首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Granulosa cells from follicles of different sizes from Booroola x Merino ewes which were homozygous (FF), heterozygous (F+) or non-carriers(++) of a fecundity gene were obtained 0-48 h after cloprostenol injection on Day 10 of the oestrous cycle. The highest mean amounts of cAMP produced by the cells did not differ between the genotypes. However, in the ++ ewes it was attained by cells from follicles greater than or equal to 5 mm in diameter, whereas in F+ and FF ewes it was attained by cells from follicles 3-4.5 mm in diameter. Cells from 1-2.5-mm diameter follicles of FF ewes were more sensitive to FSH and LH than were corresponding cells from F+ or ++ ewes. Granulosa cells from greater than or equal to 5 mm diameter follicles of ++ ewes 12-24 h after injection of cloprostenol had a lower mean response to FSH and LH than did cells obtained 0-6 or 36-48 h after cloprostenol. No such effect of time was evident for cells from any size of follicles obtained from F+ or FF ewes. In 1-2.5-mm diameter follicles, the mean aromatase activity of granulosa cells from ++ and F+ ewes was similar, but significantly lower than that of cells from FF ewes. In 3-4.5 mm diameter follicles, the mean aromatase activity of cells from F+ and FF ewes was similar, and significantly higher than that of cells from ++ ewes. For all 3 genotypes, there was a significant positive relationship between FSH or LH stimulation of granulosa cell cAMP production and cellular aromatase activity.  相似文献   

2.
The mean plasma concentrations of FSH and LH were significantly higher in FF ewes than in ++ ewes with those F+ animals being consistently in between. These gene-specific differences were found during anoestrus, the luteal phase and during a cloprostenol-induced follicular phase, suggesting that the ovaries of ewes with the F-gene are more often exposed to elevated concentrations of FSH and LH than are the ovaries of ewes without the gene. The gene-specific differences in LH secretion arose because the mean LH amplitudes were 2-3 times greater in FF compared to ++ ewes with the LH amplitudes for F+ ewes being in between. The LH pulse frequencies were similar. In these studies the pulsatile nature of FSH secretion was not defined. The pituitary contents of LH during the luteal phase, were similar in all genotypes whereas for FSH they were significantly higher in the F-gene carriers compared to ++ ewes. The pituitary sensitivity to exogenous GnRH (0.1, 0.5 and 25 micrograms i.v.) was related to genotype. Overall the LH responses to GnRH were lower in FF ewes than in ++ ewes with the results for the F+ ewes being in between. The FSH responses to all GnRH doses in the FF genotype were minimal (i.e. less than 2-fold). In the other genotypes a greater than 2-fold response was noted only at the highest GnRH dose (i.e. 25 micrograms). Treatment of FF and F+ but not ++ ewes with GnRH eventually led to a reduced FSH output, suggesting that the pituitary responses to endogenous GnRH were being down-regulated in the F-gene carriers whereas this was not the case in the non-carriers. Collectively these data confirm that peripheral plasma and the pituitary together with the ovary are compartments in which F-gene differences can be observed. In conclusion, these findings raise the possibility that F-gene-specific differences may also extend to the hypothalamus and/or other regions of the brain.  相似文献   

3.
At 37 degrees C 125I-labelled human (h) FSH (NIAMDD-hFSH-I-3) bound rapidly to granulosa cells from Booroola and Romney ewes with 50% maximum binding achieved after 3 min and equilibrium being reached within 45 min, irrespective of whether the cells were obtained from the FF, F+ or ++ Booroola genotypes or from Romney ewes. Binding of 125I-labelled FSH followed second order kinetics and there was no effect of follicle diameter (1-2.5 mm vs greater than or equal to 3 mm). Irrespective of breed, genotype or follicle size, the mean (+/- s.e.m.) calculated association rate constant, (ka) was 7.3 (+/- 0.8) x 10(5) litres mol-1 sec-1 (n = 12). Dissociation of receptor bound 125I-labelled hFSH was less than 5% after 30 min and low but variable (i.e. between 0 and 30%) after 2-6 h irrespective of breed, genotype or follicle size. No gene-specific differences were noted in binding specificity between F+ and ++ genotypes: studies were not performed with cells from FF ewes because of insufficient cells. The binding of 125I-labelled hFSH could be displaced with sheep FSH (NIH-FSH-S16; 10% cross-reaction) and FSH-P (2.5% cross-reaction) but other sheep pituitary hormones and hCG showed little or no cross-reaction (less than or equal to 0.1%). The calculated binding capacities (Bmax) and equilibrium dissociation constants (Kd) for 125I-labelled hFSH binding to granulosa cells did not differ between the Booroola genotypes or between Booroola or Romney follicles of different diameter (i.e. 1-2.5 mm; or greater than or equal to 3 mm). The overall mean +/- s.e.m. (n = 24) Bmax and Kd values were 16.7 +/- 0.8 fm/mg protein (i.e. approximately 800 available receptor binding sites/cell) and 1.1 +/- 0.1 nM respectively. Collectively, these findings suggest that the earlier maturation of follicles in FF or F+ ewes compared to ++ ewes is unlikely to be due to gene-specific differences in the FSH binding characteristics of the granulosa cells.  相似文献   

4.
A marked difference in both the function and composition of individual ovarian follicles was noted in Booroola X Romney ewes (6-7 years of age) which had previously been segregated on at least one ovulation rate record of 3-4 (F + ewes, N = 21) or less than 3 (++ ewes, N = 21). Follicles in F + ewes produced oestradiol and reached maturity at a smaller diameter than in ++ ewes. In F+ ewes (N = 3), the presumptive preovulatory follicles were 4.4 +/- 0.5 (s.e.m.) mm in diameter and contained 2.1 +/- 0.3 X 10(6) (s.e.m.) granulosa cells, whereas in ++ ewes (N = 3), such follicles were 7.3 +/- 0.3 mm in diameter and contained 6.5 +/- 0.8 X 10(6) cells. During a prostaglandin (PG)-induced follicular phase, the secretion rate of oestradiol from ovaries containing 3 presumptive preovulatory follicles in F + ewes was similar to that from ovaries with only one such follicle in ++ ewes. We suggest that the putative 'gene effect' in F + ewes is manifested during early follicular development and that it may be mediated via an enhanced sensitivity of granulosa cells to pituitary hormones. As a consequence, the development of 3 preovulatory follicles in F + ewes may be necessary to provide a cell mass capable of producing the same quantity of oestradiol as that from one preovulatory follicle in ++ ewes.  相似文献   

5.
The production of inhibin by granulosa cells was studied in vitro using cells from follicles of various sizes and health. Follicles were recovered on Days 10-13 of the oestrous cycle, from Booroola x Romney ewes which were homozygous (FF) carriers or non-carriers (++) of the fecundity (F) gene. Inhibin was measured using a bioassay based on the suppression of follicle-stimulating hormone (FSH) output by cultured pituitary cells from ovariectomized Romney ewes and, in some instances, for comparative purposes, by radioimmunoassay also. Geometric mean inhibin production by granulosa cells from nonatretic follicles increased with increasing follicle diameter, during the first 24 h of culture, for both genotypes. The geometric mean production of inhibin by cells from nonatretic 3-4.5 mm diameter FF follicles (the largest follicles found in FF ewes), was significantly higher (P less than 0.05) than that by cells from non-atretic 3-4.5 mm diameter ++ follicles, but similar to that of cells from non-atretic greater than or equal to 5 mm diameter ++ follicles. The production of oestradiol-17 beta by cells cultured in the presence of testosterone (1 microgram/ml) followed a pattern similar to cellular inhibin production. There was a positive linear correlation between inhibin and oestradiol-17 beta production during the first 24 h of culture, for both genotypes. In addition to acting as a substrate for oestradiol-17 beta synthesis, testosterone generally had a slight, stimulatory effect on inhibin production.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

6.
No gene-specific differences were found with respect to LH or testosterone pulsatile secretion (over 12 h), or in 12 hourly mean FSH concentrations in adult Booroola FF and ++ rams. Also, no differences between genotypes in the LH response to an injection of testosterone propionate, the FSH response to an infusion of bovine follicular fluid, or the testosterone response to injections of PMSG were noted. However, during the phase of seasonal testicular development, mean testosterone pulse amplitude (over 12 h) and the FSH response to 25 micrograms GnRH were higher in FF than in ++ rams (P less than 0.05); there were also significant effects of sire (P less than 0.05 in FF genotype only) and litter size (P less than 0.05) on testosterone pulse amplitude and GnRH-stimulated FSH release, respectively. During the breeding season, mean LH, but not FSH, concentrations were higher in FF than in ++ rams, after an injection of 0.5 micrograms GnRH; LH release was not affected by sire or litter size (P greater than 0.05). Long-term studies revealed that the FF rams were born in significantly larger litters, they weighed significantly less than ++ rams (P less than 0.05), and that bodyweight was significantly correlated (P less than 0.05) with litter size. There were no differences in testis size, and testis size was not significantly correlated with bodyweight. There was a strong tendency (P = 0.056) for overall mean FSH concentrations, measured weekly for 9 months, to be highest more often in FF than in ++ rams.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

7.
Litter size (LS) in sheep is determined mainly by ovulation rate (OR). Several polymorphisms have been identified in the growth differentiation factor 9 (GDF9) gene that result in an increase in OR and prolificacy of sheep. Screening the databank of the Brazilian Sheep Breeders Association for triplet delivery, we identified flocks of prolific Ile de France ewes. After resequencing of GDF9, a point mutation (c.943C>T) was identified, resulting in a non‐conservative amino acid change (p.Arg315Cys) in the cleavage site of the propeptide. This new allele was called Vacaria (FecGv). A flock of half‐sib ewes was evaluated for OR in the first three breeding seasons, and Vacaria heterozygotes had higher OR (< 0.001), averaging 2.1 ± 0.1 when compared to 1.2 ± 0.1 in wild‐type ewes. The OR was also influenced by age, increasing in the second and third breeding seasons (< 0.001). In flocks segregating this allele, the LS was higher in mutant sheep (< 0.001), averaging 1.61 ± 0.07 in heterozygotes and 1.29 ± 0.03 in wild‐type ewes. Analysis of homozygote reproductive tract morphology revealed uterine and ovarian hypoplasia. Ovarian follicles continue to develop up to small antral stages, although with abnormal oocyte morphology and altered arrangement of granulosa cells. After the collapse of the oocyte in most follicles, the remaining cells formed clusters that persisted in the ovary. This SNP is useful to improve selection for dam prolificacy and also as a model to investigate GDF9 post‐translation processing and the fate of the follicular cells that remain after the oocyte demise.  相似文献   

8.
In a flock of highly prolific Romney ewes obtained from industry flocks, one ewe (A281), with a production record of 33 lambs born in 11 lambings, produced a number of female descendants with high ovulation rates. The mode of inheritance of this trait was determined in a series of four progeny tests of male descendants of this ewe. The first progeny test produced strong evidence for a new major gene affecting ovulation rate in this family line; this finding was supported by two subsequent progeny tests. The fourth progeny test was designed to test the hypothesis that this gene is carried on the X chromosome. The results showed that six sons of a carrier ram did not inherit the gene, but it was passed on to three of his five maternal grandsons. This finding, together with evidence of genetic segregation in the progeny of carrier females, demonstrates for the first time the presence of a major gene for prolificacy specifically located on the X chromosome. The effect of the gene is to increase ovulation rate by about one additional egg per ewe.  相似文献   

9.
Specific receptors for 125I-labelled hCG in ovarian follicle wall were located in the theca interna. No specific binding of 125I-labelled hCG was found in theca externa and/or stromal tissue. The kinetics of 125I-labelled hCG binding to theca interna followed second order kinetics with calculated association rate constants (ka +/- s.d.) of 1.57 +/- 0.16 X 10(6) and 0.57 +/- 0.02 X 10(6) litres mol-1 sec-1 at 37 degrees C and 22 degrees C respectively. Dissociation of specifically bound 125I-labelled hCG from theca interna was minimal at 37 degrees C and 22 degrees C. The binding of 125I-labelled hCG to theca interna could be displaced with PMSG, FSH-P and sheep LH but other sheep pituitary hormones and LH-releasing hormone showed little or no cross-reaction. The calculated binding capacities (Bmax) and equilibrium dissociation constants (Kd) for 125I-labelled hCG binding to theca interna did not differ between Romney ewes and Booroola x Romney ewes with and without the fecundity (F) gene on Day 10 of the oestrous cycle, during anoestrus or at 36 h after an injection of cloprostenol on Day 10 of the oestrous cycle. When the data for Day 10 and anoestrus were pooled, the median (range) Bmax and Kd values in non-atretic follicles (greater than or equal to 3 mm diameter) were 12.0 (5.1-23.5) fmol/mg protein and 0.10 (0.05-0.16) nM respectively. At 36 h after cloprostenol injection the respective median (range) Bmax and Kd values in non-atretic follicles (greater than or equal to 3 mm diam.) increased to 46.9 (28.4-70.3) fmol/mg protein and 0.23 (0.13-0.65) nM respectively. In corpora lutea the hCG binding characteristics were similar in all the above breeds/genotypes. On Day 10 of the cycle, the mean Bmax but not the mean Kd value was significantly higher (P less than 0.01) than the corresponding value at 36 h after cloprostenol injection. In granulosa cells, from follicles of greater than or equal to 5 mm diameter of Romney and Booroola x Romney (++) ewes and from follicles of greater than or equal to 3 mm diameter of Booroola x Romney (F+) ewes, the hCG binding characteristics were similar. In granulosa cells from smaller sized follicles from the above breeds/genotypes, no specific hCG binding was noted.  相似文献   

10.
The plasma concentrations of FSH and LH were measured in ovariectomized Booroola FF and ++ ewes before and after treatment with subcutaneous implants of oestradiol-17 beta (0, 2 or 8 cm Silastic capsules; 5 ewes/genotype per dose) or progesterone (0, 1 or 3 Silastic envelopes; 5 ewes/genotype per dose) or subcutaneous injections of steroid-free bovine follicular fluid (bFF; 0, 0.5, 1.0, 2.5 or 5 ml; 4 ewes/genotype per dose). During the first 50 h after implantation of oestradiol or progesterone, or the first 24 h after bFF treatment, the FSH and LH concentrations in plasma were not different between the genotypes although there were significant effects of the steriods and bFF with respect to dose (P less than 0.05). At 6 days after steroid implantation, no gene-specific effects were noted for the plasma concentrations of FSH although significant effects of dose of oestradiol (P less than 0.01) but not progesterone were noted. Also at 6 days after steroid implantation, no gene-specific differences in the pulsatile patterns (i.e. peak frequency or amplitude) of plasma LH concentrations were noted although there were significant effects of steriod dose (P less than 0.05) on frequency and/or amplitude. It is concluded that the higher ovulation-rate in FF than ++ Booroola ewes is unlikely to be due to gene-specific differences in the sensitivity of the hypothalamic-pituitary axis to ovarian hormones.  相似文献   

11.
The 24 h i.v. infusion of Merino ewes with 60 or 100 microgram mouse epidermal growth factor (EGF)/kg body weight on Days 4, 9 or 14 of the oestrous cycle decreased the strength of wool attachment and caused marked changes in subsequent reproductive performance. In ovaries removed 2 days after EGF treatment all follicles greater than or equal to 0.6 mm diameter were atretic. After 7 days either a normal pattern of atresia or no atresia was evident while after 12 days the pattern of follicular atresia was similar to that in controls. Irrespective of stage of cycle EGF caused dose-dependent increases in plasma FSH concentrations that persisted for up to 14 days. Changes in plasma LH concentrations were generally similar after infusion on Days 4 and 14, but were smaller and shorter-lived after infusion on Day 9. Irrespective of dose, the infusion of EGF on Days 4 and 14 caused immediate luteolysis then the formation of a luteinized follicle in many ewes. Most ewes treated on Day 4 returned to oestrus between Days 17 and 21 with the same ovulation rate (1.3) as the controls. Of those infused on Day 14 oestrus occurred about a cycle length later than expected and their ovulation rate then (1.9) was also similar to that of the controls (1.7). Luteal function was not affected in ewes infused on Day 9, and most returned to oestrus between Days 17 and 20 with an ovulation rate of 3.2. Fertile rams were not placed with the ewes until after the differences in ovulation rate had been observed. Mating occurred generally 2-4 weeks after treatment, and there were no differences between EGF-treated and control ewes in fertility or fecundity. The results are interpreted as indicating that mouse EGF induces ovarian follicular atresia but has differential effects on luteal function according to the stage of the oestrous cycle at which it is given. As a consequence of these two effects, which lead to differential changes in gonadotrophin secretion, ovarian function may be temporarily impaired, little affected or improved.  相似文献   

12.
No gene-specific differences were found during either the luteal or follicular phases of the oestrous cycle in the venous secretion rates of ovaries or in concentrations of immunoreactive inhibin in peripheral plasma between Booroola ewes that were homozygous carriers (BB) or non-carriers (++) of the FecB gene. In three experiments in which concentrations of plasma inhibin and follicle-stimulating hormone (FSH) were compared, gene-specific differences were noted for FSH (P less than 0.05), but no significant correlations were noted between FSH and inhibin for either genotype. Granulosa cells and follicular fluid, but not theca interna, stroma or corpora lutea, were the major intra-ovarian sites of inhibin; no gene-specific differences were noted for inhibin concentrations in follicular fluid or in any of the intra-ovarian tissues. The mean concentrations of inhibin in follicular fluid remained constant irrespective of follicular diameter whereas the mean total contents of inhibin increased significantly with increasing diameter (P less than 0.05). Inhibin secretion rates were four times higher in ovaries with oestrogen-enriched follicles (i.e. greater than or equal to 50 ng oestradiol ml-1) than in ovaries with no such follicles (P less than 0.01). Moreover, inhibin concentrations were higher in follicular fluid of oestrogen-enriched follicles than in those with low oestrogen (i.e. less than 50 ng ml-1; P less than 0.05). Ovariectomy resulted in a significant reduction in concentrations of immunoreactive inhibin from plasma (P less than 0.01). The residual plasma inhibin in some Booroola ewes was not associated with genotype. It is concluded that, although antral follicles are a major source of inhibin in Booroola ewes, immunoreactive inhibin is not associated with the FecB gene and is not responsible for the gene-specific differences in concentrations of FSH in plasma.  相似文献   

13.
G.B. Martin 《Theriogenology》1979,12(5):283-287
Seasonally anovular Merino ewes can be induced to ovulate by introducing rams. This ovulation is rarely accompanied by oestrus, and the resulting corpus luteum may regress prematurely. Oestradiol (100 μg i.m.) delayed and depressed the ovulatory response (33/45 vs 33/34 for controls), but had no effect on the expression of oestrus (10/33 vs 7/33 in controls) or the frequency of short cycles (16/33 vs 15/33 for controls). The ovulation following premature regression of the CL was not accompanied by oestrus. It seems unlikely that the lack of oestrus and the formation of a CL with short life span are due to a deficiency of oestradiol.  相似文献   

14.
Before castration, the mean plasma concentrations of luteinizing hormone (LH) and follicle-stimulating hormone (FSH) did not differ between FF and ++ Booroola rams. After castration, mean LH and FSH concentrations increased after 8 h, and for the next 14 days the rate of increase in FSH, but not LH, secretion was significantly faster in FF than in ++ rams (P less than 0.05). Mean FSH concentrations over this period were significantly higher in FF than in ++ rams (P less than 0.05). In both genotypes, the ranked FSH values did not significantly change their order over time, i.e. a significant within-ram effect was noted (P less than 0.05). Repeated-measures analysis of variance indicated a significant effect of genotype on mean FSH secretion (P less than 0.05) and a significant effect of sire in the FF (P less than 0.05), but not the ++ (P = 0.76), genotype. From Day 28 to Day 58 after castration, FSH and LH concentrations were variable and no overall increases in concentrations were observed. The mean concentrations of both hormones over this period were not related to genotype. There were no gene-specific differences in pulsatile LH secretion 14 weeks after castration. However, the mean LH, but not FSH, response to a bolus injection of 25 micrograms of gonadotrophin-releasing hormone (GnRH) was significantly higher in FF than in ++ rams (P less than 0.05) and this was not significantly affected by sire. These studies support the hypothesis that the F gene is expressed in adult rams, in terms of pituitary responsiveness to an injection of GnRH and to the removal of the testes, but it is not clear from this study whether the influence of sire is related to or independent of the apparent gene-specific differences.  相似文献   

15.
A test widely used to assess fear and novelty responses in domestic species is the open field. The aim of this study was to investigate the effect of RYR(1) genotype on open field behavior in growing pigs. The study subjected 15 heterozygous (Nn) and 15 RYR(1)-free (NN) gilts of 19 weeks of age to 3 replicates of an open field test 2 days apart from each other. The study measured the number of grid lines crossed and defecation score in the test arena. There was a significant individual correlation among the 3 replicates of the test, both for number of grid lines crossed and defecation score (p <.05). RYR(1) genotype had a significant effect on number of grid lines crossed, with NN gilts showing more overall activity than Nn gilts (p <.05). The study observed no significant differences in defecation score between genotypes. This result suggests that the RYR(1) genotype may have an effect on the appraisal of novelty. Thus, it would be interesting to take this factor into account when using this methodology to assess fear responses in pigs and in interpreting the results with respect to welfare.  相似文献   

16.
Inheritance of the ovulation rate (OR) in the Lacaune meat breed was studied through records from a small nucleus of 36 hyper-prolific ewes screened on farms on the basis of their natural litter size, and from progeny data of three selected Lacaune sires. These sires were chosen at the AI centre according to their breeding values estimated for the mean and the variability of their daughters'' litter size. Non-carrier Lacaune dairy ewes were inseminated to produce 121 F1 daughters and 27 F1 sons. Twelve sons (four from each sire) were used in turn to inseminate non-carrier Lacaune dairy ewes providing 260 BC progeny ewes. F1 and BC progeny were brought from private farms and gathered after weaning on an experimental farm where ovulation rates were recorded in the first and second breeding seasons. With an average of 6.5 records each, the mean OR of hyper-prolific ewes was very high (5.34), and 38.4% of records showed a rate of 6 or more. F1 data showed high repeatability of OR (r = 0.54) within ewe, with significant variability among ewes. High OR (≥ 4) were observed in each family. A segregation analysis provided a significant likelihood ratio and classified the three founders as heterozygous. BC ewes also displayed high repeatability of OR (r = 0.47) and the mean OR varied considerably between families (from 1.24 to 1.78). Seven of the 12 BC families presented high-ovulating ewes (at least one record ≥ 4) and segregation analysis yielded a highly significant likelihood ratio as compared to an empirical test distribution. The high variability of the mean ovulation rate shown by a small group of daughters of BC ewes inseminated by putative carrier F1 rams, and the very high ovulation rate observed for some of these ewe lambs, confirmed the segregation of a major gene with two co-dominant alleles borne by an autosome. The difference between homozygous non-carriers and heterozygous ewes was about one ovulation on the observed scale and 2.2 standard deviations on the underlying scale.  相似文献   

17.
Animals heterozygous (I+) for the Inverdale prolificacy gene (FecX(I)) have an increased ovulation rate whereas those homozygous (II) for FecX(I) are infertile with "streak" ovaries and follicular development arrested at the primary (type 2 follicle) stage. The streak ovaries also contain small oocyte-free nodules with granulosa-like cells and often tumor-like structures. It has been hypothesized that these abnormal structures are of granulosa cell origin, and the aim of this study was to determine whether genes normally expressed in granulosa cells are also expressed in the nodules and tumor-like structures. The mRNAs encoding c-kit and its ligand stem cell factor (SCF), FSH receptor (FSH-R), follistatin, alpha-inhibin subunit, and the beta(A)- and beta(B)-activin/inhibin subunits were localized in ovaries of ewes with 0 (++), 1 (I+), or 2 (II) copies of the FecX(I) gene (n = 4-9 animals per genotype per gene) using in situ hybridization. Ontogeny of expression of all mRNAs examined was similar between ++ and I+ ewes. Expression of c-kit mRNA was observed in the oocyte of all follicular types present in ++, I+, and II ewes. Moreover, granulosa cells of type 2 (II) and type 2 and larger follicles (++, I+) expressed SCF mRNA. The mRNAs encoding FSH-R, follistatin, alpha-inhibin subunit, and beta(B)-activin/inhibin subunit were identified in type 3 and larger follicles of ++ and I+ ewes but not in follicles of II ewes that were only at the type 1, 1a, or 2 stages of development. However, the cells within the oocyte-free nodules of II ewes expressed all of these genes. The mRNAs encoding c-kit and beta(A)-activin/inhibin subunit were not observed in granulosa cells until antrum formation (type 5 follicles) or in the nodules of II ewes. Tumors from 4 ewes were obtained and classified as cystic, semisolid, or solid structures containing granulosa-like cells or as solid structures containing predominately fibroblast- and luteal-like cells. Often, two tumors were present on the same ovary. Tumors containing granulosa-like cells (n = 3-4 per gene) expressed the mRNAs encoding alpha-inhibin subunit, beta(A)-, and beta(B)-activin/inhibin subunits, follistatin, and the FSH-R but did not contain detectable amounts of mRNA for c-kit or SCF. Tumors composed predominately of fibroblast- and luteal-like cells expressed very low levels of SCF mRNA; of the other mRNAs examined, none were detected. Also, none of the genes examined were found to be expressed by the surface epithelium, theca externa, fibroblast, or vascular cells within the ovary of animals of any genotype. These findings are consistent with the hypothesis that the somatic cells in oocyte-free nodules and tumor-like tissue in II ewes originate from the granulosa cells of the small follicles.  相似文献   

18.
The influence of Gn-RH, hCG and a PMSG-hCG mixture (PG600) on the time of ovulation, ovulation rate and on the occurrence of oestrus in ewes treated with progestagen-impregnated sponges for 12 days examined. The effects of Gn-RH analogues on plasma LH, oestrus, ovulation and conception rate were also investigated. Six separate experiments were carried out. When 50 micrograms Gn-RH were given 24 h after sponge removal ovulation occurred in 44--46% of ewes within 24 h and in all ewes by 34 h. Gn-RH was a more potent ovulation synchronizer than hCG. Both hCG and PG600 reduced the incidence of overt oestrus. Gn-RH also had this effect in ewes treated during February and May but not in August and September. Gn-RH analogues given 2 days before sponge removal significantly increased ovulation rate. The display of oestrus was not affected in ewes treated 2 days before sponge removal but was suppressed in 43-69% of ewes treated with an analogue at the time of sponge removal. Ovulation occurred in 50-62% of ewes within 30-35 h of injection of Gn-RH analogues, regardless of the time of their administration. The release of LH in response to one analogue was not influenced by the presence of the progestagen-impregnated sponge in the vagina. When given a Gn-RH analogue 2 days before sponge removal or at the time of sponge removal 63 and 62% of mated ewes became pregnant compared with 70% of control ewes.  相似文献   

19.
20.
The circulating concentrations of progesterone, FSH, and follistatin across the estrous cycle and gestation were compared in Australian merino sheep that were homozygous for the Booroola gene, FecB, or were noncarriers. The Booroola phenotype is due to a point mutation in the bone morphogenetic protein receptor 1B. Progesterone concentrations began to rise earlier and were higher in the Booroola ewes than in the noncarriers on most days of the luteal phase but not during the follicular phase of the cycle. Follistatin concentrations remained unchanged across the estrous cycle in both groups of ewes, with no differences between genotypes. FSH concentrations were higher in Booroola ewes than in noncarrier ewes on most days of the estrous cycle, with a significantly higher and broader peak of FSH around the time of estrus. Progesterone concentrations were significantly higher in early and midgestation in Booroola ewes but were lower toward the end of gestation than those in noncarriers. FSH declined in both groups across gestation, with lower concentrations of FSH in Booroola ewes during midgestation. Follistatin remained unchanged across gestation in Booroola ewes and noncarrier ewes with a twin pregnancy but declined across gestation in noncarrier ewes with a singleton pregnancy. These results suggest that follistatin concentration is not regulated by the FecB gene during the estrous cycle and pregnancy but is influenced by the number of fetuses. However, the FecB gene appears to positively affect both progesterone and FSH during the estrous cycle and across pregnancy, which suggests that bone morphogenetic proteins play an important role in the regulation of both hormones.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号