition, 3,3′-di-indolylmethane and 3-methyleneindolenine were found. 3-Methyleneindolenine was readily and reversibly formed from 3-hydroxymethylindole. A reaction pathway involving a two-electron oxidation catalyzed by Mn3+ and 3-hydroperoxymethylindole as a key intermediate in oxindole formation is proposed. 相似文献
20.
GC-MS properties of three isomeric esters of indole-3-acetic acid and myoinositol, three esters of indole-3-acectic acid and myoinositol arabinoside and three esters of indole-3-acetic acid and myoinositol galactoside are presented. MS fragmentation patterns for the four possible pentamethyl myoinositols are also shown. These data indicated that the arabinose, and galactose of the glycosides were in the pyranose form and that C-1 of the sugar was linked to the 5 hydroxyl of myoinositol. Homologies in fragmentation patterns for the esters and the glycoside esters, together with knowledge of the properties of 2-O-indole-3-acetyl-myoinositol, permitted identification of one of the arabinosides as 5-O-l-arabinopyranosyl-2-O-indole-3-acetyl-myoinositol and one of the galactosides as 5-O-d- galactopyranosyl-2-O-indole-3-acetyl-myoinositol. The remaining two GLC peaks observed for the arabinoside were then, most likely, the two mixtures of diastereoisomers 1 d- and 1 l-5-O-l-arabinopryranosyl-1-O-indole-3-acetyl myoinositol and 1 d- and 1 l-5-O-l-arabinopyranosyl-4-O-indole-3-acetyl-myoinositol. The remaining two GLC peaks observed for the galactoside would then be the 1 d and 1 l-5-O-d-galactopyranosyl-1-O-indole-3-acetyl-myoinositol and 1 d- and 1 l-5-O-d- galactopyranosyl-4-O-indoleacetyl-myoinositol. 相似文献