首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 593 毫秒
1.
The vascular response to adenosine and its analogs is mediated by four adenosine receptors (ARs), namely, A(1), A(2A), A(2B), and A(3). A(2A)ARs and/or A(2B)ARs are involved in adenosine-mediated vascular relaxation of coronary and aortic beds. However, the role of A(1)ARs in the regulation of vascular tone is less well substantiated. The aim of this study was to determine the role of A(1)ARs in adenosine-mediated regulation of vascular tone. A(1)AR-knockout [A(1)AR((-/-))] mice and available pharmacological tools were used to elucidate the function of A(1)ARs and the impact of these receptors on the regulation of vascular tone. Isolated aortic rings from A(1)AR((-/-)) and wild-type [A(1)AR((+/+))] mice were precontracted with phenylephrine, and concentration-response curves for adenosine and its analogs, 5'-N-ethyl-carboxamidoadenosine (NECA, nonselective), 2-chloro-N(6)-cyclopentyladenosine (CCPA, A(1)AR selective), 2-(2-carboxyethyl)phenethyl amino-5'-N-ethylcarboxamido-adenosine (CGS-21680, A(2A) selective), and 2-chloro-N(6)-3-iodobenzyladenosine-5'-N-methyluronamide (Cl-IBMECA, A(3) selective) were obtained to determine relaxation. Adenosine and NECA (0.1 microM) caused small contractions of 13.9 +/- 3.0 and 16.4 +/- 6.4%, respectively, and CCPA at 0.1 and 1.0 microM caused contractions of 30.8 +/- 4.3 and 28.1 +/- 3.9%, respectively, in A(1)AR((+/+)) rings. NECA- and CCPA-induced contractions were eliminated by 100 nM of 1,3-dipropyl-8-cyclopentylxanthine (DPCPX, selective A(1)AR antagonist). Adenosine, NECA, and CGS-21680 produced an increase in maximal relaxation in A(1)AR((-/-)) compared with A(1)AR((+/+)) rings, whereas Cl-IBMECA did not produce contraction in either A(1)AR((+/+)) or A(1)AR((-/-)) rings. CCPA-induced contraction at 1.0 microM was eliminated by the PLC inhibitor U-73122. These data suggest that activation of A(1)ARs causes contraction of vascular smooth muscle through PLC pathways and negatively modulates the vascular relaxation mediated by other adenosine receptor subtypes.  相似文献   

2.
Angiogenesis, also known as new blood vessel formation, is regulated coordinately with other tissue differentiation events during limb development. Although vascular endothelial cell growth factor (VEGF) is important in the regulation of angiogenesis, chondrogenesis and osteogenesis during limb development, the role of other angiogenic factors is not well understood. Sphingosine 1-phosphate, a platelet-derived lipid mediator, regulates angiogenesis and vascular maturation via its action on the G-protein-coupled receptor S1P(1) (also known as EDG-1). In addition to vascular defects, abnormal limb development was also observed in S1p(1)(-/-) mice. Here we show that strong induction of S1P(1) expression is observed in the blood vessels and the interdigital mesenchymal cells during limb development. Deletion of S1P(1) results in aberrant chondrocyte condensation and defective digit morphogenesis. Interestingly, the vasculature in the S1p(1)(-/-) limbs was hyperplastic and morphologically altered. In addition, the hypoxia inducible factor (HIF)-1 alpha and its response gene VEGF were induced in S1p(1)(-/-) limbs. However, aberrant regulation of HIF-1 alpha and VEGF were not observed in embryonic fibroblasts derived from S1p(1)(-/-) mice, suggesting a non-cell autonomous effect of S1P(1) on VEGF expression. Indeed, similar limb defects were observed in endothelium-specific S1P(1) null mice in vivo. These data suggest that the function of S1P(1) in the developing vasculature is essential for proper limb development.  相似文献   

3.
Urokinase plasminogen activator (uPA) is a multifunctional protein that has been implicated in several physiological and pathological processes involving cell adhesion and migration in addition to fibrinolysis. In a previous study we found that two-chain urokinase plasminogen activator (tcuPA) stimulates phenylephrine-induced vasoconstriction of isolated rat aortic rings. In the present paper we report that uPA(-/-) mice have a significantly lower mean arterial blood pressure than do wild type mice and that aortic rings from uPA(-/-) mice show an attenuated contractile response to phenylephrine. In contrast, the blood pressure of urokinase receptor knockout (uPAR(-/-)) mice and the response of their isolated aortic rings to phenylephrine were normal, indicating that the effect of uPA on vascular contraction is independent of uPAR. Addition of mouse and human uPA almost completely reversed both the impaired vascular contractility and the lower arterial blood pressure in vivo. The in vitro and in vivo effects of infused uPA on aortic contractility and the restoration of normal blood pressure in uPA(-/-) mice were prevented by antibody to low-density lipoprotein receptor-related protein/alpha(2)-macroglobulin receptor (LRP). A modified form of uPA that lacks the kringle failed to restore the blood pressure in uPA(-/-) mice, notwithstanding having a longer half-life in the circulation. Ligands that regulate the interaction of uPA with LRP, such as PAI-1 or the PAI-1-derived peptide (EEIIMD), abolished the vasoactivity of tcuPA in vitro and in vivo. These studies identify a novel signal transducing cellular receptor pathway involved in the regulation of vascular contractility.  相似文献   

4.
The role of the renin-angiotensin system (RAS) in vasoregulation is well established, but a localized RAS exists in multiple tissues and exerts diverse functions including autonomic control and thermogenesis. The role of the RAS in the maintenance and function of skeletal muscle is not well understood, especially the role of angiotensin peptides, which appear to contribute to muscle atrophy. We tested the hypothesis that mice lacking the angiotensin type 1A receptor (AT(1A)(-/-)) would exhibit enhanced whole body and skeletal muscle function and improved regeneration after severe injury. Despite 18- to 20-wk-old AT(1A)(-/-) mice exhibiting reduced muscle mass compared with controls (P < 0.05), the tibialis anterior (TA) muscles produced a 25% higher maximum specific (normalized) force (P < 0.05). Average fiber cross-sectional area (CSA) and fiber oxidative capacity was not different between groups, but TA muscles from AT(1A)(-/-) mice had a reduced number of muscle fibers as well as a higher proportion of type IIx/b fibers and a lower proportion of type IIa fibers (P < 0.05). Measures of whole body function (grip strength, rotarod performance, locomotor activity) were all improved in AT(1A)(-/-) mice (P < 0.05). Surprisingly, the recovery of muscle mass and fiber CSA following myotoxic injury was impaired in AT(1A)(-/-) mice, in part by impaired myoblast fusion, prolonged collagen infiltration and inflammation, and delayed expression of myogenic regulatory factors. The findings support the therapeutic potential of RAS inhibition for enhancing whole body and skeletal muscle function, but they also reveal the importance of RAS signaling in the maintenance of muscle mass and for normal fiber repair after injury.  相似文献   

5.
The kinins have an important role in control of the cardiovascular system. They have been associated with protective effects in the heart tissue. Kinins act through stimulation of two 7-transmembrane G protein-coupled receptors, denoted B(1) and B(2) receptors. However, the physiological relevance of B(1) receptor in the heart has not been clearly established. Using B(1) kinin receptor gene knock-out mice we tested the hypothesis that the B(1) receptor plays an important role in the control of baseline cardiac function. We examined the functional aspects of the intact heart and also in the isolated cardiomyocytes to study intracellular Ca(2+) cycling by using confocal microscopy and whole-cell voltage clamp techniques. We measured heart rate, diastolic and systolic tension, contraction and relaxation rates and, coronary perfusion pressure. Whole-cell voltage clamp was performed to measure L-type Ca(2+) current (I(Ca,L)). The hearts from B(1)(-/-) mice showed smaller systolic tension. The average values for WT and B(1)(-/-) mice were 2.6+/-0.04 g vs. 1.6+/-0.08 g, respectively. This result can be explained, at least in part, by the decrease in the Ca(2+) transient (3.1+/-0.06 vs. 3.4+/-0.09 for B(1)(-/-) and WT, respectively). There was an increase in I(Ca,L) at depolarized membrane potentials. Interestingly, the inactivation kinetics of I(Ca,L) was statistically different between the groups. The coronary perfusion pressure was higher in the hearts from B(1)(-/-) mice indicating an increase in coronary resistance. This result can be explained by the significant reduction of eNOS (NOS-3) expression in the aorta of B(1)(-/-) mice. Collectively, our results demonstrate that B(1) receptor exerts a fundamental role in the mammalian cardiac function.  相似文献   

6.
The basolateral Na(+)-K(+)-2Cl(-) cotransporter (NKCC1) functions in the maintenance of cellular electrolyte and volume homeostasis. NKCC1-deficient (Nkcc1(-/-)) mice were used to examine its role in cardiac function and in the maintenance of blood pressure and vascular tone. Tail-cuff measurements demonstrated that awake Nkcc1(-/-) mice had significantly lower systolic blood pressure than wild-type (Nkcc1(+/+)) mice (114.5 +/- 2.2 and 131.8 +/- 2.5 mmHg, respectively). Serum aldosterone levels were normal, indicating that extracellular fluid-volume homeostasis was not impaired. Studies using pressure transducers in the femoral artery and left ventricle showed that anesthetized Nkcc1(-/-) mice have decreased mean arterial pressure and left ventricular pressure, whereas myocardial contraction parameters were not significantly different from those of Nkcc1(+/+) mice. When stimulated with phenylephrine, aortic smooth muscle from Nkcc1(+/+) and Nkcc1(-/-) mice exhibited no significant differences in maximum contractility and only moderate dose-response shifts. In phasic portal vein smooth muscle from Nkcc1(-/-) mice, however, a sharp reduction in mechanical force was noted. These results indicate that NKCC1 can be important for the maintenance of normal blood pressure and vascular tone.  相似文献   

7.
We investigated the role of protein kinase C (PKC) in alpha(1)-adrenergic regulation of intracellular Na(+) activity (a(Na)(i)) in single guinea pig ventricular myocytes. a(Na)(i) and membrane potentials were measured with the Na(+)-sensitive indicator sodium-binding benzofuran isophthalate and conventional microelectrodes, respectively, at room temperature (24-26 degrees C) while myocytes were stimulated at a rate of 0.25-0.3 Hz. The PKC activator 4beta-phorbol 12-myristate 13-acetate (PMA) decreased a(Na)(i) in a concentration-dependent manner. PMA (100 nM) produced a maximal decrease in a(Na)(i) of 1.5 mM from 6.5 +/- 0.4 to 5.0 +/- 0.4 mM (means +/- SE, n = 12, P < 0.01). The PMA concentration required for a half-maximal decrease in a(Na)(i) was 0.46 +/- 0.13 nM (n = 3, P < 0.01). An inactive phorbol, 4alpha-phorbol 12-myristate 13-acetate, did not decrease a(Na)(i). The decrease caused by PMA could be blocked by the PKC inhibitors staurosporine and bisindolylmaleimide I (GF-109203X). Stimulation of the alpha(1)-adrenoceptor with 50 microM phenylephrine decreased a(Na)(i) from 6.1 +/- 0.3 to 4.6 +/- 0.3 mM (n = 11, P < 0.01). The decrease in a(Na)(i) produced by phenylephrine was blocked by pretreatment with staurosporine, GF-109203X, or PMA. The decrease in a(Na)(i) produced by PMA was not prevented by pretreatment with tetrodotoxin but was blocked by pretreatment with strophanthidin or high extracellular K(+) concentration. The results suggest that alpha(1)-adrenergic receptor activation results in a decrease in a(Na)(i) via PKC-induced stimulation of the Na(+)-K(+) pump in cardiac myocytes.  相似文献   

8.
A member of the TNF receptor family, the p75 neurotrophin receptor (p75(NTR)) has been previously shown to play a role in the regulation of fibrin deposition in the lung. However, the role of p75(NTR) in the regulation of pulmonary vascular tone in the lung is unknown. In the present study, we evaluated the expression of p75(NTR) in mouse pulmonary arteries and the putative role of p75(NTR) in modulating pulmonary vascular tone and agonist responsiveness using wild-type (WT) and p75(NTR) knockout (p75(-/-)) mice. Our data indicated that p75(NTR) is expressed in both smooth muscle and endothelial cells within the pulmonary vascular wall in WT mice. Pulmonary artery rings from p75(-/-) mice exhibited significantly elevated active tension due to endothelin-1-mediated Ca(2+) influx. Furthermore, the contraction due to capacitative Ca(2+) entry (CCE) in response to phenylephrine-mediated active depletion of intracellular Ca(2+) stores was significantly enhanced compared with WT rings. The contraction due to CCE induced by passive store depletion, however, was comparable between WT and p75(-/-) rings. Active tension induced by serotonin, U-46619 (a thromboxane A(2) analog), thrombin, 4-aminopyridine (a K(+) channel blocker), and high extracellular K(+) in p75(-/-) rings was similar to that in WT rings. Deletion of p75(NTR) did not alter pulmonary vasodilation to sodium nitroprusside (a nitric oxide donor). These data suggest that intact p75(NTR) signaling may play a role in modulating pulmonary vasoconstriction induced by endothelin-1 and by active store depletion.  相似文献   

9.
Sphingosine 1-phosphate (S1P), a bioactive lipid mediator, stimulates proliferation and contractility in hepatic stellate cells, the principal matrix-producing cells in the liver, and inhibits proliferation via S1P receptor 2 (S1P(2)) in hepatocytes in rats in vitro. A potential role of S1P and S1P(2) in liver regeneration and fibrosis was examined in S1P(2)-deficient mice. Nuclear 5-bromo-2'-deoxy-uridine labeling, proliferating cell nuclear antigen (PCNA) staining in hepatocytes, and the ratio of liver weight to body weight were enhanced at 48 h in S1P(2)-deficient mice after a single carbon tetrachloride (CCl(4)) injection. After dimethylnitrosamine (DMN) administration with a lethal dose, PCNA staining in hepatocytes was enhanced at 48 h and survival rate was higher in S1P(2)-deficient mice. Serum aminotransferase level was unaltered in those mice compared with wild-type mice in both CCl(4)- and DMN-induced liver injury, suggesting that S1P(2) inactivation accelerated regeneration not as a response to enhanced liver damage. After chronic CCl(4) administration, fibrosis was less apparent, with reduced expression of smooth-muscle alpha-actin-positive cells in the livers of S1P(2)-deficient mice, suggesting that S1P(2) inactivation ameliorated CCl(4)-induced fibrosis due to the decreased accumulation of hepatic stellate cells. Thus, S1P plays a significant role in regeneration and fibrosis after liver injury via S1P(2).  相似文献   

10.
11.
We tested the hypothesis that endothelial nitric oxide (NO) synthase (eNOS)-derived NO modulates rho-kinase-mediated vascular contraction. Because 3-hydroxy-3-methylglutaryl (HMG)-CoA-reductase inhibition can both upregulate eNOS expression and inhibit rhoA/rho-kinase function, a second hypothesis tested was that statin treatment modulates rho-kinase-mediated contraction and that this can occur independently of eNOS. Contractile responses to the receptor-dependent agonists serotonin and phenylephrine but not to the receptor-independent agent KCl were greater in aortic rings from eNOS-null (eNOS(-/-)) vs. wild-type (eNOS(+/+)) mice. Similarly enhanced responses were seen in eNOS(+/+) rings after acute NOS inhibition. The rho-kinase inhibitor Y-27632 abolished or profoundly attenuated responses to receptor agonists in both eNOS(+/+) and eNOS(-/-) rings, but responses in eNOS(+/+) were more sensitive to Y-27632. Mevastatin treatment (20 mg/kg sc per day, 14 days) reduced responses to serotonin and phenylephrine in female mice of both strains. KCl-induced contractions were slightly smaller in eNOS(+/+)-derived aortic rings only. Levels of plasma cholesterol, and aortic expression of rhoA and rho-kinase, did not differ between groups. Thus eNOS-derived NO suppresses rhoA/rho-kinase-mediated vascular contraction. Moreover, a similar suppressive effect on rho-kinase-mediated vasoconstriction by statin therapy occurs independently of effects on eNOS or plasma cholesterol.  相似文献   

12.
An NADPH oxidase is thought to be a main source of vascular superoxide (O(2)(-)) production. The functional role of this oxidase, however, and the contribution of the different subunits of the enzyme to cellular signaling are still incompletely understood. We determined the role of the p47phox subunit of the oxidase in O(2)(-) generation and signaling in aortic rings and cultured smooth muscle cells (SMC) from wild-type (WT) and p47phox-deficient (p47phox -/-) mice. Basal O(2)(-) levels in aortae of p47phox -/- mice were lower than those in WT aortae. Infusion of [val(5)]-angiotensin II increased O(2)(-) levels in aortae from WT more than in aortae from p47phox -/- mice. O(2)(-) generation was similar in quiescent SMC from WT and p47phox -/- mice. However, exposure to thrombin selectively increased O(2)(-) generation in VSMC from WT, but not from p47phox -/- mice. Thrombin-activated redox-mediated signal transduction and gene expression was attenuated in VSMC from p47phox -/- compared to cells from WT mice as determined by p38 MAP kinase activation and VEGF gene expression. We conclude that p47phox is important for vascular ROS production and redox-modulated signaling and gene expression in VSMC.  相似文献   

13.
Although NAD(P)H oxidase-derived superoxide (O(2)(-)) is increased during the development of angiotensin II (ANG II)-dependent hypertension, vascular regulation at the protein level has not been reported. We have shown that four major components of NAD(P)H oxidase are located primarily in the vascular adventitia as a primary source of vascular O(2)(-). Here we compare vascular levels of O(2)(-) and NAD(P)H oxidase in normotensive and ANG II-infused hypertensive mice and show that, after 7 days of ANG II infusion (750 microg. kg(-1). day(-1) ip) in C57B1/6 mice, systolic blood pressure was increased compared with that after sham infusion, concomitant with increased O(2)(-) in the thoracic aorta as measured using lucigenin (25 microM)-enhanced chemiluminescence. Both p67(phox) and gp91(phox) were detectable by Western blotting in aortic homogenates, and we observed increased protein levels of NAD(P)H oxidase subunits. These ANG II-induced increases were normalized by simultaneous treatment with the AT(1) receptor antagonist losartan. Moreover, the primary location of these subunits was the adventitia as detected immunohistochemically. Our results suggest that ANG II-induced increases in O(2)(-) are due to increased adventitial NAD(P)H oxidase activity, brought about by the heightened expression and interaction of its components.  相似文献   

14.
Resistance arteries are the site of the earliest manifestations of many cardiovascular and metabolic diseases. Flow (shear stress) is the main physiological stimulus for the endothelium through the activation of vasodilatory pathways generating flow-mediated dilation (FMD). The role of FMD in local blood flow control and angiogenesis is well established, and alterations in FMD are early markers of cardiovascular disorders. alpha(1)-Integrin, which has a role in angiogenesis, could be involved in FMD. FMD was studied in mesenteric resistance arteries (MRA) isolated in arteriographs. The role of alpha(1)-integrins in FMD was tested with selective antibodies and mice lacking the gene encoding for alpha(1)-integrins. Both anti-alpha(1) blocking antibodies and genetic deficiency in alpha(1)-integrin in mice (alpha(1)(-/-)) inhibited FMD without affecting receptor-mediated (acetylcholine) endothelium-dependent dilation or endothelium-independent dilation (sodium nitroprusside). Similarly, vasoconstrictor tone (myogenic tone and phenylephrine-induced contraction) was not affected. In MRA phosphorylated Akt and phosphatidylinositol 3-kinase (PI3-kinase) were significantly lower in alpha(1)(-/-) mice than in alpha(1)(+/+) mice, although total Akt and endothelial nitric oxide synthase (eNOS) were not affected. Pharmacological blockade of PI3-kinase-Akt pathway with LY-294002 inhibited FMD. This inhibitory effect of LY-294002 was significantly lower in alpha(1)(-/-) mice than in alpha(1)(+/+) mice. Thus alpha(1)-integrin has a key role in flow (shear stress)-dependent vasodilation in resistance arteries by transmitting the signal to eNOS through activation of PI3-kinase and Akt. Because of the central role of flow (shear stress) activation of the endothelium in vascular disorders, this finding opens new perspectives in the pathophysiology of the microcirculation and provides new therapeutic targets.  相似文献   

15.
The complement anaphylatoxin C5a has a pathogenetic role in endotoxin-induced lung inflammatory injury by regulating phagocytic cell migration and activation. Endotoxin and C5a activate the enzyme sphingosine kinase (Sphk) 1 to generate the signaling lipid sphingosine-1-phosphate (S1P), a critical regulator of phagocyte function. We assessed the function of Sphk1 and S1P in experimental lung inflammatory injury and determined their roles in anaphylatoxin receptor signaling and on the expression of the two C5a receptors, C5aR (CD88) and C5L2, on phagocytes. We report that Sphk1 gene deficient (Sphk1(-/-)) mice had augmented lung inflammatory response to endotoxin compared to wild type mice. Sphk1 was required for C5a-mediated reduction in cytokine and chemokine production by macrophages. Moreover, neutrophils from Sphk1(-/-) mice failed to upregulate the anaphylatoxin receptor C5L2 in response to LPS. Exogenous S1P restored C5L2 cell surface expression of Sphk1(-/-) mouse neutrophils to wild type levels but had no effect on cell surface expression of the other anaphylatoxin receptor, CD88. These results provide the first genetic evidence of the crucial role of Sphk1 in regulating the balance between expression of CD88 and C5L2 in phagocytes. S1P-mediated up-regulation of C5L2 is a novel therapeutic target for mitigating endotoxin-induced lung inflammatory injury.  相似文献   

16.
Sex differences exist in a variety of cardiovascular disorders. Sex hormones have been shown to mediate pulmonary artery (PA) vasodilation. However, the effects of fluctuations in physiological sex hormone levels due to sex and menstrual cycle on PA vasoreactivity have not been clearly established yet. We hypothesized that sex and menstrual cycle affect PA vasoconstriction under both normoxic and hypoxic conditions. Isometric force displacement was measured in isolated PA rings from proestrus females (PF), estrus and diestrus females (E/DF), and male (M) Sprague-Dawley rats. The vasoconstrictor response under normoxic conditions (organ bath bubbled with 95% O(2)-5% CO(2)) was measured after stimulation with 80 mmol/l KCl and 1 mumol/l phenylephrine. Hypoxia was generated by changing the gas to 95% N(2)-5% CO(2). PA rings from PF demonstrated an attenuated vasoconstrictor response to KCl compared with rings from E/DF (75.58 +/- 3.2% vs. 92.43 +/- 4.24%, P < 0.01). Rings from M also exhibited attenuated KCl-induced vasoconstriction compared with E/DF (79.34 +/- 3.2% vs. 92.43 +/- 4.24%, P < 0.05). PA rings from PF exhibited an attenuated vasoconstrictor response to phenylephrine compared with E/DF (59.61 +/- 2.98% vs. 70.03 +/- 4.61%, P < 0.05). While the maximum PA vasodilation during hypoxia did not differ between PF, E/DF, and M, phase II of hypoxic pulmonary vasoconstriction was markedly diminished in the PA from PF (64.10 +/- 7.10% vs. 83.91 +/- 5.97% in M, P < 0.05). We conclude that sex and menstrual cycle affect PA vasoconstriction in isolated PA rings. Even physiological increases in circulating estrogen levels attenuate PA vasoconstriction under both normoxic and hypoxic conditions.  相似文献   

17.
An NAD(P)H oxidase has been hypothesized to be the main source of reactive oxygen species (ROS) in vessels; however, questions remain about its function and similarity with the neutrophil oxidase. Therefore, vascular superoxide generation was measured by electron paramagnetic resonance spectroscopy using the spin-trap 5,5'-dimethly-pyrroline-N-oxide in aortas from wild-type (WT) and gp91(phox)-deficient mice (gp91(phox)-/-), which do not have a functioning neutrophil NADPH oxidase. There was no significant difference between radical adduct formation by WT or gp91(phox)-/- mouse aortas either at baseline or after stimulation with NADPH or NADH. Also, spin-adduct formation was identical in the 100,000-g pellets obtained from WT and gp91(phox)-/- mouse aortas. SOD mimetics and the flavoenzyme inhibitor diphenyleneiodonium blocked spin-adduct formation from both intact vessels and particulate fractions. Other pharmacological inhibitors of metabolic pathways involved in ROS generation had no effect on this phenomenon. To examine the role of this enzyme in vascular tone control, aortic rings were suspended in organ chambers and preconstricted with phenylephrine to reach half-maximal contraction. Exposure to NADPH elicited a 20% increase in vascular tone, which was decreased by SOD mimetics in a concentration-dependent manner, suggesting that superoxide was responsible for this phenomenon. NADH had no effect on vascular tone. Thus superoxide is generated in the vessel wall by an NAD(P)H-dependent oxidase, which modulates vascular contractile tone. This enzyme is structurally and genetically distinct from the neutrophil NADPH oxidase.  相似文献   

18.
Heterozygous CB1 receptor knockout mice were used to examine the effect of reduced CB1 receptor density on G-protein activation in membranes prepared from four brain regions: cerebellum, hippocampus, striatum/globus pallidus (striatum/GP) and cingulate cortex. Results showed that CB1 receptor levels were approximately 50% lower in heterozygous mice in all regions examined. However, maximal stimulation of [(35)S]guanosine-5'-(gamma-O-thio) triphosphate ([(35)S]GTPgammaS) binding by the high efficacy agonist WIN 55,212-2 was reduced by only 20-25% in most brain regions, with the exception of striatum/GP where the decrease in stimulation was as predicted (approximately 50%). Furthermore, although the efficacies of the cannabinoid partial agonists, methanandamide and (9)-tetrahydrocannabinol, were similarly lower in heterozygous mice, their relative efficacies compared with WIN 55,212-2 were generally unchanged. Saturation analysis of net WIN 55,212-2-stimulated [(35)S]GTPgammaS binding showed that decreased stimulation by WIN 55,212-2 in striatum/GP of heterozygous mice was caused by a decrease in the apparent affinity of net-stimulated [(35)S]GTPgammaS binding. The apparent maximal number of binding sites (B(max)) values of net WIN 55,212-2-stimulated [(35)S]GTPgammaS binding were unchanged in cerebellum and striatum/GP of heterozygous mice, but decreased in cingulate cortex, with a similar trend in hippocampus. Moreover, in every region except cingulate cortex, the maximal number of net-stimulated [(35)S]GTPgammaS binding sites per receptor was significantly increased in heterozygous mice. These results indicate region-dependent increases in the apparent efficiency of CB1 receptor-mediated G-protein activation in heterozygous CB1 knockout mice.  相似文献   

19.
Reactive oxygen species (ROS) and endothelin-1 (ET-1) contribute to vascular pathophysiology in obesity. In this context, whether ET-1 modulates hydroxyl radical (*OH) formation and the function of ROS/*OH in obesity is not known. In the present study, formation and function of ROS, including *OH, were investigated in the aorta of lean and leptin-deficient obese ob/ob mice. Hydroxyl radical formation was detected ex vivo using terephthalic acid in intact aortic rings and the involvement of ROS in ET-1-mediated vasoreactivity was analyzed using the antioxidant EPC-K1, a combination of alpha-tocopherol and ascorbic acid. Generation of either *OH, *O(2)(-), and H(2)O(2) was strongly inhibited by EPC-K1 (all P < 0.05). In obese mice, basal vascular *OH formation and ROS activity were reduced by 3-fold and 5-fold, respectively (P < 0.05 vs. lean). ET-1 markedly enhanced *OH formation in lean (6-fold, P < 0.05 vs. untreated) but not in obese mice. Obesity increased ET-1-induced contractions (P < 0.05 vs. lean), and ROS scavenging further enhanced the response (P < 0.05 vs. untreated). Exogenous ROS, including *OH caused stronger vasodilation in obese animals (P < 0.05 vs. lean), whereas endothelium-dependent relaxation was similar between lean and obese animals. In conclusion, we present a sensitive method allowing ex vivo measurement of vascular *OH generation and provide evidence that ET-1 regulates vascular *OH formation. The data indicate that in obesity, vascular formation of ROS, including *OH is lower, whereas the sensitivity to ROS is increased, suggesting a novel and important role of ROS, including *OH in the regulation of vascular tone in disease status associated with increased body weight.  相似文献   

20.
We examined the arterial phenotype of mice lacking alpha(1)-integrin (alpha(1)(-/-)) at baseline and after 4 wk of ANG II or norepinephrine (NE) administration. Arterial mechanical properties were determined in the carotid artery (CA). Integrin expression, MAPK kinases, and focal adhesion kinase (FAK) were assessed in the aorta. No change in arterial pressure was observed in alpha(1)(-/-) mice. Elastic modulus-wall stress curves were similar in alpha(1)(-/-) and alpha(1)(+/+) animals, indicating no change in arterial stiffness. The rupture pressure was lower in alpha(1)(-/-) mice, demonstrating decreased mechanical strength. Lack of alpha(1)-integrin was accompanied by an increase in beta(1)-, alpha(v)-, and alpha(5)-integrins but no change in alpha(2)-integrin. ANG II increased medial cross-sectional area of the CA in alpha(1)(+/+), but not alpha(1)(-/-), mice, whereas equivalent pressor doses of NE did not produce a significant increase in either group. In alpha(1)(+/+) mice, ANG II induced alpha(1)-integrin expression and smooth muscle cell (SMC) hypertrophy in the CA in association with increased aortic expression of alpha-smooth muscle actin and smooth muscle myosin heavy chain and phosphorylation of ERK1/2, p38 MAPK, and FAK. ANG II did not induce SMC hypertrophy or phosphorylation of p38 MAPK and FAK in alpha(1)(-/-) mice. A functional anti-alpha(1)-integrin antibody inhibited in vitro the ANG II-induced phosphorylation of FAK and p38 MAPK. In conclusion, alpha(1)(-/-) mice exhibit a reduced mechanical strength at baseline and a lack of ANG II-induced SMC hypertrophy. These results emphasize the importance of alpha(1)beta(1)-integrin in p38 MAPK and FAK phosphorylation during vascular hypertrophy in response to ANG II.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号