首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.
It is possible to account for hormesis under current regulatory guidelines by invoking criteria for departure from default risk assessment procedures. However, past experience suggests that it will be difficult to amass enough evidence for hormesis in an individual case to permit departure from default procedures. Accordingly, hormesis is likely to be important in agency risk assessments only if guidelines are modified to incorporate hormesis as a default assumption. This could be appropriate if hormesis is determined to be a universal or near-universal phenomenon. Although there is ample evidence that hormesis occurs in many specific situations, the overall prevalence of hormesis is very difficult to evaluate based on currently available data. The lack of a valid statistical test for hormesis is a major limitation when evaluating evidence for hormesis. The attempts at estimating the prevalence of hormesis reviewed herein did not adequately control for false positives and/or may have had inadequate power to detect hormesis. Some suggestions are made for constructing a database and analyzing the data therein that would provide more readily interpretable information on the prevalence of hormesis.  相似文献   

2.
The phenomenon of hormesis has been observed mainly for the response of individual organisms to stress. A reasonable line of inquiry might explore the possibility of observing hormesis at other levels of ecological organization. This initial examination focuses on ecosystem hormesis. Explorations of hormetic responses of ecosystems to stress cannot be made independently of a fundamental concept of ecosystem. The scale‐dependence of ecosystem dynamics also influences whether an ecological disturbance is in reality a stressor. Ecosystem hormesis might be claimed if one or more components of an ecosystem exhibit hormesis. By this definition, ecosystem hormesis would be a trivial extension of hormesis observed for individual organisms. A non‐trivial extension of ecosystem hormesis would include the observation that integrated (i.e., holistic) measures of ecosystem structure or function displayed an hormetic response to an ecological stressor. Several such examples of ecosystem structural and functional hormesis are presented.  相似文献   

3.
Manifestation of hormesis in longevity was modelled by modification of the mortality rate during and after the period of a stress factor action. In heterogeneous population this can lead to observation of unchanged mortality during action of the stress and decrease in mortality after stress period. Stochastic simulations were made to investigate the possibility of detecting the hormesis effect on the basis of the stress-control longitudinal data. The goal of the stochastic simulation was to investigate the role in the hormesis detection of control and stressed group size, of population heterogeneity variance value, of stress and hormesis attributable risks as well as the role of a prior information about the survival in the control group. It was demonstrated that if the attributable risks for stress and hormesis effects are approximately equal, then in both 'high' and 'low' heterogeneous populations the hormesis phenomenon is detected with probability higher than 75% even in relatively 'small' groups of 50 subjects. In case of 'weak' effect the hormesis phenomenon is not detected in a 'highly heterogeneous' population even in a group composed of 1000 subjects. In a 'low heterogeneous' population the hormesis phenomenon is detected with probability higher than 70% when the group size is not less than 200 subjects. Information about the survival in control group did not play a critical role in all experiments and exact survival curve may be replaced by the traditional Kaplan-Meier estimate.  相似文献   

4.
Hormesis is a widespread phenomenon across occurring many taxa and chemicals, and, at the single species level, issues regarding the application of hormesis to human health and ecological risk assessment are similar. However, interpreting the significance of hormesis for even a single species in an ecological risk assessment can be complicated by competition with other species, predation effects, etc. In addition, ecological risk assessments may involve communities of hundreds or thousands of species as well as a range of ecological processes. Applying hormetic adjustments to threshold effect levels for chemicals derived from sensitivity distributions for a large number of species is impractical. For ecological risks, chemical stressors are frequently of lessor concern than physical stressors (e.g., habitat alteration) or biological stressors (e.g., introduced species), but the relevance of hormesis to non‐chemical stressors is unclear. Although ecological theories such as the intermediate disturbance hypothesis offer some intriguing similarities between chemical hormesis and hormetic‐like responses resulting from physical disturbances, mechanistic explanations are lacking. While further exploration of the relevance of hormesis to ecological risk assessment is desirable, it is unlikely that hormesis is a critical factor in most ecological risk assessments, given the magnitude of other uncertainties inherent in the process.  相似文献   

5.
Recent evidence from studies on DNA repair systems that are implicated in accelerated aging syndromes, have revealed a mechanism through which low levels of persistent damage might exert beneficial effects for both cancer prevention and longevity assurance. Beneficial effects of adaptive responses to low doses of insults that in higher concentrations show adverse effects are generally referred to as hormesis. There are numerous examples of hormetic effects ranging from mild stresses of irradiation to heat stress, hypergravity, pro‐oxidants, or food restriction. Although the notion of hormesis is supported by many observations in various organisms, at least two major caveats have thus far prevented the application of hormesis for disease prevention in humans. First, the very nature of hormesis using toxins as a treatment regimen harbors the inherent danger of detrimental consequences. Second, the molecular mechanisms through which insults might exert beneficial effects have thus far remained elusive. Here, I discuss a mechanistic basis for hormesis and its implications for cancer prevention and healthy aging.  相似文献   

6.
Chemical hormesis constitutes an alternative possible use of herbicidal agents for crop enhancement that is, however, compromised by the apparent variability of this low-dose stimulation phenomenon. Studies demonstrating the variability are rare and, therefore, this study investigated the interspecies variability of growth stimulation induced by the auxin-inhibitor PCIB [2-(p-chlorophenoxy)-2-methylpropionic acid] to determine if hormesis is generalizable enough and sufficiently stable between species/cultivars for practical use or which implications may have to be taken into account. In 85 complete dose–response bioassays with 23 cultivars of five species, the variability of PCIB effects was evaluated. The expression of PCIB hormesis proved to depend on the species/cultivar tested, ranging from a cultivar-dependent hormetic efficacy and an occasional lack of hormesis, to a complete lack of hormetic effectiveness in certain species/cultivars. Therefore, frequency estimations, as well as the pattern of dose-dependent variability of dose–response quantities, may inevitably depend on the biological model(s) used and, thus, apply only to the specific conditions for characterization. Comparing the frequency distribution of effective doses demonstrated a risk of a previously hormetic dose causing a loss of hormesis or inhibitory effects in another species/cultivar. Therefore, selecting a dose that will induce hormesis in every species/cultivar is unrealistic. This may limit the window for practical applications to stimulants with negligible varietal differences, to cultivar selective treatments, and/or to cultivars that enable a beneficial long-term use. Hence, efficient crop enhancement by chemical hormesis needs not only a good stimulant, but also a species/cultivar able to convert a specific low-dose treatment into an economic benefit.  相似文献   

7.
Here we describe a random effects threshold dose-response model for clustered binary-response data from developmental toxicity studies. For our model we assume that a hormetic effect occurs in addition to a threshold effect. Therefore, the dose-response curve is based on two components: relationships below the threshold (hormetic u-shaped model) and those above the threshold (logistic model). In the absence of hormesis and threshold effects, the estimation procedure is straightforward. We introduce score tests that are derived from a random effects hormetic-threshold dose-response model. The model and tests are applied to clustered binary data from developmental toxicity studies of animals to test for hormesis and threshold effects. We also compare the score test and likelihood ratio test to test for hormesis and threshold effects in a simulated study.  相似文献   

8.
Despite its resurgence within toxicology and, specifically, risk assessment, the concept of hormesis remains peripheral to current epidemiological practice. In this paper we examine some reasons for this, focusing on applications within occupational and environmental epidemiology. Unclear in the existing literature is whether hormesis pertains to a single biological mechanism or response, or the aggregate effect of all correlates of exposure. Although J-shaped and U-shaped relationships between risk factors and disease endpoints have been identified epidemiologically, it is unclear whether such patterns reflect biological hormesis or a combination of factors resulting in a hormetic-looking relationship. Given the potential importance of assessing hormetic responses in epidemiological studies, we identify and discuss key limitations of epidemiology in validly detecting and interpreting hormesis. For example, most observational occupational and environmental studies lack the ability to determine the dose received by each individual, and therefore poor surrogates of exposure are frequently used, potentially introducing considerable systematic and random error. Further, because exposure is not randomly assigned to humans, the potential for confounding is great. Finally, using a simple simulation to assess the impact of ignoring hormesis in the analysis of epidemiological data containing mild hormesis, we demonstrate a resulting “hormetic bias,” in which relative risks at exposure levels above the hormetic region are systematically overestimated.  相似文献   

9.
陆地生态系统中低剂量毒物刺激作用及拟合模型研究进展   总被引:2,自引:0,他引:2  
郭雪雁  马义兵  李波 《生态学报》2009,29(8):4408-4419
低剂量毒物刺激作用(hormesis)是在毒物剂量/效应关系中低剂量毒物可能表现出对生物生长的一种刺激作用.大量的实验数据表明毒物刺激作用发生的剂量低于未观察到毒性效应的剂量(NOAEL),毒物刺激作用的最大刺激效应一般是对照的130%~160%,是一种客观存在的剂量/反应现象.就毒物刺激作用的概念、机理、毒物刺激作用剂量/反应曲线的一些定量特点和模型的拟合等方面进行了综述,并用实例说明毒物刺激作用模型的最新拟合方法的应用,最后提出了目前毒物刺激作用研究中存在的问题及今后的研究方向.  相似文献   

10.
It is proposed that a novel concept, neurobehavioral hormesis, be considered for integration into the field of toxicology. Hormesis results in a non-linear dose response where low dose exposures to toxicants cause beneficial effects, and detrimental effects at higher doses. Hormesis has not been systematically incorporated into traditional risk assessment methodologies, yet there is recent evidence that this pattern of results is relatively prevalent. In this paper, hormesis is applied to neurobehavioral toxicology, and an operational definition is proposed for application to putative examples of neurobehavioral hormesis. The two primary criteria used for the operational definition are: (1) performance is enhanced with low dose exposure and denigrated at higher doses, and (2) the change in behavior persists following a recovery period. In recent research from our laboratory it was reported that rats exposed to JP-8 jet fuel vapor demonstrated such a pattern of neurobehavioral performance on tests of learning and memory. Specifically, animals with long-term exposure to low concentrations of jet fuel demonstrated enhanced performance on specific operant tasks as compared both to controls and to animals exposed to higher concentrations. The effect was most apparent during complex versus simple operant tests, and was observed months following the last exposure to jet fuel. The effects meet both criteria for the proposed working definition of neurobehavioral hormesis, and thus provide evidence of the validity for considering neurobehavioral hormesis in published and future research, and suggests a more systematic investigation of existing literature may be warranted. Also, it provides additional support for the overall proposal to include hormetic effects in formal risk assessment paradigms.  相似文献   

11.
A recent report (Calabrese et al., Mutat. Res. 726 (2011) 91-97) concluded that an analysis of Ames test mutagenicity data provides evidence of hormesis in mutagenicity dose-response relationships. An examination of the data used in this study and the conclusions regarding hormesis reveal a number of concerns regarding the analyses and possible misinterpretations of the Salmonella data. The claim of hormesis is based on test data from the National Toxicology Program using Salmonella strain TA100. Approximately half of the chemicals regarded as hormetic, and the majority of the specific dose-responses identified as hormetic, were actually nonmutagenic. We conclude that the data provide no evidence of hormetic effects. The Ames test is an excellent measure of bacterial mutagenicity, but the numbers of revertant (mutant) colonies on the plate are the result of a complex interaction between mutagenicity and toxicity, which renders the test inappropriate for demonstrating hormesis in bacterial mutagenicity experiments.  相似文献   

12.
This paper provides a personal account of the history of the hormesis concept, and of the role of the dose response in toxicology and pharmacology. A careful evaluation of the toxicology and pharmacology literatures suggests that the biphasic dose response that characterizes hormesis may be much more widespread than is commonly recognized, and may come to rival our currently favored ideas about toxicological dose responses confined to the linear and threshold representations used in risk assessment. Although hormesis-like biphasic dose responses were already well-established in chemical and radiation toxicology by the early decades of the 20th century, they were all but expunged from mainstream toxicology in the 1930s. The reasons may be found in a complex set of unrelated problems of which difficulties in replication of low-dose stimulatory responses resulting from poor study designs, greater societal interest in high-dose effects, linking of the concept of hormesis to the practice of homeopathy, and perhaps most crucially a complete lack of strong leadership to advocate its acceptance in the right circles. I believe that if hormesis achieves widespread recognition as a valid and valuable interpretation of dose-response results, we would expect an increase in the breadth of evaluations of the dose-response relationship which could be of great value in hazard and risk assessment as well as in future approaches to drug development and/or chemotherapeutics.  相似文献   

13.
Animal bioassay experiments are frequently conducted to assess the toxicity of chemicals on the developing fetus. Experiments are normally conducted at dosage levels that are much higher than human exposure levels to elicit the toxic reproductive effect of the chemical in a limited number of litters. Recently there has been much discussion on the fact that some chemicals may have beneficial effects at low doses and become toxic at high doses. This concept, known as chemical hormesis, has been the focus of attention in many investigations. Here, we consider the prevalence of hormesis in developmental toxicology and show that current design of developmental toxicity testing does not accommodate the study of hormesis. If it can be proved that some developmental toxicants may have stimulatory low dose effects, then design and analysis of developmental toxicity experiments need to be revised by the scientific community and the regulatory agencies. Using a thorough analysis of an experimental data set, we further demonstrate that in order to establish the possible hormetic effects of a chemical in reproduction, often a multiple replication of the experiment may be necessary to examine such effects. Using a trend test, we illustrate that while it is possible that one replicate of a developmental toxicity experiment with a known teratogen shows strong evidence of hormesis, other replicates may show no sign of beneficial effects at low doses.  相似文献   

14.
Fitness varies nonlinearly with environmental variables such as temperature, water availability, and nutrition, with maximum fitness at intermediate levels between more stressful extremes. For environmental agents that are highly toxic at exposures that substantially exceed background levels, fitness is maximized at concentrations near zero--a phenomenon often referred to as hormesis. Two main components are suggested: (1) background hormesis, which derives from the direct adaptation of organisms to their habitats; and (2) stress-derived hormonesis, which derives from metabolic reserves that are maintained as an adaptation to environmental stresses through evolutionary time. These reserves provide protection from lesser correlated stresses. This article discusses illustrative examples, including ethanol and ionizing radiation, aimed at placing hormesis into an ecological and evolutionary context. A unifying approach comes from fitness-stress continua that underlie responses to abiotic variables, whereby selection for maximum metabolic efficiency and hence fitness in adaptation to habitats in nature underlies hormetic zones. Within this reductionist model, more specific metabolic mechanisms to explain hormesis are beginning to emerge, depending upon the agent and the taxon in question. Some limited research possibilities based upon this evolutionary perspective are indicated.  相似文献   

15.
Many have argued that we may be able to extend life and improve human health through hormesis, the beneficial effects of low‐level toxins and other stressors. But, studies of hormesis in model systems have not yet established whether stress‐induced benefits are cost free, artifacts of inbreeding, or come with deleterious side effects. Here, we provide evidence that hormesis results in trade‐offs with immunity. We find that a single topical dose of dead spores of the entomopathogenic fungus, Metarhizium robertsii, increases the longevity of the fruit fly, Drosophila melanogaster, without significant decreases in fecundity. We find that hormetic benefits of pathogen challenge are greater in lines that lack key components of antifungal immunity (Dif and Turandot M). And, in outbred fly lines, we find that topical pathogen challenge enhances both survival and fecundity, but reduces ability to fight off live infections. The results provide evidence that hormesis is manifested by stress‐induced trade‐offs with immunity, not cost‐free benefits or artifacts of inbreeding. Our findings illuminate mechanisms underlying pathogen‐induced life‐history trade‐offs, and indicate that reduced immune function may be an ironic side effect of the “elixirs of life.”  相似文献   

16.
Hormesis is defined as a dose-response relationship that is stimulatory at low doses, but is inhibitory at higher doses. In a given experiment, it is not unusual to observe enhanced responses at low doses, however, such enhanced responses may not imply hormesis, but the random fluctuation of the data. Statistical tests can be developed to detect hormesis when enhanced responses at low concentrations are observed. We propose the use of a model-based approach to detect the presence of, and estimate the extent of, hormesis. This approach includes two steps: detection and estimation. In the detection step, we compare the full and the reduced models. The full model describes the dose-response relationship incorporating the hormetic effect; the reduced model describes the dose-response relationship without the hormetic effect. The full model is an extension of the reduced model and has an extra parameter that measures the amount of increase in response at low doses. A test of statistical significance of this extra parameter can essentially be a test for detecting hormesis. In the estimation step, we obtain the area under the best-fitted dose-response curve falling within the hormetic zone. Considering both the number of concentrations within the hormetic zone and the magnitude of the stimulatory response, we propose using the ratio of the area under the hormetic zone (AUCH) and the area under the best-fitted curve from zero to zero equivalent point (AUCZEP) as an estimate of magnitude of the hormetic effect. Two numerical examples are used to illustrate the use of this model-based approach.  相似文献   

17.
This issue of the Journal of Cell Communication and Cell Signaling on hormetic mechanisms represents an important step in the evolution of the hormesis dose response concept. Since its modern resurgence in the late 1970s the widespread occurrence of hormesis has been in search of its underlying mechanisms. The present integrative set of papers builds upon significant recent advances in the elucidation of hormetic mechanisms and provides the reader with a deep and extensive view of the concept of hormesis from a broad range of researcher perspectives and in many biomedical applications.  相似文献   

18.
In order to survive living organisms have developed multiple mechanisms to deal with tough environmental conditions. Hormesis is defined as a process in which exposure to a low dose of a chemical agent or environmental factor that is damaging at higher doses induces an adaptive beneficial effect on the cell or organism. In this paper, we examine several ideas that might be taken into consideration before using hormesis as a therapeutic tool to improve health and life span, and hopefully will open the discussion for new and interesting debates regard hormesis. The first one is to understand that the same stressor or inductor can activate different pathways in a parallel or dual response, which might lead to diverse outcomes. Another idea is related to the mechanisms involved in activating Nrf2, which might be different and have diverse hormetic effects.Last, we discuss mild oxidative stress in association to low-grade chronic inflammation as a stimulating avenue to be explored and the unexpected effects proposed by the obesity paradox theory. All the previous might help to clarify the reasons why centenarians are able to reach the extreme limits of human life span, which could probably be related to the way they deal with homeostasis maintenance, providing an opportunity for hormesis to intervene significantly.Keyword: Aging, Hormesis, Inflammation, Nrf2, Obesity, Oxidative stress  相似文献   

19.
Abstract

The secondary metabolites produced by higher plants may act as allelochemicals to stimulate or inhibit growth of other plant species. Moringa oleifera is a multipurpose tree which have been reported, in separate studies, to promote growth of other plant species at low concentrations and inhibit the growth at high concentrations. However, allelopathic hormesis and allelochemicals from Moringa oleifera has not been reported. The present studies were conducted to evaluate hormesis, allelopathic potential and allelochemicals from Moringa oleifera leaf extract using Lepidium sativum as a test species. The results revealed that aqueous leaf extract of Moringa oleifera promoted the shoot growth of Lepidium sativum by 41% at lowest tested concentration of 2.5%, while the highest tested concentration (10%) of leaf extract inhibited shoot length and root length of Lepidium sativum by 38% and 85%, respectively, showing allelopathic hormesis. Twelve allelochemicals (p-coumaric acid, salicylic acid, p-hydroxybenzoic acid, m-coumaric acid, protocatechuic acid, ferulic acid, p-hydroxysalicylic acid, syringic acid, vanillic acid, p-hydroxybenzaldehyde, m-hydroxybenzaldehyde and gallic acid) were identified from leaf extract of Moringa oleifera. The results suggest that Moringa oleifera exhibit allelopathic hormesis which may have critical impact on defence, survival and invasion of plants in natural as well as agroecosystems.  相似文献   

20.
Early life events can have dramatic consequences on performance later in life. Exposure to stressors at a young age affects development, the rate of aging, risk of disease, and overall lifespan. In spite of this, mild stress exposure early in life can have beneficial effects on performance later in life. These positive effects of mild stress are referred to as physiological conditioning hormesis. In our current study we used anoxia conditioning hormesis as a pretreatment to reduce oxidative stress and improve organismal performance, lifespan, and healthspan of Caribbean fruit flies. We used gamma irradiation to induce mild oxidative damage in a low-dose experiment, and massive oxidative damage in a separate high-dose experiment, in pharate adult fruit flies just prior to adult emergence. Irradiation-induced oxidative stress leads to reduced adult emergence, flight ability, mating performance, and lifespan. We used a hormetic approach, one hour of exposure to anoxia plus irradiation in anoxia, to lower post-irradiation oxidative damage. We have previously shown that this anoxic-conditioning treatment elevates total antioxidant capacity and lowers post-irradiation oxidative damage to lipids and proteins. In this study, conditioned flies had lower mortality rates and longer lifespan compared to those irradiated without hormetic conditioning. As a metric of healthspan, we tracked mating both at a young age (10 d) and old age (30 d). We found that anoxia-conditioned male flies were more competitive at young ages when compared to unconditioned irradiation stressed male flies, and that the positive effects of anoxic conditioning hormesis on mating success were even more pronounced in older males. Our data shows that physiological conditioning hormesis at a young age, not only improves immediate metrics of organismal performance (emergence, flight, mating), but the beneficial effects also carry into old age by reducing late life oxidative damage and improving lifespan and healthspan.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号