共查询到20条相似文献,搜索用时 0 毫秒
1.
The HFE locus encodes an HLA class-I-type protein important in iron regulation and segregates replacement mutations that give rise to the most common form of genetic hemochromatosis. The high frequency of one disease-associated mutation, C282Y, and the nature of this disease have led some to suggest a selective advantage for this mutation. To investigate the context in which this mutation arose and gain a better understanding of HFE genetic variation, we surveyed nucleotide variability in 11.2 kb encompassing the HFE locus and experimentally determined haplotypes. We fully resequenced 60 chromosomes of African, Asian, or European ancestry as well as one chimpanzee, revealing 41 variable sites and a nucleotide diversity of 0.08%. This indicates that linkage to the HLA region has not substantially increased the level of HFE variation. Although several haplotypes are shared between populations, one haplotype predominates in Asia but is nearly absent elsewhere, causing higher than average genetic differentiation among the three major populations. Our samples show evidence of intragenic recombination, so the scarcity of recombination events within the C282Y allele class is consistent with selection increasing the frequency of a young allele. Otherwise, the pattern of variability in this region does not clearly indicate the action of positive selection at this or linked loci. 相似文献
2.
Apolipoprotein E variation at the sequence haplotype level: implications for the origin and maintenance of a major human polymorphism 总被引:24,自引:0,他引:24 下载免费PDF全文
Fullerton SM Clark AG Weiss KM Nickerson DA Taylor SL Stengârd JH Salomaa V Vartiainen E Perola M Boerwinkle E Sing CF 《American journal of human genetics》2000,67(4):881-900
Three common protein isoforms of apolipoprotein E (apoE), encoded by the epsilon2, epsilon3, and epsilon4 alleles of the APOE gene, differ in their association with cardiovascular and Alzheimer's disease risk. To gain a better understanding of the genetic variation underlying this important polymorphism, we identified sequence haplotype variation in 5.5 kb of genomic DNA encompassing the whole of the APOE locus and adjoining flanking regions in 96 individuals from four populations: blacks from Jackson, MS (n=48 chromosomes), Mayans from Campeche, Mexico (n=48), Finns from North Karelia, Finland (n=48), and non-Hispanic whites from Rochester, MN (n=48). In the region sequenced, 23 sites varied (21 single nucleotide polymorphisms, or SNPs, 1 diallelic indel, and 1 multiallelic indel). The 22 diallelic sites defined 31 distinct haplotypes in the sample. The estimate of nucleotide diversity (site-specific heterozygosity) for the locus was 0.0005+/-0.0003. Sequence analysis of the chimpanzee APOE gene showed that it was most closely related to human epsilon4-type haplotypes, differing from the human consensus sequence at 67 synonymous (54 substitutions and 13 indels) and 9 nonsynonymous fixed positions. The evolutionary history of allelic divergence within humans was inferred from the pattern of haplotype relationships. This analysis suggests that haplotypes defining the epsilon3 and epsilon2 alleles are derived from the ancestral epsilon4s and that the epsilon3 group of haplotypes have increased in frequency, relative to epsilon4s, in the past 200,000 years. Substantial heterogeneity exists within all three classes of sequence haplotypes, and there are important interpopulation differences in the sequence variation underlying the protein isoforms that may be relevant to interpreting conflicting reports of phenotypic associations with variation in the common protein isoforms. 相似文献
3.
Bogin B Rios L 《Comparative biochemistry and physiology. Part A, Molecular & integrative physiology》2003,136(1):71-84
Human body size and body proportions are interpreted as markers of ethnicity, 'race,' adaptation to temperature, nutritional history and socioeconomic status. Some studies emphasize only one of these indicators and other studies consider combinations of indicators. To better understand the biocultural nature of human size and proportions a new study of the growth of Maya-American youngsters was undertaken in 1999 and 2000. One purpose of this research is to assess changes in body proportion between Maya growing up in the US and Maya growing up in Guatemala. Height and sitting height of 6-12-year-old boys and girls (n=360) were measured and the sitting height ratio [sitting height/height]x100, a measure of proportion, was calculated. These data are compared with a sample of Maya of the same ages living in Guatemala and measured in 1998 (n=1297). Maya-American children are currently 10.24 cm taller, on average, and have a significantly lower sitting height ratio, (i.e. relatively longer legs, averaging 7.02 cm longer) than the Guatemala Maya. Maya-American children have body proportions more like those of white children in the US than like Maya children in Guatemala. Improvements in the environment for growth, in terms of nutrition and health, seem to explain both the trends in greater stature and relatively longer legs for the Maya-Americans. These findings are applied to the problem of modern human origins as assessed from fossil skeletons. It has been proposed that heat adapted, relatively long-legged Homo sapiens from Africa replaced the cold adapted, relatively short-legged Homo neandertalensis of the Levant and Europe [J Hum Evol 32 (1997a) 423]. Skeletal samples of Maya adults from rural Guatemala have body proportions similar to adult Neandertals and to skeletal samples from Europe with evidence of nutritional and disease stress. Just as nutrition and health status explains the differences in the body proportions of living Maya children, these factors, along with adaptation to climate, may also explain much of the differences between the Neandertal and African hominid samples. 相似文献
4.
Jennifer Yamtich William C. Speed Eva Straka Judith R. Kidd Joann B. Sweasy Kenneth K. Kidd 《DNA Repair》2009,8(5):579-584
DNA polymerase beta plays a central role in base excision repair (BER), which removes large numbers of endogenous DNA lesions from each cell on a daily basis. Little is currently known about germline polymorphisms within the POLB locus, making it difficult to study the association of variants at this locus with human diseases such as cancer. Yet, approximately thirty percent of human tumor types show variants of DNA polymerase beta. We have assessed the global frequency distributions of coding and common non-coding SNPs in and flanking the POLB gene for a total of 14 sites typed in approximately 2400 individuals from anthropologically defined human populations worldwide. We have found a marked difference between haplotype frequencies in African populations and in non-African populations. 相似文献
5.
6.
7.
High polymorphism at the human melanocortin 1 receptor locus 总被引:35,自引:0,他引:35
Rana BK Hewett-Emmett D Jin L Chang BH Sambuughin N Lin M Watkins S Bamshad M Jorde LB Ramsay M Jenkins T Li WH 《Genetics》1999,151(4):1547-1557
Variation in human skin/hair pigmentation is due to varied amounts of eumelanin (brown/black melanins) and phaeomelanin (red/yellow melanins) produced by the melanocytes. The melanocortin 1 receptor (MC1R) is a regulator of eu- and phaeomelanin production in the melanocytes, and MC1R mutations causing coat color changes are known in many mammals. We have sequenced the MC1R gene in 121 individuals sampled from world populations with an emphasis on Asian populations. We found variation at five nonsynonymous sites (resulting in the variants Arg67Gln, Asp84Glu, Val92Met, Arg151Cys, and Arg163Gln), but at only one synonymous site (A942G). Interestingly, the human consensus protein sequence is observed in all 25 African individuals studied, but at lower frequencies in the other populations examined, especially in East and Southeast Asians. The Arg163Gln variant is absent in the Africans studied, almost absent in Europeans, and at a low frequency (7%) in Indians, but is at an exceptionally high frequency (70%) in East and Southeast Asians. The MC1R gene in common and pygmy chimpanzees, gorilla, orangutan, and baboon was sequenced to study the evolution of MC1R. The ancestral human MC1R sequence is identical to the human consensus protein sequence, while MC1R varies considerably among higher primates. A comparison of the rates of substitution in genes in the melanocortin receptor family indicates that MC1R has evolved the fastest. In addition, the nucleotide diversity at the MC1R locus is shown to be several times higher than the average nucleotide diversity in human populations, possibly due to diversifying selection. 相似文献
8.
9.
10.
The genetic variation at a compound nonrecombining haplotype system, consisting of the previously reported SB19.3 Alu insertion polymorphism and a newly identified adjacent short tandem repeat (STR), was studied in population samples from Portugal and S?o Tomé (Gulf of Guinea, West Africa). Age estimates based on the linked microsatellite variation suggest that the Alu insertion occurred about 190,000 years ago. In accordance with the global patterns of distribution of human genetic variation, the highest haplotype diversity was found in the African sample. This excess in African diversity was due to both a substantial reduction in heterozygosity at the Alu polymorphism and a lower STR variability associated with the predominant Alu insertion allele in the Portuguese sample. The high level of interpopulation differentiation observed at the Alu locus (F(ST) = 0.43) was interpreted under alternative selective and demographic scenarios. The need for compatibility between patterns of variation at the STR and Alu loci could be used to restrict the range of selection coefficients in selection-driven genetic hitchhiking frameworks and to favor demographic scenarios dominated by larger pre-expansion African population sizes. Taken together, the data show that the SB19.3 Alu-STR system is an informative marker that can be included in more extended batteries of compound haplotypes used in human evolutionary studies. 相似文献
11.
Motivated by a previous study indicating that polymorphism at an indel, Ind2, within the Brassica nigra COL1 gene is significantly associated with flowering time, we searched for evidence of selection in a sample of 41 complete sequences of B. nigra COL1. The within-gene population recombination rate is moderate, and all neutrality tests used in the present study failed to detect departure from the standard neutral model or evidence of selection. The haplotype structure of the 5'-half of the gene is primarily associated with the demographic history of the species and more specifically with the split between European and Ethiopian populations, whereas the structure of the 3'-half reflects the polymorphism at Ind2. This could be the result of selection or a combination of recombination and migration during the history of the sample of sequences. Without additional information on polymorphism in flanking areas, these two alternatives are difficult to tell apart. If selection acted on the gene, we suggest that if the indel itself is not the target of selection, among the polymorphic sites cosegregating with the polymorphism at Ind2, replacement polymorphisms around sites 890 and 1260 are the most likely quantitative trait nucleotides within the gene. 相似文献
12.
13.
Mahoney P 《Journal of human evolution》2008,55(1):131-147
The timing and sequence of enamel development, as well as enamel thickness, was documented for individual cusps (protoconid, hypoconid, metaconid, entoconid) in 15 unworn permanent lower first molars (M(1)s) from a sample of modern human juveniles. These data were compared with previously published data for modern and fossil species reported in the literature. Crown formation in all teeth was initiated in the protoconid and completed in the hypoconid. These cusps had significantly longer formation times (2.91 and 2.96 yrs, respectively) than the metaconid and entoconid (2.52 and 2.38 yrs, respectively), as well as thicker enamel, and each represented between 92-95% of the total crown formation time. Rates of enamel secretion in all cusps increased significantly from 2.97 microm in the inner enamel to 4.47 microm in the outer enamel. Two cusps of one individual were studied in more detail and did not follow this typical trajectory. Rather, there was a sharp decrease in the middle of enamel formation and then a slow recovery of secretion rates from the mid- to outer enamel. This anomalous trajectory of enamel formation is discussed in the context of other nondental tissue responses to illness. Neither secretion rates nor periodicity differed significantly when compared between the cusps of each molar. Differences in cusp formation times, initiation, and completion suggest a relationship between the rates of enamel formation and enamel thickness. This fits with expectations about the mechanics of the chewing cycle and general lower molar morphology. A comparison with similar data for some nonhuman primates and fossil hominoids suggests this relationship may hold true across several primate taxa. Other aspects of enamel growth differed between this human sample and certain fossil species. The lower molars formed slowly over a longer period of time, which may reflect the extended growth period of modern humans. The methodological approach adopted in this study is discussed in the context of that used in other studies. 相似文献
14.
15.
Pearson OM 《Current anthropology》2000,41(4):569-607
Postcranial robusticity--the massiveness of the skeleton--figures prominently in the debate over the origin of modern humans. Anthropologists use postcranial robusticity to infer the activity levels of prehistoric populations, and changes in robusticity are often used to support scenarios of adaptive change. These scenarios explain differences in morphology as the result of a change in lifestyle (habitual activity). One common scenario posits that early modern humans were more gracile than Neandertals because the modern humans' complex culture required less physical exertion. However, lifestyle is only one of many influences on morphology. Climate has clear correlations with physique and skeletal proportions. Analysis of recent humans that differ in terms of lifestyle and climatic adaptations reveals that limb bone robusticity varies with climate as much as or more than with lifestyle. Many of the differences in robusticity between Neandertals and early modern humans appear to be related to climatic adaptations. The results support the single-recent origin model of modern human origins. The differences in robusticity between Neandertals and early modern humans suggest that population replacement rather than local evolution best explains the emergence of modern humans in Europe. Both climatic adaptations (primarily body proportions) and lifestyle should be considered in analyses of robusticity. 相似文献
16.
17.
18.
Smirnova I Poltorak A Chan EK McBride C Beutler B 《Genome biology》2000,1(1):research002.1-research00210
Background
Differences in responses to bacterial surface lipopolysaccharides (LPSs) are apparent between and within mammalian species. It has been shown in mice that resistance to LPS is caused by defects in the Toll-like receptor 4 gene (Tlr4), the product of which is thought to bind LPS and mediate LPS signal transduction in immune system cells. 相似文献19.
Worldwide polymorphism at the MC1R locus and normal pigmentation variation in humans 总被引:6,自引:0,他引:6
While there have been many advances in our understanding of the genetics of pathological skin pigmentation in humans, our knowledge about what determines variation in normal skin color is still incomplete. Variation in one gene, melanocortin 1 receptor (MC1R), has been associated with red hair and fair skin in Europeans. However, this gene might also play an important role in shaping pigmentation of other human populations, where it experiences different selective pressures. Below we review what is currently known about polymorphism and selection at the MC1R coding and promoter regions in human populations, the pattern of MC1R evolution in nonhuman primates, and the interaction of MC1R with other genes. 相似文献
20.