首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 406 毫秒
1.
Summary The culturing of human endometrium in conventional plastic dishes and media is only partially successful, mainly because a growth of a heterogeneous population of cells is achieved. Naturally produced extracellular matrix closely resembles the subepithelial basement membrane and seems to affect both growth and differentiation of cells. These qualities of the extracellular matrix (ECM) were applied for obtaining endometrial epithelial cultures. Endometrial tissue specimens were plated after slicing on ECM-coated dishes and kept for up to 8 d. The growth of a confluent homogeneous tissue composed of polygonal epithelial-like cells was demonstrated. To further characterize these cells, cultures were examined by scanning electron microscopy and transmission electron microscopy. Scanning electron microscopy revealed flattened polygonal cells covered with microvilli, among which ciliated cells were observed. By transmission electron microscopy the cells were seen as a monolayer, with some cells overlapping, closely adherent to the matrix. Microvilli, as well as intracellular vacuoles and glycogen granules were observed. Cell type specific cytoskeletal markers were demonstrated by antibodies to intermediate filament proteins (keratin and epithelial membrane antigen). Taken together, the morphologic and immunohistochemical studies indicate that a selective growth of the epithelial component of endometrial tissue was obtained after plating unprocessed endometrial tissue fragments on ECM-coated culture dishes. This work was supported by PHS grant no. CA 30289 to J.V.  相似文献   

2.
Scanning immunoelectron microscopy was applied to human endometrial epithelium for the first time to simultaneously determine epitope localisation and cellular architecture. The method was established using HMFG1, an antibody to a glycoform of the MUC1 mucin. This was chosen because of the potential importance of MUC1 in connection with endometrial receptivity. Biopsies of mid-secretory phase endometrium were labelled using HMFG1 and silver-enhanced, gold-conjugated secondary antibody was then visualised by back-scattered electron imaging. The method provided a highly specific localisation of the HMFG1 epitope to the ciliated and "ciliogenic" cells of the endometrial surface. In contrast, no reactivity was evident on the microvillous cells and endometrial pinopodes. The potential to integrate the study of the molecular and ultrastructural changes that occur in the endometrium by using scanning immunoelectron microscopy offers a powerful means of expanding our understanding of the adaptation of the endometrium in preparation for embryo implantation.  相似文献   

3.
Bae SE  Watson ED 《Theriogenology》2003,60(5):909-921
It has been reported that oxytocin is produced not only in the hypothalamus and posterior pituitary but also in outside the classical hypothalamo-neurohypophyseal axis such as the ovary, testis, placenta and in some nonreproductive sites. In the mare, oxytocin-mRNA has been identified in the endometrium, and oxytocin and its neurophysin have been identified in the uterus. In the present study, oxytocin was localised in the endometrium of the mare at the light microscopic and ultrastructural level by immunostaining and immunogold labelling of endometrial biopsy specimens collected during estrus.Strong positive immunostaining for oxytocin was found in the secretory vesicles of the secretory (nonciliated) epithelial cells of the uterine lumen and of the superficial glands. Using immunogold labelling, oxytocin was detected in the secretory vesicles of secretory epithelial cells. The vesicles containing immunoreactive oxytocin were present on the luminal surface suggesting that oxytocin is secreted into the uterine lumen by apical exocytosis. There was no positive immunostaining in ciliated epithelial cells of the uterine lumen and endometrial glands, in the stromal cells, or in the basal endometrial glands. To our knowledge, this is the first report of the location of oxytocin in specific secretory cells in the endometrium of any domestic species. This locally synthesised uterine oxytocin may have an important role in the autocrine/paracrine control of uterine contractility and luteolysis in the mare.  相似文献   

4.
Suuroia T  Aunapuu M  Arend A  Sépp E 《Tsitologiia》2002,44(7):656-660
The ultrastructure of oviduct epithelium of clinically healthy cows and 15 sows was investigated using scanning and transmission electron microscopy. In all parts of the oviduct, ciliated and non-ciliated epithelial cells are present, but their number varies in both the investigated animals in different regions of the oviduct, depending on the phase of the estrous cycle. In addition to ciliated cells with numerous cilia on their luminal surface, so-called pale ciliary cells were found in all parts of the oviduct of cows and sows. The cytoplasm of these cells is electron-lucent, their luminal surface carries few cilia and short microvilli. The apical cytoplasm contains species specific secretory granules, which means that these cells have features characteristic of both secretory and ciliated cells. It is suggested that the pale ciliated and non-ciliated secretory cells are functional stages of the same tubar epithelium cell, and that the transformation between these two cell types is regulated by functional requirements of the organ in different phases of the estrous cycle.  相似文献   

5.
Eosinophils are present in human endometrium only immediately before and during menstruation, suggesting a role in that process. The expression of the eosinophil chemoattractant, eotaxin, and its receptor, CCR3, within the human endometrium were investigated by immunohistochemical analysis of tissue sections spanning the entire menstrual cycle. Eotaxin was localized to perivascular cells in the late secretory phase, and it was also identified in eosinophils. However, the highest levels of this chemokine were present in both luminal and glandular epithelial cells during the proliferative and secretory phases of the cycle. Treatment of endometrial tissue with monensin, which blocks protein secretion, increased epithelial immunoreactive eotaxin, substantiating synthesis in these cells. Although the CCR3 receptor was expressed by eosinophils, it was also strongly expressed by endometrial epithelial cells. The CCR3 receptor on purified, cultured endometrial epithelial cells was functional, as assessed by a transient Ca(2+) flux in response to eotaxin. These analyses demonstrate that eotaxin is expressed by endometrial cells and may therefore be involved in the recruitment of eosinophils into this tissue premenstrually. However, the observation that this chemokine and the CCR3 molecule are strongly expressed by epithelial cells throughout the cycle suggests that these proteins may have additional important functions within the endometrium.  相似文献   

6.
7.
Histochemical identification of cultured cells from human endometrium   总被引:1,自引:0,他引:1  
Histochemical techniques have been applied to the identification of cell types cultured from human endometrium. Previous work from this laboratory characterized two principal cell types found in cultures of endometrium: a mature epithelial cell and another cell which was classified as the endometrial stromal cell based on light and electron microscopy. In this report we compare the histochemical staining of endometrial tissue in frozen sections to that of cultured cells. These results confirm the epithelial and stromal nature of the respective cell types. Several markers were found that could distinguish between cells of epithelial and stromal origin. The enzymes alkaline phosphatase, gamma-glutamyltranspeptidase, peroxidase, and beta-glucuronidase were localized in glandular and surface epithelia in frozen sections and in colonies of epithelial cells in culture. Stroma in frozen sections and cultured stromal cells contained leucine aminopeptidase and fibronectin. Epithelia in sections and in culture could also be distinguished from cells of stromal origin by preferential binding of lotus and peanut lectin. Several other markers were found in both endometrial epithelium and stroma.  相似文献   

8.
Summary Monolayer cultures can be established from human endometrial tissue after enzymatic dispersal into isolated glands or single cells. Three cell types that have distinct morphology by light and electron microscopy are observed in the resulting primary cultures. One cell type, an elongated spindle cell, is similar in appearance to fibroblasts derived from other tissues. A second cell type forms colonies of tightly cohesive cells, ranging in shape from oval to polygonal. These cells have typical organelles and junctional complexes characteristic of epithelial cells from the endometrium. The third cell type assumes a pavement-like appearance composed of polygonal cells when viewed by phase contrast microscopy, but lacks distinctive ultrastructural features of epithelial cells. These cells in culture resemble the endometrial stromal cell, the predominant cell type of the human endometrium in vivo. The epithelial cell does not survive subculturing but the other two cell types can be passaged through several generations and can be stored in liquid nitrogen and subsequently returned to culture. This work was supported by contract N01-CP75956 and grant R01-CA31733 from the National Cancer Institute. V. A. Varma is a recipient of an American Cancer Society fellowship; B. H. Dorman, a predoctoral fellowship from the Chemical Industry Institute of Toxicology; J. M. Siegfried, a training grant (CA09156) from the National Cancer Institute; and D. G. Kaufman, a Research Career Development Award (K04-CA-00431) from the National Cancer Institute.  相似文献   

9.
In preparation for blastocyst implantation, uterine luminal epithelial cells express new cell adhesion molecules on their apical plasma membrane. Since one mechanism epithelial cells employ to regulate membrane polarity is the establishment of specific membrane-cytoskeletal interactions, this study was undertaken to determine if new cytokeratin (CK) intermediate filament assemblies are expressed in endometrial epithelial cells during developmental stages related to blastocyst implantation. Type-specific CK antibodies were used for immunocytochemical and immunoblot analyses of 1) intermediate filament networks of the endometrial epithelium during embryo implantation in rabbits and 2) proliferative and secretory phases of the human menstrual cycle. CK18, a type I CK found in most simple epithelia, was expressed in all luminal and glandular epithelial cells of both the human and rabbit endometrium at all developmental stages analyzed; it was also strongly expressed in trophectoderm of the implanting rabbit blastocyst. In contrast, CK13, another type I cytokeratin, exhibited a regulated expression pattern in luminal, but not glandular, epithelial cells of secretory phase human and peri-implantation stage rabbit endometrium. Furthermore, in the rabbit implantation chambers, CK13 was predominantly localized at the cell apex of luminal epithelial cells, where it assembled into a dense filamentous network. These data suggest that the stage-specific expression of CK13 and a reorganization of the apical intermediate filament cytoskeleton of uterine luminal epithelial cells may play important functions in preparation for the implantation process.  相似文献   

10.
Summary
Pili of Neisseria gonorrhoeae are correlated with Increased bacterial attachment to epithelial cells and undergo both phase and antigenic variation. Phase variation of gonococcal pili can be brought about by recombination events in the pilin structural gene, pilE , or by the on/off switch in expression of PilC, a pilus biogenesis protein for which two loci exist. We have studied the binding to epithelial cell lines and to fixed tissue sections of N. gonorrhoeae MS11 derivatives and mutants carrying structurally defined PilE and PilC proteins, in situ binding studies of N. gonorrhoeae to formalin-fixed tissue sections resulted in a binding pattern similar to that obtained using viable epithelial cell lines of different origin. Piliated gonococcal clones, containing different pilE sequences, varied dramatically from one another in their efficiencies at binding to corneal and conjunctival tissue, but bound equally well to cervical and endometrial tissues. Further, the binding data suggested that PJIC expression by itself, i.e. without pili, cannot confer bacterial binding and that expression of either PilC1 or PiiC2 does not confer different binding properties to the bacterial cells. Possible receptors for piliated gonococci were expressed in human tissues, such as cervix, endometrium, cornea, intestine, stomach, mid-brain and meninges, but not in human kidney. Pretreatment of the target tissues with Proteinase K decreased the gonococcal binding dramatically, whereas pretreatment with neuraminidase and meta-periodate, which cleave carbon-carbon linkages between vicinal hydroxyl groups in carbohydrates, did not affect attachment of gonococci. These data argue that pilus-dependent attachment of N. gonorrhoeae to human tissue may be mediated by a eukaryotic receptor having protein characteristics, and that the pilus subunit sequence may play an important role in the interaction with human cornea.  相似文献   

11.
Under the influence of ovarian steroid hormones, endometrial cells aer able to produce a wide variety of growth factors and peptide hormones that area believed to promote: (1) physiological growth and differentiation during the endometrial cycle; (2) decidualization, an essential preparative event for establishment of pregnancy; and (3) pathological growth and differentiation in endometriosis and cancer. Among the local factors produced by the human endometrium, corticotropin-releasing factor (CRF) and activin A have been evaluated in terms of localization and effects. CRF is a neuropeptide expressed by the epithelial and stromal cells of the human endometrium in increasing amounts from the endometrial proliferative to the secretory phase. CRF expression also increases in the pregnant endometrium, from early in the pregnancy until term. CRF-type 1 receptor mRNA is only expressed by stromal cells. Progesterone induces CRF gene expression and release from decidualized cells and CRF decidualizes cultured stromal endometrial cells. Urocortin, a CRF-related peptide, has been identified in endometrial epithelial and stromal cells, and its function is still under investigation. Activin A is a growth factor expressed in increasing amounts throughout endometrial phases by both epithelial and stromal cells. This growth factor is secreted into the uterine cavity with higher levels in the secretory phase. Maternal decidua expresses activin A mRNA in increasing amounts from early pregnancy until term. Human endometrium also expresses activin-A receptors and follistatin, its binding protein. Activin A decidualizes cultured human endometrial stromal cells (an effect reversed by follistatin) and modulates embryonic trophoblast differentiation and adhesion. Activin A is expressed in endometriosis and endometrial adenocarcinoma.  相似文献   

12.
Summary Histochemical techniques have been applied to the identification of cell types cultured from human endometrium. Previous work from this laboratory characterized two principtal cell types found in cultures of endometrium: a mature epithelial cell and another cell which was classified as the endometrial stromal cell based on light and electron microscopy. In this report we compare the histochemical staining of endometrial tissue in frozen sections to that of cultured cells. These results confirm the epithelial and stromal nature of the respective cell types. Several markers were found that could distinguish between cells of epithelial and stromal origin. The enzymes alkaline phosphatase, γ-glutamyltranspeptidase, peroxidase, and β-glucuronidase were localized in glandular and surface epithelia in frozen sections and in colonies of epithelial cells in culture. Stroma in frozen sections and cultured stromal cells contained leucine aminopeptidase and fibronectin. Epithelial sections and in culture could also be distinguished from cells of stromal origin by preferential binding of lotus and peanut lectin. Several other markers were found in both endometrial epithelium and stroma. J. M. S. was recipient of National Research Service Award CA09156 (National Cancer Institute); K. G. N. was recipient of National Research Service Award ES07017 (National Institute of Environmental Health Sciences); and D. G. K. was recipient of Research Career Development Award CA00431 from the National Cancer Institute, Bethesda, MD. Supported by Grant CA 31733 from the National Cancer Institute, Bethesda, MD.  相似文献   

13.
Oviductal functional morphology remains poorly understood in oviparous snakes, particularly in regard to oviductal formation of albumen and the eggshell and to sperm storage. The oviduct of Diadophis punctatus was examined using histology and scanning electron microscopy to determine oviductal functional morphology throughout the reproductive cycle. The oviduct is composed of four morphologically distinct regions: infundibulum, uterine tube, uterus, and vagina. The infundibulum is thin, flaccid, and lined with simple ciliated cuboidal epithelial cells. The tube contains ciliated and secretory epithelial cells, which reach a maximum height and hypertrophy during early gravidity and produce glycosaminoglycans. The posterior portion of the tube contains temporary sperm storage receptacles. The uterus retains eggs throughout gestation and secretes the eggshell constituents. The endometrial glands of the uterus hypertrophy during vitellogenesis and become depleted of the secretory granules during gravidity. The functional morphology of the oviduct therefore shows cyclical changes that are correlated with eggshell formation. The vagina consists of thick longitudinal and circular smooth muscle layers, which may serve in retention of eggs during gestation. Furthermore, the vagina contains long furrows in the mucosa that serve as sperm storage receptacles. These receptacles store sperm following fall mating and overwintering, whereas the receptacles in the tube are utilized briefly during vitellogenesis just prior to ovulation. © 1996 Wiley-Liss, Inc.  相似文献   

14.
The oviducts of 24 tortoises (Gopherus polyphemus) were examined using histological techniques and scanning electron microscopy to determine endometrial morphology. Measurements of endometrial characteristics (epithelial cell height, cilia length, thickness of endometrial glandular layer, and glandular diameter) in the uterus and tube (tuba uterina) were obtained to determine changes during the reproductive cycle. Epithelial cell height increases in both the uterus and the tube during vitellogenesis and remains hypertrophied during gravidity. Cilia length increases in the uterus during late vitellogenesis and gravidity, but the length of tubal cilia does not change during the reproductive cycle. The ratio of secretory to ciliated epithelial cells in the oviduct increases from quiescence to gravidity. The thickness of the glandular endometrial layer increases in both the uterus and tube during vitellogenesis. In the uterus, the glandular layer decreases in thickness during gravidity. The diameter of the uterine glands increases throughout vitellogenesis and gravidity; however, following ovulation glandular cells become depleted of secretory granules and cell height diminishes. The diameter of the tubal glands is unchanged during the reproductive cycle. Oviductal hypertrophy during vitellogenesis coincides with elevated circulating estradiol, whereas during gravidity progesterone concentrations peak (Taylor, '82, PhD Dissertation, University of Florida, Gainesville) and may induce secretion of albumen and eggshell components.  相似文献   

15.
Changes in the surface epithelium of the endometrium, characterized in part by alterations in cell-surface molecules, sex steroid receptors and the appearance of pinopodes, coincide with the window of endometrial receptivity in the menstrual cycle. This study was performed to evaluate the usefulness of hematoxylin and eosin staining, scanning and transmission microscopy, and MUC1 glycoform, sex steroid receptor, and interleukin receptor (type 1) expression as biomarkers of endometrial receptivity using carefully characterized clinical fertile and infertile groups of women. Using a combination of immunohistochemistry and scanning electron microscopy (SEM) called scanning immunoelectron microscopy (SIM), we confirmed that MUC1 mucin was not associated with the endometrial pinopodes, which have been linked with embryo adhesion. We also showed that failure of embryo implantation was associated with an abnormal endometrial expression of MUC1 mucin, and retention of nuclear progesterone receptor (PR) particularly in epithelial cells. Hematoxylin and eosin staining, transmission electron microscopy (TEM), SEM in isolation and immunohistochemistry for interleukin receptor were not shown to be useful markers. Progesterone-dependent regulation of MUC1 appears to be an important factor in determining endometrial receptivity.  相似文献   

16.
CA 125 is an excretory product of human endometrial glands   总被引:4,自引:0,他引:4  
The present investigation was undertaken to study the cellular localization and kinetics of synthesis of CA 125 in the endometrium. CA 125 was localized by immunohistochemistry to the infranuclear region of epithelial cells during the proliferative phase and to the apical luminal border during the secretory phase. In gestational endometrium, both the cytoplasm and the apical luminal border of epithelial cells were intensely positive. No staining was seen in endometrial stromal cells during the normal cycle or in decidualized endometria. Results obtained from in vitro cultures of separated glandular and stromal cells were similar to those obtained by immunohistochemistry. That is, epithelial cells released between 5 and 25 times more CA 125 into the culture medium than did stromal cells. The release of CA 125 was highest in epithelial and stromal cells obtained during the early secretory phase. CA 125 concentrations were markedly elevated in endometrial aspirations obtained during the secretory phase or in endometria with crumbling stroma compared to plasma levels. Plasma levels of CA 125 were slightly elevated during menses. These results suggest that CA 125 is an exocrine product of endometrial epithelial cells. Plasma levels of CA 125 may be of endometrial origin only when the membrane barriers, which normally prevent its entry into the circulation, are damaged.  相似文献   

17.
The mantle of molluscs has been the subject of many studies as it is the organ that forms the shell. Microscopic studies in particular focus on the outer mantle epithelium, but few studies address this epithelium in a histochemical way. In this study, the outer mantle epithelium in adult specimens of Haliotis tuberculata is studied, that is, in specimens involved in maintaining and repairing the shell rather than in generating it. The epithelial cells are studied by scanning (SEM) and transmission electron microscopy (TEM), and by histochemical techniques, including the use of lectins for their biochemical characterization. The epithelium is composed of pigmented epidermal cells with small microvilli and junctional complexes. It furthermore contains a few ciliated cells, as well as two types of secretory cells which differ in the ultrastructural appearance of their secretory granules and their glycoconjugate content. Histochemical study shows secretory cells containing sulphated glycoconjugates such as glycosaminoglycans or mucins rich in N‐acetylgalactosamine and N‐glycoproteins rich in fucose. Furthermore, the apical regions of the epidermal cells are positive for lectins that label fucose, mannose and N‐acetylglucosamine. The role of epithelial cells in the synthesis of structural components of the shell is discussed.  相似文献   

18.
19.
In vitro fertilization has overcome infertility issues for many couples. However, achieving implantation of a viable embryo into the maternal endometrium remains a limiting step in optimizing pregnancy success. The molecular mechanisms which characterize the transient state of endometrial receptivity, critical in enabling embryo‐endometrial interactions, and proteins which underpin adhesion at the implantation interface, are limited in humans despite these temporally regulated processes fundamental to life. Hence, failure of implantation remains the “final frontier” in infertility. A human coculture model is utilized utilizing spheroids of a trophectoderm (trophoblast stem) cell line, derived from pre‐implantation human embryos, and primary human endometrial epithelial cells, to functionally identify “fertile” versus “infertile” endometrial epithelium based on adhesion between these cell types. Quantitative proteomics identified proteins associated with human endometrial epithelial receptivity (“epithelial receptome”) and trophectoderm adhesion (“adhesome”). As validation, key “epithelial receptome” proteins (MAGT‐1/CDA/LGMN/KYNU/PC4) localized to the epithelium of receptive phase (mid‐secretory) endometrium obtained from fertile, normally cycling women but is largely absent from non‐receptive (proliferative) phase tissues. Factors involved in embryo‐epithelium interaction in successive temporal stages of endometrial receptivity and implantation are demonstrated and potential targets for improving fertility are provided, enhancing potential to become pregnant either naturally or in a clinical setting.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号