首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Plant functional proteomics research is increasingly dependent upon vectors that facilitate high-throughput gene cloning and expression of fusions to autofluorescent proteins. Here, we describe the pSITE family of plasmids, a new set of Agrobacterium binary vectors, suitable for the stable integration or transient expression of various autofluorescent protein fusions in plant cells. The pSITE vectors permit single-step Gateway-mediated recombination cloning for construction of binary vectors that can be used directly in transient expression studies or for the selection of transgenic plants on media containing kanamycin. These vectors can be used to express native proteins or fusions to monmeric red fluorescent protein or the enhanced green fluorescent protein and its cyan and yellow-shifted spectral variants. We have validated the vectors for use in transient expression assays and for the generation of transgenic plants. Additionally, we have generated markers for fluorescent highlighting of actin filaments, chromatin, endoplasmic reticulum, and nucleoli. Finally, we show that pSITE vectors can be used for targeted gene expression in virus-infected cells, which should facilitate high-throughput characterization of protein dynamics in host-virus interactions.  相似文献   

2.
Yang X  Doherty GP  Lewis PJ 《Plasmid》2008,59(1):54-62
Tandem affinity purification has become a valuable tool for the isolation of protein complexes. Here we describe the construction and use of a series of plasmid vectors for Gram positive bacteria. The vectors utilize the SPA tag as well as variants containing a 3C rather than the TEV protease site as 3C protease has been shown to work efficiently at the low temperatures (4 degrees C) used to isolate protein complexes. In addition, a further vector incorporates a GST moiety in place of the 3xFLAG of the SPA tag which provides an additional tagging option for situations where SPA binding may be inefficient. The vectors are all compatible with previously constructed fluorescent protein fusion vectors enabling construction of a suite of affinity and fluorescently tagged genes using a single PCR product.  相似文献   

3.
Nguyen KD  Au-Young SH  Nodwell JR 《Plasmid》2007,58(2):167-173
The enhanced green fluorescent protein (eGFP) is widely used to investigate cell type specific gene expression and protein localization in the filamentous streptomycetes. To broaden the scope of cell biological investigation in these organisms, we have adapted shuttle vectors for the construction of gene fusions to the monomeric red fluorescent protein (mRFP1) and have tested them in Streptomyces coelicolor. Using fusions of mRFP1 to the cell division proteins DivIVA and FtsZ, we show that mRFP1 is comparable to eGFP for cell biological research in this organism and suggest that this paves the way for the future use of two-color imaging and FRET.  相似文献   

4.
5.
Although archaea, Gram‐negative bacteria, and mammalian cells constitutively secrete membrane vesicles (MVs) as a mechanism for cell‐free intercellular communication, this cellular process has been overlooked in Gram‐positive bacteria. Here, we found for the first time that Gram‐positive bacteria naturally produce MVs into the extracellular milieu. Further characterizations showed that the density and size of Staphylococcus aureus‐derived MVs are both similar to those of Gram‐negative bacteria. With a proteomics approach, we identified with high confidence a total of 90 protein components of S. aureus‐derived MVs. In the group of identified proteins, the highly enriched extracellular proteins suggested that a specific sorting mechanism for vesicular proteins exists. We also identified proteins that facilitate the transfer of proteins to other bacteria, as well to eliminate competing organisms, antibiotic resistance, pathological functions in systemic infections, and MV biogenesis. Taken together, these observations suggest that the secretion of MVs is an evolutionally conserved, universal process that occurs from simple organisms to complex multicellular organisms. This information will help us not only to elucidate the biogenesis and functions of MVs, but also to develop therapeutic tools for vaccines, diagnosis, and antibiotics effective against pathogenic strains of Gram‐positive bacteria.  相似文献   

6.
Expression of cloned genes at desired levels in cultured mammalian cells is essential for studying protein function. Controlled levels of expression have been difficult to achieve, especially for cell lines with low transfection efficiency or when expression of multiple genes is required. An internal ribosomal entry site (IRES) has been incorporated into many types of expression vectors to allow simultaneous expression of two genes. However, there has been no systematic quantitative analysis of expression levels in individual cells of genes linked by an IRES, and thus the broad use of these vectors in functional analysis has been limited. We constructed a set of retroviral expression vectors containing an IRES followed by a quantitative selectable marker such as green fluorescent protein (GFP) or truncated cell surface proteins CD2 or CD4. The gene of interest is placed in a multiple cloning site 5' of the IRES sequence under the control of the retroviral long terminal repeat (LTR) promoter. These vectors exploit the approximately 100-fold differences in levels of expression of a retrovirus vector depending on its site of insertion in the host chromosome. We show that the level of expression of the gene downstream of the IRES and the expression level and functional activity of the gene cloned upstream of the IRES are highly correlated in stably infected target cells. This feature makes our vectors extremely useful for the rapid generation of stably transfected cell populations or clonal cell lines expressing specific amounts of a desired protein simply by fluorescent activated cell sorting (FACS) based on the level of expression of the gene downstream of the IRES. We show how these vectors can be used to generate cells expressing high levels of the erythropoietin receptor (EpoR) or a dominant negative Smad3 protein and to generate cells expressing two different cloned proteins, Ski and Smad4. Correlation of a biologic effect with the level of expression of the protein downstream of the IRES provides strong evidence for the function of the protein placed upstream of the IRES.  相似文献   

7.
Fluorescent protein fusions are a powerful tool to monitor the localization and trafficking of proteins. Such studies are particularly easy to carry out in the budding yeast Saccharomyces cerevisiae due to the ease with which tags can be introduced into the genome by homologous recombination. However, the available yeast tagging plasmids have not kept pace with the development of new and improved fluorescent proteins. Here, we have constructed yeast optimized versions of 19 different fluorescent proteins and tested them for use as fusion tags in yeast. These include two blue, seven green, and seven red fluorescent proteins, which we have assessed for brightness, photostability and perturbation of tagged proteins. We find that EGFP remains the best performing green fluorescent protein, that TagRFP-T and mRuby2 outperform mCherry as red fluorescent proteins, and that mTagBFP2 can be used as a blue fluorescent protein tag. Together, the new tagging vectors we have constructed provide improved blue and red fluorescent proteins for yeast tagging and three color imaging.  相似文献   

8.
Green fluorescent protein (GFP) and GFP-like proteins of different colors are important tools in cell biology. In many studies, the intracellular targeting of proteins has been determined by transiently expressing GFP fusion proteins and analyzing their intracellular localization by fluorescence microscopy. In most vectors, expression of GFP is driven by the enhancer/promoter cassette of the immediate early gene of human cytomegalovirus (hCMV). This cassette generates high levels of protein expression in most mammalian cell lines. Unfortunately, these nonphysiologically high protein levels have been repeatedly reported to artificially alter the intracellular targeting of proteins fused to GFP. To cope with this problem, we generated a multitude of attenuated GFP expression vectors by modifying the hCMV enhancer/promoter cassette. These modified vectors were transiently expressed, and the expression levels of enhanced green fluorescent protein (EGFP) alone and enhanced yellow fluorescent protein (EYFP) fused to another protein were determined by fluorescence microscopy and/or Western blotting. As shown in this study, we were able to (i) clearly reduce the expression of EGFP alone and (ii) reduce expression of an EYFP fusion protein down to the level of the endogenous protein, both in a graded manner.  相似文献   

9.
The zebrafish embryo is especially valuable for cell biological studies because of its optical clarity. In this system, use of an in vivo fluorescent reporter has been limited to green fluorescent protein (GFP). We have examined other fluorescent proteins alone or in conjunction with GFP to investigate their efficacy as markers for multi-labeling purposes in live zebrafish. By injecting plasmid DNA containing fluorescent protein expression cassettes, we generated single-, double-, or triple-labeled embryos using GFP, blue fluorescent protein (BFP, a color-shifted GFP), and red fluorescent protein (DsRed, a wild-type protein structurally related to GFP). Fluorescent imaging demonstrates that GFP and DsRed are highly stable proteins, exhibiting no detectable photoinstability, and a high signal-to-noise ratio. BFP demonstrated detectable photoinstability and a lower signal-to-noise ratio than either GFP or DsRed. Using appropriate filter sets, these fluorescent proteins can be independently detected even when simultaneously expressed in the same cells. Multiple labels in individual zebrafish cells open the door to a number of biological avenues of investigation, including multiple, independent tags of transgenic fish lines, lineage studies of wild-type proteins expressed using polycistronic messages, and the detection of protein-protein interactions at the subcellular level using fluorescent protein fusions.  相似文献   

10.
Here, we report on the construction of a novel series of Gateway‐compatible plant transformation vectors containing genes encoding autofluorescent proteins, including Cerulean, Dendra2, DRONPA, TagRFP and Venus, for the expression of protein fusions in plant cells. To assist users in the selection of vectors, we have determined the relative in planta photostability and brightness of nine autofluorescent proteins (AFPs), and have compared the use of DRONPA and Dendra2 in photoactivation and photoconversion experiments. Additionally, we have generated transgenic Nicotiana benthamiana lines that express fluorescent protein markers targeted to nuclei, endoplasmic reticulum or actin filaments. We show that conducting bimolecular fluorescence complementation assays in plants that constitutively express cyan fluorescent protein fused to histone 2B provides enhanced data quality and content over assays conducted without the benefit of a subcellular marker. In addition to testing protein interactions, we demonstrate that our transgenic lines that express red fluorescent protein markers offer exceptional support in experiments aimed at defining nuclear or endomembrane localization. Taken together, the new combination of pSITE‐BiFC and pSITEII vectors for studying intracellular protein interaction, localization and movement, in conjunction with our transgenic marker lines, constitute powerful tools for the plant biology community.  相似文献   

11.
Several fluorescent probes have been used in functional studies to analyze drug transport in multidrug-resistant cells by fluorescent microscopy. Because many of these molecules have some drawbacks, such as toxicity, nonspecific background, or accumulation in mitochondria, new fluorescent compounds have been proposed as more useful tools. Among these substances, Bodipy-FL-Verapamil, a fluorescent conjugate of the drug efflux blocker verapamil, has been used to study P-glycoprotein activity in different cell types. In this study we tested by fluorescent microscopy the accumulation of Bodipy-FL-Verapamil in cell lines that overexpress either P-glycoprotein (P-gp) or multidrug resistance-related protein 1 (MRP1). Expression of P-gp and MRP1 was evaluated at the mRNA level by RT-PCR technique and at the protein level by flow cytometric analysis using C219 and MRP-m6 monoclonal antibodies. Results indicate that Bodipy-FL-Verapamil is actually a substrate for both proteins. As a consequence, any conclusion about P-gp activity obtained by the use of Bodipy-FL-Verapamil as fluorescent tracer should be interpreted with caution.  相似文献   

12.
Filamentous phage display has been extensively used to select proteins with binding properties of specific interest. Although many different display platforms using filamentous phage have been described, no comprehensive comparison of their abilities to display similar proteins has been conducted. This is particularly important for the display of cytoplasmic proteins, which are often poorly displayed with standard filamentous phage vectors. In this article, we have analyzed the ability of filamentous phage to display a stable form of green fluorescent protein and modified variants in nine different display vectors, a number of which have been previously proposed as being suitable for cytoplasmic protein display. Correct folding and display were assessed by phagemid particle fluorescence, and with anti-GFP antibodies. The poor correlation between phagemid particle fluorescence and recognition of GFP by antibodies, indicates that proteins may fold correctly without being accessible for display. The best vector used a twin arginine transporter leader to transport the displayed protein to the periplasm, and a coil-coil arrangement to link the displayed protein to g3p. This vector was able to display less robust forms of GFP, including ones with inserted epitopes, as well as fluorescent proteins of the Azami green series. It was also functional in mock selection experiments.  相似文献   

13.
High-throughput methods to produce a large number of soluble recombinant protein variants are particularly important in the process of determining the three-dimensional structure of proteins and their complexes. Here, we describe a collection of protein expression vectors for ligation-independent cloning, which allow co-expression strategies by implementing different affinity tags and antibiotic resistances. Since the same PCR product can be inserted in all but one of the vectors, this allows efficiency in versatility while screening for optimal expression strategies. We first demonstrate the use of these vectors for protein expression in Escherichia coli, on a set of proteins belonging to the ubiquitin specific protease (USP) Family. We have selected 35 USPs, created 145 different expression constructs into the pETNKI-His-3C-LIC-kan vector, and obtained 38 soluble recombinant proteins for 21 different USPs. Finally, we exemplify the use of our vectors for bacterial co-expression and for expression in insect cells, with USP4 and USP7 respectively. We conclude that our ligation-independent cloning strategy allows for high-throughput screening for the expression of soluble proteins in a variety of vectors in E. coli and in insect cells. In addition, the same vectors can be used for co-expression studies, at least for simple binary complexes. Application in the family of ubiquitin specific proteases led to a number of soluble USPs that are used for functional and crystallization studies.  相似文献   

14.
A variety of fluorescent proteins with different spectral properties have been created by mutating green fluorescent protein. When these proteins are split in two, neither fragment is fluorescent per se, nor can a fluorescent protein be reconstituted by co-expressing the complementary N- and C-terminal fragments. However, when these fragments are genetically fused to proteins that associate with each other in cellulo, the N- and C-terminal fragments of the fluorescent protein are brought together and can reconstitute a fluorescent protein. A similar protein complementation assay (PCA) can be performed with two complementary fragments of various luciferase isoforms. This makes these assays useful tools for detecting the association of two proteins in living cells. Bioluminescence resonance energy transfer (BRET) or fluorescence resonance energy transfer (FRET) occurs when energy from, respectively, a luminescent or fluorescent donor protein is non-radiatively transferred to a fluorescent acceptor protein. This transfer of energy can only occur if the proteins are within 100 Å of each other. Thus, BRET and FRET are also useful tools for detecting the association of two proteins in living cells. By combining different protein fragment complementation assays (PCA) with BRET or FRET it is possible to demonstrate that three or more proteins are simultaneous parts of the same protein complex in living cells. As an example of the utility of this approach, we show that as many as four different proteins are simultaneously associated as part of a G protein-coupled receptor signalling complex.  相似文献   

15.
We developed two sets of broad-host-range vectors that drive expression of the green fluorescent protein (GFP) or color variants thereof (henceforth collectively called autofluorescent proteins [AFPs]) from the lac promoter. These two sets are based on different replicons that are maintained in a stable fashion in Escherichia coli and rhizobia. Using specific filter sets or a dedicated confocal laser scanning microscope setup in which emitted light is split into its color components through a prism, we were able to unambiguously identify bacteria expressing enhanced cyan fluorescent protein (ECFP) or enhanced yellow fluorescent protein (EYFP) in mixtures of the two. Clearly, these vectors will be valuable tools for competition, cohabitation, and rescue studies and will also allow the visualization of interactions between genetically marked bacteria in vivo. Here, we used these vectors to visualize the interaction between rhizobia and plants. Specifically, we found that progeny from different rhizobia can be found in the same nodule or even in the same infection thread. We also visualized movements of bacteroids within plant nodule cells.  相似文献   

16.
The encapsulation of biopharmaceuticals into micro- or nanoparticles is a strategy frequently used to prevent degradation or to achieve the slow release of therapeutics and vaccines. Protein bodies (PBs), which occur naturally as storage organelles in seeds, can be used as such carrier vehicles. The fusion of the N-terminal sequence of the maize storage protein, γ-zein, to other proteins is sufficient to induce the formation of PBs, which can be used to bioencapsulate recombinant proteins directly in the plant production host. In addition, the immunostimulatory effects of zein have been reported, which are advantageous for vaccine delivery. However, little is known about the interaction between zein PBs and mammalian cells. To better understand this interaction, fluorescent PBs, resulting from the fusion of the N-terminal portion of zein to a green fluorescent protein, was produced in Nicotiana benthamiana leaves, recovered by a filtration-based downstream procedure, and used to investigate their internalization efficiency into mammalian cells. We show that fluorescent PBs were efficiently internalized into intestinal epithelial cells and antigen-presenting cells (APCs) at a higher rate than polystyrene beads of comparable size. Furthermore, we observed that PBs stimulated cytokine secretion by epithelial cells, a characteristic that may confer vaccine adjuvant activities through the recruitment of APCs. Taken together, these results support the use of zein fusion proteins in developing novel approaches for drug delivery based on controlled protein packaging into plant PBs.  相似文献   

17.
Bimolecular fluorescence complementation (BiFC) represents one of the most advanced and powerful tools for studying and visualizing protein-protein interactions in living cells. In this method, putative interacting protein partners are fused to complementary non-fluorescent fragments of an autofluorescent protein, such as the yellow spectral variant of the green fluorescent protein. Interaction of the test proteins may result in reconstruction of fluorescence if the two portions of yellow spectral variant of the green fluorescent protein are brought together in such a way that they can fold properly. BiFC provides an assay for detection of protein-protein interactions, and for the subcellular localization of the interacting protein partners. To facilitate the application of BiFC to plant research, we designed a series of vectors for easy construction of N-terminal and C-terminal fusions of the target protein to the yellow spectral variant of the green fluorescent protein fragments. These vectors carry constitutive expression cassettes with an expanded multi-cloning site. In addition, these vectors facilitate the assembly of BiFC expression cassettes into Agrobacterium multi-gene expression binary plasmids for co-expression of interacting partners and additional autofluorescent proteins that may serve as internal transformation controls and markers of subcellular compartments. We demonstrate the utility of these vectors for the analysis of specific protein-protein interactions in various cellular compartments, including the nucleus, plasmodesmata, and chloroplasts of different plant species and cell types.  相似文献   

18.
Quantum dots (QDs) are fluorescent semiconductor nanoparticles with size-dependent emission spectra that can be excited by a broad choice of wavelengths. QDs have attracted a lot of interest for imaging, diagnostics, and therapy due to their bright, stable fluorescence. QDs can be conjugated to a variety of bio-active molecules for binding to bacteria and mammalian cells. QDs are also being widely investigated as cytotoxic agents for targeted killing of bacteria. The emergence of multiply-resistant bacterial strains is rapidly becoming a public health crisis, particularly in the case of Gram negative pathogens. Because of the well-known antimicrobial effect of certain nanomaterials, especially Ag, there are hundreds of studies examining the toxicity of nanoparticles to bacteria. Bacterial studies have been performed with other types of semiconductor nanoparticles as well, especially TiO(2), but also ZnO and others including CuO. Some comparisons of bacterial strains have been performed in these studies, usually comparing a Gram negative strain with a Gram positive. With all of these particles, mechanisms of toxicity are attributed to oxidation: either the photogeneration of reactive oxygen species (ROS) by the particles or the direct release of metal ions that can cause oxidative toxicity. Even with these materials, results of different studies vary greatly. In some studies the Gram positive test strain is reportedly more sensitive than the Gram negative; in others it is the opposite. These studies have been well reviewed. In all nanoparticle studies, particle composition, size, surface chemistry, sample aging/breakdown, and wavelength, power, and duration of light exposure can all dramatically affect the results. In addition, synthesis byproducts and solvents must be considered. High-throughput screening techniques are needed to be able to develop effective new nanomedicine agents. CdTe QDs have anti-microbial effects alone or in combination with antibiotics. In a previous study, we showed that coupling of antibiotics to CdTe can increase toxicity to bacteria but decrease toxicity to mammalian cells, due to decreased production of reactive oxygen species from the conjugates. Although it is unlikely that cadmium-containing compounds will be approved for use in humans, such preparations could be used for disinfection of surfaces or sterilization of water. In this protocol, we give a straightforward approach to solubilizing CdTe QDs with mercaptopropionic acid (MPA). The QDs are ready to use within an hour. We then demonstrate coupling to an antimicrobial agent. The second part of the protocol demonstrates a 96-well bacterial inhibition assay using the conjugated and unconjugated QDs. The optical density is read over many hours, permitting the effects of QD addition and light exposure to be evaluated immediately as well as after a recovery period. We also illustrate a colony count for quantifying bacterial survival.  相似文献   

19.
New adenovirus vectors for protein production and gene transfer   总被引:9,自引:0,他引:9  
Based on two new adenovirus expression cassettes, we have constructed a series of Ad transfer vectors for the overexpression of one or two genes either in a dicistronic configuration or with separate expression cassettes. Inclusion of the green or blue fluorescent protein in the vectors accelerates the generation of adenovirus recombinants and facilitates the functional characterization of genes both in vitro and in vivo by allowing easy quantification of gene transfer and expression. With our optimized tetracycline-regulated promoter (TR5) we have generated recombinant adenoviruses expressing proteins, that are either cytotoxic or which interfere with adenovirus replication, at levels of 10–15% of total cell protein. Proteins that are not cytotoxic can be produced at levels greater than 20% of total cell protein. As well, these levels of protein production can be achieved with or without adenovirus replication. This yield is similar to what can be obtained with our optimized human cytomegalovirus-immediate early promoter-enhancer (CMV5) for constitutive protein expression in non-complementing cell lines. Using the green fluorescent protein as a reporter, we have shown that a pAdCMV5-derived adenovirus vector expresses about 6-fold more protein in complementing 293 cells and about 12-fold more in non- complementing HeLa cells than an adenovirus vector containing the standard cytomegalovirus promoter. Moreover, a red-shifted variant of green fluorescent protein incorporated in one series of vectors was 12-fold more fluorescent than the S65T mutant, making the detection of the reporter protein possible at much lower levels of expression. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

20.
The formation of a disulfide bond is a critical step in the folding of numerous secretory and membrane proteins and catalyzed in vivo. A variety of mechanisms and protein structures have evolved to catalyze oxidative protein folding. Those enzymes that directly interact with a folding protein to accelerate its oxidative folding are mostly thiol‐disulfide oxidoreductases that belong to the thioredoxin superfamily. The enzymes of this class often use a CXXC active‐site motif embedded in their thioredoxin‐like fold to promote formation, isomerization, and reduction of a disulfide bond in their target proteins. Over the past decade or so, an increasing number of substrates of the thiol‐disulfide oxidoreductases that are present in the ER of mammalian cells have been discovered, revealing that the enzymes play unexpectedly diverse physiological functions. However, functions of some of these enzymes still remain unclear due to the lack of information on their substrates. Here, we review the methods used by researchers to identify the substrates of these enzymes and provide data that show the importance of using trichloroacetic acid in sample preparation for the substrate identification, hoping to aid future studies. We particularly focus on successful studies that have uncovered physiological substrates and functions of the enzymes in the periplasm of Gram‐negative bacteria and the endoplasmic reticulum of mammalian cells. Similar approaches should be applicable to enzymes in other cellular compartments or in other organisms.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号