首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
An alpha-amylase produced by Scytalidium thermophilum was purified using DEAE-cellulose and CM-cellulose ion exchange chromatography and Sepharose 6B gel filtration. The purified protein migrated as a single band in 6% PAGE and 7% SDS-PAGE. The estimated molecular mass was 36 kDa (SDS-PAGE) and 49 kDa (Sepharose 6B). Optima of pH and temperature were 6.0 and 60 degrees C, respectively. In the absence of substrate the purified alpha-amylase was stable for 1 h at 50 degrees C and had a half-life of 12 min at 60 degrees C, but was fully stable in the presence of starch. The enzyme was not activated by several metal ions tested, including Ca(2+) (up to 10 mM), but HgCl(2 )and CuCl(2) inhibited its activity. The alpha-amylase produced by S. thermophilum preferentially hydrolyzed starch, and to a lesser extent amylopectin, maltose, amylose and glycogen in that order. The products of starch hydrolysis (up to 6 h of reaction) analyzed by thin layer chromatography, showed oligosaccharides such as maltotrioses, maltotetraoses and maltopentaoses. Maltose and traces of glucose were formed only after 3 h of reaction. These results confirm the character of the enzyme studied to be an alpha-amylase (1,4-alpha-glucan glucanohydrolase).  相似文献   

2.
Among more than 20 yeast strains isolated from the traditional starter "murcha" in Nepal, we characterized a yeast that might be involved in saccharification. This strain, identified as Pichia burtonii, produced an extracellular amylolytic enzyme when cultured in the presence of starch in the medium. Since no amylase secreted by P. burtonii has yet been reported, we purified the enzyme and determined its N-terminal amino acid sequence. Together with the results of a hydrolyzing activity assay toward various substrates, it was found to be an alpha-amylase. The purified enzyme, named Pichia burtonii alpha-amylase (PBA), was a glycoprotein with an apparent molecular mass of 51 kDa. Enzyme activity was optimal at pH 5.0 at 40 degrees C. The enzyme retained 80% of its original activity after incubation under the optimal pH condition at 50 degrees C for 30 min. The activity was inhibited by metal ions such as Cd(2+), Cu(2+), Hg(2+), Al(3+), and Zn(2+).  相似文献   

3.
Pyrococcus woesei (DSM 3773) alpha-amylase gene was cloned into pET21d(+) and pYTB2 plasmids, and the pET21d(+)alpha-amyl and pYTB2alpha-amyl vectors obtained were used for expression of thermostable alpha-amylase or fusion of alpha-amylase and intein in Escherichia coli BL21(DE3) or BL21(DE3)pLysS cells, respectively. As compared with other expression systems, the synthesis of alpha-amylase in fusion with intein in E. coli BL21(DE3)pLysS strain led to a lower level of inclusion bodies formation-they exhibit only 35% of total cell activity-and high productivity of the soluble enzyme form (195,000 U/L of the growth medium). The thermostable alpha-amylase can be purified free of most of the bacterial protein and released from fusion with intein by heat treatment at about 75 degrees C in the presence of thiol compounds. The recombinant enzyme has maximal activity at pH 5.6 and 95 degrees C. The half-life of this preparation in 0.05 M acetate buffer (pH 5.6) at 90 degrees C and 110 degrees C was 11 h and 3.5 h, respectively, and retained 24% of residual activity following incubation for 2 h at 120 degrees C. Maltose was the main end product of starch hydrolysis catalyzed by this alpha-amylase. However, small amounts of glucose and some residual unconverted oligosaccharides were also detected. Furthermore, this enzyme shows remarkable activity toward glycogen (49.9% of the value determined for starch hydrolysis) but not toward pullulan.  相似文献   

4.
The extracellular alpha-amylase (1,4-alpha-D-glucanglucanohydrolase; EC 3.2.1.1) from Clostridium acetobutylicum ATCC 824 was purified to homogeneity by anion-exchange chromatography (mono Q) and gel filtration (Superose 12). The enzyme had an isoelectric point of 4.7 and a molecular weight of 84,000, as estimated by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. It was a monomeric protein, the 19-amino-acid N terminus of which displayed 42% homology with the Bacillus subtilis saccharifying alpha-amylase. The amino acid composition of the enzyme showed a high number of acidic and hydrophobic residues and only one cysteine residue per mole. The activity of the alpha-amylase was not stimulated by calcium ions (or other metal ions) or inhibited by EDTA, although the enzyme contained seven calcium atoms per molecule. alpha-Amylase activity on soluble starch was optimal at pH 5.6 and 45 degrees C. The alpha-amylase was stable at an acidic pH but very sensitive to thermal inactivation. It hydrolyzed soluble starch, with a Km of 3.6 g . liter-1 and a Kcat of 122 mol of reducing sugars . s-1 . mol-1. The alpha-amylase showed greater activity with high-molecular-weight substrates than with low-molecular-weight maltooligosaccharides, hydrolyzed glycogen and pullulan slowly, but did not hydrolyze dextran or cyclodextrins. The major end products of maltohexaose degradation were glucose, maltose, and maltotriose; maltotetraose and maltopentaose were formed as intermediate products. Twenty seven percent of the glucoamylase activity generally detected in the culture supernatant of C. acetobutylicum can be attributed to the alpha-amylase.  相似文献   

5.
AIM: An investigation was carried out on the production of alpha-amylase by Bacillus thermooleovorans NP54, its partial purification and characterization. METHODS AND RESULTS: The thermophilic bacterium was grown in shake flasks and a laboratory fermenter containing 2% soluble starch, 0.3% tryptone, 0.3% yeast extract and 0.1% K2HPO4 at 70 degrees C and pH 7.0, agitated at 200 rev min(-1) with 6-h-old inoculum (2% v/v) for 12 h. When the enzyme was partially purified using acetone (80%[v/v] saturation), a 43.7% recovery of enzyme with 6.2-fold purification was recorded. The KM and Vmax (soluble starch) values were 0.83 mg ml(-1) and 250 micromol mg(-1) protein min(-1), respectively. The enzyme was optimally active at 100 degrees C and pH 8.0 with a half-life of 3 h at 100 degrees C. Both alpha-amylase activity and production were Ca2+ independent. CONCLUSIONS: Bacillus thermooleovorans NP54 produced calcium-independent and thermostable alpha-amylase. SIGNIFICANCE AND IMPACT OF THE STUDY: The calcium-independent and thermostable alpha-amylase of B. thermooleovorans NP54 will be extremely useful in starch saccharification since the alpha-amylases used in the starch industry are calcium dependent. The use of this enzyme in starch hydrolysis eliminates the use of calcium in starch liquefaction and subsequent removal by ion exchange.  相似文献   

6.
Glycogen content and alpha-amylase activity were estimated in the infective juveniles (IJs) of Heterorhabditis bacteriophora at different times of storage. The glycogen content declined from 5.8 to 2.5 ng/IJ during storage for 40 days at 27 degrees C. The change in glycogen content coincided with the change of alpha-amylase activity during storage. alpha-Amylase was purified from IJs at zero time of storage by ion exchange chromatography and gel filtration. Ion exchange chromatography resolved alpha-amylase into three isoenzymes. The major isoenzyme alpha-amylase I had the highest specific activity and was purified to homogeneity. A molecular mass of 46-47 kDa was estimated for both the native and denatured enzyme, suggesting that the enzyme is monomeric. The Km values were 6.5 and 9.6 mg/ml using starch and glycogen as substrates, respectively. alpha-Amylase I showed optimum activity at pH 7.0 and had an optimum temperature of 40 degrees C. The enzyme was unstable at temperatures above 40 degrees C. The enzyme activity was severely inhibited by EDTA, p-CMB and iodoacetic acid, but potentiated by CaCl2 and NaCl. These results are discussed and compared with previously reported alpha-amylases in the insect hosts of the parasite.  相似文献   

7.
Hog pancreas alpha-amylase (alpha-1-4-glucan-glucan hydrolase, E.C. 3.2.1.1) lost its structural calcium by action of EDTA at 20 degrees C. Enzymatic activity experimented a decrease whereas a big increase in proteolytic susceptibility to bovine pancreas trypsin (E.C. 3.4.4.4) was shown. Native alpha-amylase had an activity of 2,730 mg maltose/min X mg enzyme and a Km of 0.222% amylose, the activity of calcium depleted amylase being of 1,640 mg maltose/min X mg enzyme and Km 0.571% amylose. Simple methods for evaluating proteolytic susceptibility of alpha-amylase micro-amounts against trypsin action, and for the measurement of alpha-amylase activity in polyacrylamide rod gels were also described.  相似文献   

8.
The alpha-amylase (1, 4-alpha-d-glucanohydrolase; EC 3.2.1.1) and alpha-glucosidase (alpha-d-glucoside glucohydrolase; EC 3.2.1.20) secreted by Geobacillus thermodenitrificans HRO10 were purified to homogeneity (13.6-fold; 11.5% yield and 25.4-fold; 32.0% yield, respectively) through a series of steps. The molecular weight of alpha-amylase was 58kDa, as estimated by sodium dodecyl sulphate-polyacrylamide gel electrophoresis (SDS-PAGE). The alpha-amylase activity on potato starch was optimal at pH 5.5 and 80 degrees Celsius. In the presence of Ca(2+), the alpha-amylase had residual activity of more than 92% after 1h of incubation at 70 degrees Celsius. The alpha-amylase did not lose any activity in the presence of phytate (a selective alpha-amylase inhibitor) at concentrations as high as 10mM, rather it retained 90% maximal activity after 1h of incubation at 70 degrees Celsius. EGTA and EDTA were strong inhibitory substances of the enzyme. The alpha-amylase hydrolyzed soluble starch at 80 degrees Celsius, with a K(m) of 3.05mgml(-1) and a V(max) of 7.35Uml(-1). The molecular weight of alpha-glucosidase was approximately 45kDa, as determined by SDS-PAGE. The enzyme activity was optimal at pH 6.5-7.5 and 55 degrees Celsius. Phytate did not inhibit G. thermodenitrificans HRO10 alpha-glucosidase activity, whereas pCMB was a potent inhibitor of the enzyme. The alpha-glucosidase exhibited Michaelis-Menten kinetics with maltose at 55 degrees Celsius (K(m): 17mM; V(max): 23micromolmin(-1)mg(-1)). Thin-layer chromatography studies with G. thermodenitrificans HRO10 alpha-amylase and alpha-glucosidase showed an excellent synergistic action and did not reveal any transglycosylation catalyzed reaction by the alpha-glucosidase.  相似文献   

9.
Thermostable amylolytic enzymes have been currently investigated to improve industrial processes of starch degradation. Studies on production of alpha-amylase by Nocardiopsis sp., an endophytic actinomycete isolated from yam bean (Pachyrhizus erosus L. Urban), showed that higher enzyme levels were obtained at the end of the logarithmic growth phase after incubation for 72 h at pH 8.6. Maximum activity of alpha-amylase was obtained at pH 5.0 and 70 degrees C. The isolated enzyme exhibited thermostable properties as indicated by retention of 100% of residual activity at 70 degrees C, and 50% of residual activity at 90 degrees C for 10 min. Extracellular enzyme from Nocardiopsis sp. was purified by fractional precipitation with ammonium sulphate. After 60% saturation produced 1130 U mg-1 protein and yield was 28% with purification 2.7-fold. The enzyme produced by Nocardiopsis sp. has potential for industrial applications.  相似文献   

10.
The impact of high hydrostatic pressure and temperature on the stability and catalytic activity of alpha-amylase from barley malt has been investigated. Inactivation experiments with alpha-amylase in the presence and absence of calcium ions have been carried out under combined pressure-temperature treatments in the range of 0.1-800 MPa and 30-75 degrees C. A stabilizing effect of Ca(2+) ions on the enzyme was found at all pressure-temperature combinations investigated. Kinetic analysis showed deviations of simple first-order reactions which were attributed to the presence of isoenzyme fractions. Polynomial models were used to describe the pressure-temperature dependence of the inactivation rate constants. Derived from that, pressure-temperature isokinetic diagrams were constructed, indicating synergistic and antagonistic effects of pressure and temperature on the inactivation of alpha-amylase. Pressure up to 200 MPa significantly stabilized the enzyme against temperature-induced inactivation. On the other hand, pressure also hampers the catalytic activity of alpha-amylase and a progressive deceleration of the conversion rate was detected at all temperatures investigated. However, for the overall reaction of blocked p-nitrophenyl maltoheptaoside cleavage and simultaneous occurring enzyme inactivation in ACES buffer (0.1 M, pH 5.6, 3.8 mM CaCl(2)), a maximum of substrate cleavage was identified at 152 MPa and 64 degrees C, yielding approximately 25% higher substrate conversion after 30 min, as compared to the maximum at ambient pressure and 59 degrees C.  相似文献   

11.
The extremely thermophilic anaerobic archaeon strain, HJ21, was isolated from a deep-sea hydrothermal vent, could produce hyperthermophilic alpha-amylase, and later was identified as Thermococcus from morphological, biochemical, and physiological characteristics and the 16S ribosomal RNA gene sequence. The extracellular thermostable alpha-amylase produced by strain HJ21 exhibited maximal activity at pH 5.0. The enzyme was stable in a broad pH range from pH 5.0 to 9.0. The optimal temperature of alpha-amylase was observed at 95 degrees C. The half-life of the enzyme was 5 h at 90 degrees C. Over 40% and 30% of the enzyme activity remained after incubation at 100 degrees C for 2 and 3 h, respectively. The enzyme did not require Ca(2+) for thermostability. This alpha-amylase gene was cloned, and its nucleotide sequence displayed an open reading frame of 1,374 bp, which encodes a protein of 457 amino acids. Analysis of the deduced amino acid sequence revealed that four homologous regions common in amylases were conserved in the HJ21 alpha-amylase. The molecular weight of the mature enzyme was calculated to be 51.4 kDa, which correlated well with the size of the purified enzyme as shown by the sodium dodecyl sulfate-polyacrylamide gel electrophoresis.  相似文献   

12.
A soil isolate of Bacillus stearothermophilus was found to synthesize thermostable alpha-amylase. The enzyme was purified to homogeneity by ammonium sulfate fractionation and IECC on DEAE-cellulose column. The purified enzyme was considered to be a monomeric protein with a molar mass of 64 kDa, as determined by SDS-PAGE. The enzyme showed a wide range of pH tolerance and maximum activity at pH 7.0. The temperature tolerance was up to 100 degrees C with more than 90% catalytic activity; the maximum activity was observed at 50 degrees C. Divalent metal ions exhibited inhibitory effect on the enzyme activity. However, proteinase inhibitor did not react positively.  相似文献   

13.
Some properties of immobilized alpha-amylase by Aspergillus sclerotiorum within calcium alginate gel beads were investigated and compared with soluble enzyme. Optimum pH and temperature were found to be 5.0 and 40 degrees C, respectively, for both soluble and immobilized enzymes. The immobilized enzyme had a better Km value, but kcat/Km values were the same for both enzymes. Entrapment within calcium alginate gel beads improved, remarkably, the thermal and storage stability of alpha-amylase. The half life values of immobilized enzyme and soluble enzyme at 60 degrees C were 164.2, and 26.2 min, respectively. The midpoint of thermal inactivation (Tm) shifted from 56 degrees C (for soluble enzyme) to 65.4 degrees C for immobilized enzyme. The percentages of soluble starch hydrolysis for soluble and immobilized alpha-amylase were determined to be 97.5 and 92.2% for 60 min, respectively.  相似文献   

14.
Liu XD  Xu Y 《Bioresource technology》2008,99(10):4315-4320
This study reports the purification and characterization of a novel raw starch digesting alpha-amylase from a newly isolated Bacillus sp. YX-1. Maximum alpha-amylase activity (53 U mL(-1)) was obtained at 45 degrees C after 44 h of incubation. The enzyme was purified using ammonium sulfate precipitation, ion exchange and gel filtration chromatography, and showed a molecular weight of 56 kDa by SDS-PAGE. This enzyme exhibited maximum activity at pH 5.0, performed stability over a broad range of pH 4.5-11.0, and was optimally active at 40-50 degrees C. The enzyme preparation had a strong digesting ability towards various raw starches and efficiently hydrolyzed raw corn starch at a concentration of 20% and pH 5.0, which were normally used in the starch industries, in a period of 12h. By analyzing its partial amino acid sequences, the enzyme was proposed to be a novel alpha-amylase.  相似文献   

15.
Thermomonospora curvata produces an extracellular alpha-amylase. Maximal amylase production by cultures in a starch-mineral salts medium occurred at pH 7.5 and 53 degrees C. The crude enzyme was unstable to heating (65 degrees C) at pH 4 to 6, and was activated when heated at pH 8. The enzyme was purified 66-fold with a 9% yield and appeared homogeneous on discontinuous gel electrophoresis. The pH and temperature optima for activity of the purified enzyme were 5.5 to 6.0 and 65 degrees C. The molecular weight was calculated to be 62,000. The Km for starch was 0.39 mg/ml. The amylolytic pattern consisted of a mixture of maltotetraose and maltopentaose.  相似文献   

16.
Thermomonospora curvata produces an extracellular alpha-amylase. Maximal amylase production by cultures in a starch-mineral salts medium occurred at pH 7.5 and 53 degrees C. The crude enzyme was unstable to heating (65 degrees C) at pH 4 to 6, and was activated when heated at pH 8. The enzyme was purified 66-fold with a 9% yield and appeared homogeneous on discontinuous gel electrophoresis. The pH and temperature optima for activity of the purified enzyme were 5.5 to 6.0 and 65 degrees C. The molecular weight was calculated to be 62,000. The Km for starch was 0.39 mg/ml. The amylolytic pattern consisted of a mixture of maltotetraose and maltopentaose.  相似文献   

17.
Intracellular thermostable amylases from a thermophilic Baccilus sp. AK-2 have been isolated and purified. The crude enzyme, having pH optimum at 6.5. and temperature optimum at 68 degrees C was purified by DEAE-cellulose column chromatography. Three separable enzyme fractions having starch hydrolyzing property were eluted by lowering the pH from 8.5 to 7.0. Electrophoretic mobility of these fractions showed a single band. Calcium ion up to a concentration of 20 mM had an activating effect on the three fractions. The optimum temperature for the three fractions (FI, FII and FIII) was 65 degrees C and the pH optimum for each was 6.0, 6.5 and 6.0, respectively. The -SH group in the amylase molecule was essential for enzyme activity. Except for Ca2+, Mg2+, Sr2+ and Mn2+ all other metal ions studied inhibited both alpha and beta-amylase activities. EDTA showed dose dependent non-competitive inhibition. Product formation studies proved FI and FIII to be of the alpha-amylase type and FII of the beta-amylase type. The Km for the substrate (starch) in the presence or absence of EDTA was 0.8 X 10(-3) and 1.13 X 10(-3) g/ml for alpha-amylase and beta-amylase, respectively.  相似文献   

18.
The gene encoding the hyperthermophilic extracellular alpha-amylase from Pyrococcus furiosus was cloned by activity screening in Escherichia coli. The gene encoded a single 460-residue polypeptide chain. The polypeptide contained a 26-residue signal peptide, indicating that this Pyrococcus alpha-amylase was an extracellular enzyme. Unlike the P. furiosus intracellular alpha-amylase, this extracellular enzyme showed 45 to 56% similarity and 20 to 35% identity to other amylolytic enzymes of the alpha-amylase family and contained the four consensus regions characteristic of that enzyme family. The recombinant protein was a homodimer with a molecular weight of 100,000, as estimated by gel filtration. Both the dimer and monomer retained starch-degrading activity after extensive denaturation and migration on sodium dodecyl sulfate-polyacrylamide gels. The P. furiosus alpha-amylase was a liquefying enzyme with a specific activity of 3,900 U mg-1 at 98 degrees C. It was optimally active at 100 degrees C and pH 5.5 to 6.0 and did not require Ca2+ for activity or thermostability. With a half-life of 13 h at 98 degrees C, the P. furiosus enzyme was significantly more thermostable than the commercially available Bacillus licheniformis alpha-amylase (Taka-therm).  相似文献   

19.
The fungal strain Mortierella alliacea YN-15 is an arachidonic acid producer that assimilates soluble starch despite having undetectable alpha-amylase activity. Here, a alpha-glucosidase responsible for the starch hydrolysis was purified from the culture broth through four-step column chromatography. Maltose and other oligosaccharides were less preferentially hydrolyzed and were used as a glucosyl donor for transglucosylation by the enzyme, demonstrating distinct substrate specificity as a fungal alpha-glucosidase. The purified enzyme consisted of two heterosubunits of 61 and 31 kDa that were not linked by a covalent bond but stably aggregated to each other even at a high salt concentration (0.5 M), and behaved like a single 92-kDa component in gel-filtration chromatography. The hydrolytic activity on maltose reached a maximum at 55 degrees C and in a pH range of 5.0-6.0, and in the presence of ethanol, the transglucosylation reaction to form ethyl-alpha-D-glucoside was optimal at pH 5.0 and a temperature range of 45-50 degrees C.  相似文献   

20.
A gene (acas) designated as alpha-amylase was cloned from Arthrobacter chlorophenolicus A6. The multiple amino acid sequence analysis and functional expression of acas revealed that this gene really encoded an amylosucrase (ASase) instead of alpha-amylase. In fact, the recombinant enzyme exhibited typical ASase activity by showing both sucrose hydrolysis and glucosyltransferase activities. The purified enzyme has a molecular mass of 72 kDa and exhibits optimal hydrolysis activity at 45 degrees C and a pH of 8.0. The analysis of the oligomeric state of ACAS with gel permeation chromatography revealed that the ACAS existed as a monomer.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号