首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Although obesity is associated with overactivation of the white adipose tissue (WAT) renin-angiotensin system (RAS), a causal link between the latter and systemic insulin resistance is not established. We tested the hypothesis that overexpression of angiotensinogen (Agt) from WAT causes systemic insulin resistance via modulation of adipose inflammation. Glucose tolerance, systemic insulin sensitivity, and WAT inflammatory markers were analyzed in mice overexpressing Agt in the WAT (aP2-Agt mice). Proteomic studies and in vitro studies using 3T3-L1 adipocytes were performed to build a mechanistic framework. Male aP2-Agt mice exhibited glucose intolerance, insulin resistance, and lower insulin-stimulated glucose uptake by the skeletal muscle. The difference in glucose tolerance between genotypes was normalized by high-fat (HF) feeding, and was significantly improved by treatment with angiotensin-converting enzyme (ACE) inhibitor captopril. aP2-Agt mice also had higher monocyte chemotactic protein-1 (MCP-1) and lower interleukin-10 (IL-10) in the WAT, indicating adipose inflammation. Proteomic studies in WAT showed that they also had higher monoglyceride lipase (MGL) and glycerol-3-phosphate dehydrogenase levels. Treatment with angiotensin II (Ang II) increased MCP-1 and resistin secretion from adipocytes, which was prevented by cotreating with inhibitors of the nuclear factor-κB (NF-κB) pathway or nicotinamide adenine dinucleotide phosphate (NADPH) oxidase. In conclusion, we show for the first time that adipose RAS overactivation causes glucose intolerance and systemic insulin resistance. The mechanisms appear to be via reduced skeletal muscle glucose uptake, at least in part due to Ang II-induced, NADPH oxidase and NFκB-dependent increases in WAT inflammation.  相似文献   

2.
Ectonucleotide pyrophosphate phosphodiesterase (ENPP1) has been shown to negatively modulate insulin receptor and to induce cellular insulin resistance when overexpressed in various cell types. Systemic insulin resistance has also been observed when ENPP1 is overexpressed in multiple tissues of transgenic models and attributed largely to tissue insulin resistance induced in skeletal muscle and liver. Another key tissue in regulating glucose and lipid metabolism is adipose tissue (AT). Interestingly, obese patients with insulin resistance have been reported to have increased AT ENPP1 expression. However, the specific effects of ENPP1 in AT have not been studied. To better understand the specific role of AT ENPP1 on systemic metabolism, we have created a transgenic mouse model (C57/Bl6 background) with targeted overexpression of human ENPP1 in adipocytes, using aP2 promoter in the transgene construct (AdiposeENPP1-TG). Using either regular chow or pair-feeding protocol with 60% fat diet, we compared body fat content and distribution and insulin signaling in adipose, muscle, and liver tissues of AdiposeENPP1-TG and wild-type (WT) siblings. We also compared response to intraperitoneal glucose tolerance test (IPGTT) and insulin tolerance test (ITT). Our results show no changes in Adipose ENPP1-TG mice fed a regular chow diet. After high-fat diet with pair-feeding protocol, AdiposeENPP1-TG and WT mice had similar weights. However, AdiposeENPP1-TG mice developed fatty liver in association with changes in AT characterized by smaller adipocyte size and decreased phosphorylation of insulin receptor Tyr(1361) and Akt Ser(473). These changes in AT function and fat distribution were associated with systemic abnormalities of lipid and glucose metabolism, including increased plasma concentrations of fatty acid, triglyceride, plasma glucose, and insulin during IPGTT and decreased glucose suppression during ITT. Thus, our results show that, in the presence of a high-fat diet, ENPP1 overexpression in adipocytes induces fatty liver, hyperlipidemia, and dysglycemia, thus recapitulating key manifestations of the metabolic syndrome.  相似文献   

3.
Insulin resistance plays a major role in the pathogenesis of type 2 diabetes. Insulin regulates blood glucose levels primarily by promoting glucose uptake from the blood into multiple tissues and by suppressing glucose production from the liver. The glucose transporter, GLUT4, mediates insulin-stimulated glucose uptake in muscle and adipose tissue. Decreased GLUT4 expression in adipose tissue is a common feature of many insulin resistant states. GLUT4 expression is preserved in skeletal muscle in many insulin resistant states. However, functional defects in the intracellular trafficking and plasma membrane translocation of GLUT4 result in impaired insulin-stimulated glucose uptake in muscle. Tissue-specific genetic knockout of GLUT4 expression in adipose tissue or muscle of mice has provided new insights into the pathogenesis of insulin resistance. We recently determined that the expression of serum retinol binding protein (RBP4) is induced in adipose tissue as a consequence of decreased GLUT4 expression. We found that RBP4 is elevated in the serum of insulin resistant humans and mice. Furthermore, we found that increasing serum RBP4 levels by transgenic overexpression or by injection of purified RBP4 protein into normal mice causes insulin resistance. Therefore, RBP4 appears to play an important role in mediating adipose tissue communication with other insulin target tissues in insulin resistant states.  相似文献   

4.
Fatty acid-binding proteins (FABPs) facilitate the diffusion of fatty acids within cellular cytoplasm. Compared with C57Bl/6J mice maintained on a high-fat diet, adipose-FABP (A-FABP) null mice exhibit increased fat mass, decreased lipolysis, increased muscle glucose oxidation, and attenuated insulin resistance, whereas overexpression of epithelial-FABP (E-FABP) in adipose tissue results in decreased fat mass, increased lipolysis, and potentiated insulin resistance. To identify the mechanisms that underlie these processes, real-time PCR analyses indicate that the expression of hormone-sensitive lipase is reduced, while perilipin A is increased in A-FABP/aP2 null mice relative to E-FABP overexpressing mice. In contrast, de novo lipogenesis and expression of genes encoding lipoprotein lipase, CD36, long-chain acyl-CoA synthetase 5, and diacylglycerol acyltransferase are increased in A-FABP/aP2 null mice relative to E-FABP transgenic animals. Consistent with an increase in de novo lipogenesis, there was an increase in adipose C16:0 and C16:1 acyl-CoA pools. There were no changes in serum free fatty acids between genotypes. Serum levels of resistin were decreased in the E-FABP transgenic mice, whereas serum and tissue adiponectin were increased in A-FABP/aP2 null mice and decreased in E-FABP transgenic animals; leptin expression was unaffected. These results suggest that the balance between lipolysis and lipogenesis in adipocytes is remodeled in the FABP null and transgenic mice and is accompanied by the reprogramming of adipokine expression in fat cells and overall changes in plasma adipokines.  相似文献   

5.
6.
Heme oxygenase-1 (HO-1) is a stress-responsive enzyme with potent anti-oxidant and anti-inflammatory activities. Previous studies have shown that systemic induction of HO-1 by chemical inducers reduces adiposity and improves insulin sensitivity. To dissect the specific function of HO-1 in adipose tissue, we generated transgenic mice with adipose HO-1 overexpression using the adipocyte-specific aP2 promoter. The transgenic (Tg) mice exhibit similar metabolic phenotype as wild type (WT) control under chow-fed condition. High fat diet (HFD) challenge significantly increased the body weights of WT and Tg mice to a similar extent. Likewise, HFD-induced glucose intolerance and insulin resistance were not much different between WT and Tg mice. Analysis of the adipose tissue gene expression revealed that the mRNA levels of adiponectin and interleukin-10 were significantly higher in chow diet-fed Tg mice as compared to WT counterparts, whereas HFD induced downregulation of adiponectin gene expression in both Tg and WT mice to a similar level. HFD-induced proinflammatory cytokine expression in adipose tissues were comparable between WT and transgenic mice. Nevertheless, immunohistochemistry and gene expression analysis showed that the number of infiltrating macrophages with preferential expression of M2 markers was significantly higher in the adipose tissue of obese Tg mice than WT mice. Further experiment demonstrated that myeloid cells from Tg mice expressed higher level of HO-1 and exhibited greater migration response toward chemoattractant in vitro. Collectively, these data indicate that HO-1 overexpression in adipocytes does not protect against HFD-induced obesity and the development of insulin resistance in mice.  相似文献   

7.
Increasing evidence demonstrates the dissociation of fat deposition, the inflammatory response, and insulin resistance in the development of obesity-related metabolic diseases. As a regulatory enzyme of glycolysis, inducible 6-phosphofructo-2-kinase (iPFK2, encoded by PFKFB3) protects against diet-induced adipose tissue inflammatory response and systemic insulin resistance independently of adiposity. Using aP2-PFKFB3 transgenic (Tg) mice, we explored the ability of targeted adipocyte PFKFB3/iPFK2 overexpression to modulate diet-induced inflammatory responses and insulin resistance arising from fat deposition in both adipose and liver tissues. Compared with wild-type littermates (controls) on a high fat diet (HFD), Tg mice exhibited increased adiposity, decreased adipose inflammatory response, and improved insulin sensitivity. In a parallel pattern, HFD-fed Tg mice showed increased hepatic steatosis, decreased liver inflammatory response, and improved liver insulin sensitivity compared with controls. In both adipose and liver tissues, increased fat deposition was associated with lipid profile alterations characterized by an increase in palmitoleate. Additionally, plasma lipid profiles also displayed an increase in palmitoleate in HFD-Tg mice compared with controls. In cultured 3T3-L1 adipocytes, overexpression of PFKFB3/iPFK2 recapitulated metabolic and inflammatory changes observed in adipose tissue of Tg mice. Upon treatment with conditioned medium from iPFK2-overexpressing adipocytes, mouse primary hepatocytes displayed metabolic and inflammatory responses that were similar to those observed in livers of Tg mice. Together, these data demonstrate a unique role for PFKFB3/iPFK2 in adipocytes with regard to diet-induced inflammatory responses in both adipose and liver tissues.  相似文献   

8.
Increased serum levels of resistin, a molecule secreted by fat cells, have been proposed as a possible mechanistic link between obesity and insulin resistance. To further investigate the effects of resistin on glucose metabolism, we derived a novel transgenic strain of spontaneously hypertensive rats expressing the mouse resistin gene under the control of the fat-specific aP2 promoter and also performed in vitro studies of the effects of recombinant resistin on glucose metabolism in isolated skeletal muscle. Expression of the resistin transgene was detected by Northern blot analysis in adipose tissue and by real-time PCR in skeletal muscle and was associated with increased serum fatty acids and muscle triglycerides, impaired skeletal muscle glucose metabolism, and glucose intolerance in the absence of any changes in serum resistin concentrations. In skeletal muscle isolated from non-transgenic spontaneously hypertensive rats, in vitro incubation with recombinant resistin significantly inhibited insulin-stimulated glycogenesis and reduced glucose oxidation. These findings raise the possibility that autocrine effects of resistin in adipocytes, leading to release of other prodiabetic effector molecules from fat and/or paracrine actions of resistin secreted by adipocytes embedded within skeletal muscle, may contribute to the pathogenesis of disordered skeletal muscle glucose metabolism and impaired glucose tolerance.  相似文献   

9.
To elucidate the roles of SHP-2, we generated transgenic (Tg) mice expressing a dominant negative mutant lacking protein tyrosine phosphatase domain (DeltaPTP). On examining two lines of Tg mice identified by Southern blot, the transgene product was expressed in skeletal muscle, liver, and adipose tissues, and insulin-induced association of insulin receptor substrate 1 with endogenous SHP-2 was inhibited, confirming that DeltaPTP has a dominant negative property. The intraperitoneal glucose loading test demonstrated an increase in blood glucose levels in Tg mice. Plasma insulin levels in Tg mice after 4 h fasting were 3 times greater with comparable blood glucose levels. To estimate insulin sensitivity by a constant glucose, insulin, and somatostatin infusion, steady state blood glucose levels were higher, suggesting the presence of insulin resistance. Furthermore, we observed the impairment of insulin-stimulated glucose uptake in muscle and adipocytes in the presence of physiological concentrations of insulin. Moreover, tyrosine phosphorylation of insulin receptor substrate-1 and stimulation of phosphatidylinositol 3-kinase and Akt kinase activities by insulin were attenuated in muscle and liver. These results indicate that the inhibition of endogenous SHP-2 function by the overexpression of a dominant negative mutant may lead to impaired insulin sensitivity of glucose metabolism, and thus SHP-2 may function to modulate insulin signaling in target tissues.  相似文献   

10.
11.
Obesity and insulin resistance cause serious consequences to human health. To study effects of skeletal muscle growth on obesity prevention, we focused on a key gene of skeletal muscle named myostatin, which plays an inhibitory role in muscle growth and development. We generated transgenic mice through muscle-specific expression of the cDNA sequence (5'-region 886 nucleotides) encoding for the propeptide of myostatin. The transgene effectively depressed myostatin function. Transgenic mice showed dramatic growth and muscle mass by 9 weeks of age. Here we reported that individual major muscles of transgenic mice were 45-115% heavier than those of wild-type mice, maintained normal blood glucose, insulin sensitivity, and fat mass after a 2-month regimen with a high-fat diet (45% kcal fat). In contrast, high-fat diet induced wild-type mice with 170-214% more fat mass than transgenic mice and developed impaired glucose tolerance and insulin resistance. Insulin signaling, measured by Akt phosphorylation, was significantly elevated by 144% in transgenic mice over wild-type mice fed a high-fat diet. Interestingly, high-fat diet significantly increased adiponectin secretion while blood insulin, resistin, and leptin levels remained normal in the transgenic mice. The results suggest that disruption of myostatin function by its propeptide favours dietary fat utilization for muscle growth and maintenance. An increased secretion of adiponectin may promote energy partition toward skeletal muscles, suggesting that a beneficial interaction between muscle and adipose tissue play a role in preventing obesity and insulin resistance.  相似文献   

12.
Adiponectin and its receptors have been demonstrated to play important roles in regulating glucose and lipid metabolism in mice. Obesity, type II diabetes and cardiovascular disease are highly correlated with down-regulated adiponectin signaling. In this study, we generated mice overexpressing the porcine Adipor1 transgene (pAdipor1) to study its beneficial effects in metabolic syndromes as expressed in diet-induced obesity, hepatosteatosis and insulin resistance. Wild-type (WT) and pAdipor1 transgenic mice were fed ad libitum with a standard chow diet (Chow) or a high-fat/sucrose diet (HFSD) for 24 weeks, beginning at 6 to 7 weeks of age. There were 12 mice per genetic/diet/sex group. When challenged with HFSD to induce obesity, the pAdipor1 transgenic mice resisted development of weight gain, hepatosteatosis and insulin resistance. These mice had lowered plasma adiponectin, triglyceride and glycerol concentrations compared to WT mice. Moreover, we found that (indicated by mRNA levels) fatty acid oxidation was enhanced in skeletal muscle and adipose tissue, and liver lipogenesis was inhibited. The pAdipor1 transgene also restored HFSD-reduced phosphoenolpyruvate carboxykinase 1 (Pck1) and glucose transporter 4 mRNA in the adipose tissues, implying that the increased Pck1 may promote glyceroneogenesis to reduce glucose intolerance and thus activate the flux of glyceride-glycerol to resist diet-induced weight gain in the adipose tissues. Taken together, we demonstrated that pAdipor1 can prevent diet-induced weight gain and insulin resistance. Our findings may provide potential therapeutic strategies for treating metabolic syndromes and obesity, such as treatment with an ADIPOR1 agonist or activation of Adipor1 downstream targets.  相似文献   

13.
14.
Most rodent models of insulin resistance are accompanied by decreased circulating adiponectin levels. Adiponectin treatment improves the metabolic phenotype by increasing fatty acid oxidation in skeletal muscle and suppressing hepatic glucose production. Muscle IGF-I receptor (IGF-IR)-lysine-arginine (MKR) mice expressing dominant-negative mutant IGF-IRs in skeletal muscle are diabetic with insulin resistance in muscle, liver, and adipose tissue. Adiponectin levels are elevated in MKR mice, suggesting an unusual discordance between insulin resistance and adiponectin responsiveness. Therefore, we investigated the metabolic actions of adiponectin in MKR mice. MKR and ob/ob mice were treated both acutely (28 microg/g) and chronically (for 2 wk) with full-length adiponectin. Acute hypoglycemic effects of adiponectin were evident only in ob/ob mice but not in MKR mice. Chronic adiponectin treatment significantly improved both insulin sensitivity and glucose tolerance in ob/ob but not in MKR mice. Adiponectin receptor mRNA levels and adiponectin-stimulated phosphorylation of AMPK in skeletal muscle and liver were similar among MKR, wild-type, and ob/ob mice. Thus MKR mice are adiponectin resistant despite normal expression of adiponectin receptors and normal AMPK phosphorylation in muscle and liver. MKR mice may be a useful model for dissecting relationships between insulin resistance and adiponectin action in regulation of glucose homeostasis.  相似文献   

15.
The development of insulin resistance in the obese is associated with chronic, low‐grade inflammation. We aimed to identify novel links between obesity, insulin resistance and the inflammatory response by comparing C57BL/6 with type I interleukin‐1 receptor knockout (IL‐1RI?/?) mice, which are protected against diet‐induced insulin resistance. Mice were fed a high‐fat diet for 16 wk. Insulin sensitivity was measured and proteomic analysis was performed on adipose, hepatic and skeletal muscle tissues. Despite an equal weight gain, IL‐1RI?/? mice had lower plasma glucose, insulin and triacylglycerol concentrations, compared with controls, following dietary treatment. The higher insulin sensitivity in IL‐1RI?/? mice was associated with down‐regulation of antioxidant proteins and proteasomes in adipose tissue and hepatic soluble epoxide hydrolase, consistent with a compromised inflammatory response as well as increased glycolysis and decreased fatty acid β‐oxidation in their muscle. Their lower hepatic triacylglycerol concentrations may reflect decreased flux of free fatty acids to the liver, decreased hepatic fatty acid‐binding protein expression and decreased lipogenesis. Correlation analysis revealed down‐regulation of classical biomarkers of ER stress in their adipose tissue, suggesting that disruption of the IL‐1RI‐mediated inflammatory response may attenuate cellular stress, which was associated with significant protection from diet‐induced insulin resistance, independent of obesity.  相似文献   

16.
Semicarbazide-sensitive amine oxidase (SSAO) is a transmembrane enzyme that metabolizes primary amines from endogenous or dietary origin. SSAO is highly expressed in adipose, smooth muscle and endothelial cells. In each of these cell types, SSAO is implicated in different biological functions, such as glucose transport activation, extracellular matrix maturation and leucocyte extravasation, respectively. However, the physiological functions of SSAO and their involvement in pathogenesis remain uncompletely characterized. To better understand the role of adipose tissue SSAO, we investigated whether it was necessary and/or sufficient to produce the antihyperglycemic effect of the SSAO-substrate benzylamine, already reported in mice. Therefore, we crossed SSAO-deficient mice invalidated for AOC3 gene and transgenic mice expected to express human SSAO in an adipocyte-specific manner, under the control of aP2 promoter. The aP2?Chuman AOC3 construct (aP2?ChAOC3) was equally expressed in the adipose tissue of mice expressing or not the native murine form and almost absent in other tissues. However, the corresponding SSAO activity found in adipose tissue represented only 20?% that of control mice. As a consequence, the benzylamine antihyperglycemic effect observed during glucose tolerance test in control was abolished in AOC3-KO mice but not rescued in mice expressing aP2?ChAOC3. The capacity of benzylamine or methylamine to activate glucose uptake in adipocytes exhibited parallel variations in the corresponding genotypes. Although the aP2?ChAOC3 construct did not allow a total rescue of SSAO activity in adipose tissue, it could be assessed from our observations that adipocyte SSAO plays a pivotal role in the increased glucose tolerance promoted by pharmacological doses of benzylamine.  相似文献   

17.

Background

Recent understanding that insulin resistance is an inflammatory condition necessitates searching for genes that regulate inflammation in insulin sensitive tissues. 12/15-lipoxygenase (12/15LO) regulates the expression of proinflammatory cytokines and chemokines and is implicated in the early development of diet-induced atherosclerosis. Thus, we tested the hypothesis that 12/15LO is involved in the onset of high fat diet (HFD)-induced insulin resistance.

Methodology/Principal Findings

Cells over-expressing 12/15LO secreted two potent chemokines, MCP-1 and osteopontin, implicated in the development of insulin resistance. We assessed adipose tissue inflammation and whole body insulin resistance in wild type (WT) and 12/15LO knockout (KO) mice after 2–4 weeks on HFD. In adipose tissue from WT mice, HFD resulted in recruitment of CD11b+, F4/80+ macrophages and elevated protein levels of the inflammatory markers IL-1β, IL-6, IL-10, IL-12, IFNγ, Cxcl1 and TNFα. Remarkably, adipose tissue from HFD-fed 12/15LO KO mice was not infiltrated by macrophages and did not display any increase in the inflammatory markers compared to adipose tissue from normal chow-fed mice. WT mice developed severe whole body (hepatic and skeletal muscle) insulin resistance after HFD, as measured by hyperinsulinemic euglycemic clamp. In contrast, 12/15LO KO mice exhibited no HFD-induced change in insulin-stimulated glucose disposal rate or hepatic glucose output during clamp studies. Insulin-stimulated Akt phosphorylation in muscle tissue from HFD-fed mice was significantly greater in 12/15LO KO mice than in WT mice.

Conclusions

These results demonstrate that 12/15LO mediates early stages of adipose tissue inflammation and whole body insulin resistance induced by high fat feeding.  相似文献   

18.
Adiponectin (ApN) is an adipokine whose expression and plasma levels are inversely related to obesity and insulin-resistant states. The in vivo effects of a chronic expression of exogenous ApN restricted to adipose tissue are unclear. Moreover, the regulatory effects of ApN on its own expression and on that of its receptors are still unknown. In this study, we generated transgenic (Tg) mice with moderate expression of exogenous ApN targeted to adipose tissue (native full-length ApN being placed under control of the adipocyte promoter aP2). After a transient overexpression of ApN in young pups, we intriguingly observed a reduction of ApN mRNA levels and protein content in fat depots, together with a decrease of circulating ApN in adult mice. As a result, the phenotype of these adult mice included glucose intolerance, insulin resistance, and increased adiposity. Reduced expression of ApN in fat tissue was associated with diminished expression of uncoupling protein 2 involved in energy dissipation, and higher expression of fatty acid synthase, a key enzyme of lipogenesis, and of TNFalpha implicated in insulin resistance. Concomitantly, the expression of the ApN receptor AdipoR2 that mediates action of full-length ApN was downregulated, while that of AdipoR1 was unaffected. In agreement with the in vivo studies, recombinant ApN added to the culture medium of 3T3-F442A adipocytes caused a decrease in AdipoR2 and ApN mRNA levels. This treatment did not affect the expression of AdipoR1. Eventually, we demonstrated a contrario that AdipoR2 (but not R1) was specifically upregulated in fat of ApN(-/-) mice. Our in vivo and in vitro data provide evidence for a novel regulatory feedback loop by which ApN downregulates its own production and the expression of its AdipoR2 receptor.  相似文献   

19.
Dysregulation of lipid metabolism in individual tissues leads to systemic disruption of insulin action and glucose metabolism. Utilizing quantitative lipidomic analyses and mice deficient in adipose tissue lipid chaperones aP2 and mal1, we explored how metabolic alterations in adipose tissue are linked to whole-body metabolism through lipid signals. A robust increase in de novo lipogenesis rendered the adipose tissue of these mice resistant to the deleterious effects of dietary lipid exposure. Systemic lipid profiling also led to identification of C16:1n7-palmitoleate as an adipose tissue-derived lipid hormone that strongly stimulates muscle insulin action and suppresses hepatosteatosis. Our data reveal a lipid-mediated endocrine network and demonstrate that adipose tissue uses lipokines such as C16:1n7-palmitoleate to communicate with distant organs and regulate systemic metabolic homeostasis.  相似文献   

20.
We show that Topiramate (TPM) treatment normalizes whole body insulin sensitivity in high-fat diet (HFD)-fed male Wistar rats. Thus drug treatment markedly lowered glucose and insulin levels during glucose tolerance tests and caused increased insulin sensitization in adipose and muscle tissues as assessed by euglycemic clamp studies. The insulin-stimulated glucose disposal rate increased twofold (indicating enhanced muscle insulin sensitivity), and suppression of circulating FFAs increased by 200 to 300%, consistent with increased adipose tissue insulin sensitivity. There were no effects of TPM on hepatic insulin sensitivity in these TPM-treated HFD-fed rats. In addition, TPM administration resulted in a three- to fourfold increase in circulating levels of total and high-molecular-weight (HMW) adiponectin (Acrp30). Western blot analysis revealed normal AMPK (Thr(172)) phosphorylation in liver with a twofold increased phospho-AMPK in skeletal muscle in TPM-treated rats. In conclusion, 1) TPM treatment prevents overall insulin resistance in HFD male Wistar rats; 2) drug treatment improved insulin sensitivity in skeletal muscle and adipose tissue associated with enhanced AMPK phosphorylation; and 3) the tissue "specific" effects are associated with increased serum levels of adiponectin, particularly the HMW component.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号