首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Very abundant and homogenous satellite DNA has been found in the flour beetle Palorus ratzeburgii, representing 40% of its genome. Sequencing of 14 randomly cloned satellite monomers revealed a conserved monomer length of 142 bp and an average A+T content of 68%. Sequence variation analysis showed that base substitutions, appearing with a frequency of 2.3%, are predominant differences among satellite monomers. The satellite sequence is unique without significant direct repeats and with only two potentially stable inverted repeats. After electrophoresis of satellite monomers on native polyacrylamide gel retarded mobilities characteristic for curved DNA molecules are observed. The curvature profiles and DNA helix axis trajectory are calculated on the basis of three different algorithms. These calculations predict that P ratzeburgii satellite DNA forms a left-handed solenoid superstructure. Comparison of described features with other satellite DNAs reveals some striking similarities with satellite DNA from related species Tenebrio molitor, which belongs to the same family of Tenebrionidae. Both satellites are very abundant and homogenous with the same, highly conserved monomer length, although there is no homology at the nucleotide level. Their monomers, as well as multimers, exhibit very similar retarded electrophoretic mobilities. The calculated curvature profiles predict two bend centers in monomers of each satellite, resulting in a model of left-handed solenoid superstructures of similar appearance.  相似文献   

2.
Single satellite DNA constitutes about 50% of the Tenebrio molitor genome. Electrophoresis of 142 base pair long satellite monomers on nondenaturating polyacrylamide gel shows retarded mobility, a characteristic of fragments with sequence-induced DNA curvature. Migrational analysis of circularly permuted satellite monomers revealed the existence of 2 bend centers in the monomer sequence. We calculated the trajectory of DNA helix axis according to the algorithm of De Santis et al. This model predicts that T molitor naked satellite DNA forms a solenoid structure with left-handed superhelix. One turn of the superhelix has approximately 310 base pairs and a 33 nm pitch. Point mutations found in the satellite DNA (1.8%) influence bending characteristics, but do not distort the general geometry of satellite superhelix.  相似文献   

3.
Sequence of PRAT Satellite DNA ``Frozen' in Some Coleopteran Species   总被引:5,自引:0,他引:5  
The intriguing diversity of highly abundant satellite repeats found even among closely related species can result from processes leading to dramatic changes in copy number of a particular sequence in the genome and not from rapid accumulation of mutations. To test this hypothesis, we investigated the distribution of the PRAT satellite DNA family, a highly abundant major satellite in the coleopteran species Palorus ratzeburgii, in eight species belonging to the related genera (Tribolium, Tenebrio, Latheticus), the subfamily (Pimeliinae), and the family (Chrysomelidae). Dot blot analysis and PCR assay followed by Southern hybridization revealed that the PRAT satellite, in the form of low-copy number repeats, was present in all tested species. The PRAT satellite detected in the species Pimelia elevata has been sequenced, and compared with previously cloned PRAT monomers from Palorus ratzeburgii and Palorus subdepressus. Although the two Palorus species diverged at least 7 Myr ago, and the subfamily Pimeliinae separated from the genus Palorus 50–60 Myr ago, all PRAT clones exhibit high mutual homology, with average variability relative to the common consensus sequence of 1.3%. The presence of ancestral mutations found in PRAT clones from all three species as well as the absence of species diagnostic mutations illustrate extremely slow sequence evolution. This unexpectedly high conservation of PRAT satellite DNA sequence might be induced by a small bias of turnover mechanisms favoring the ancestral sequence in the process of molecular drive.  相似文献   

4.
In an ongoing effort to trace the evolution of the sex chromosomes of Silene latifolia, we have searched for the existence of repetitive sequences specific to these chromosomes in the genome of this species by direct isolation from low-melting agarose gels of satellite DNA bands generated by digestion with restriction enzymes. Five monomeric units belonging to a highly repetitive family isolated from Silene latifolia, the SacI family, have been cloned and characterized. The consensus sequence of the repetitive units is 313 bp in length (however, high variability exists for monomer length variants) and 52.9% in AT. Repeating units are tandemly arranged at the subtelomeric regions of the chromosomes in this species. The sequence does not possess direct or inverted sequences of significant length, but short direct repeats are scattered throughout the monomer sequence. Several short sequence motives resemble degenerate monomers of the telomere repeat sequence of plants (TTTAGGG), confirming a tight association between this subtelomeric satellite DNA and the telomere repeats. Our approach in this work confirms that SacI satellite DNA sequences are among the most abundant in the genome of S. latifolia and, on the other hand, that satellite DNA sequences specific of sex chromosomes are absent in this species. This agrees with a sex determination system less cytogenetically diverged from a bisexual state than the system present in other plant species, such as R. acetosa, or at least a lesser degree of differentiation between the sex chromosomes of S. latifolia and the autosomes.  相似文献   

5.
Highly repeated satellite DNA (stDNA) of citric plants was characterized by cloning and sequencing 10–14 repeats of each plant (Citrus limon, C. sinensis, C. ichangensis, Poncirus trifoliata). The monomers are mostly 181 bp in length with a GC-content between 60% and 68% (significantly higher than the average GC-content of the citrus group genomes). Similarity among the repeats indicates that they belong to a satellite family that underwent species-specific modifications, which are reflected in the phylogenetic relationships. Curvature provoked by dA-stretches of the repeats analyzed by gel shifts revealed structural conservation, even though the nucleotide sequences vary among species, thereby probably supporting the heterochromatic structure of stDNA. We show that the species-specific modification of the satellite consensus involves changes in the position and number of dA tracts. The molecule shapes of satellite oligomeres predicted by computer modelling indicate a superhelical structure of the tandem repeats which is in a good agreement with the satellite sequence dendrogram. The contribution of DNA bending elements to the evolution of plant satellite repeats is discussed. Received: 27 November 2000 / Accepted: 12 January 2001  相似文献   

6.
Kuhn GC  Sene FM 《Genetica》2004,121(3):241-249
A HpaI satellite DNA has been isolated and characterised from the genome of Drosophila seriema, a cactus-breeding species endemic to the rock fields of the Espinhaço Range in Brazil. The monomer sequences are slightly A + T rich (66%) and there is a significant variation of repetition length (343–391 bp). The length variability is mainly due to a 22 bp indel in some repeats and the presence of a highly variable region characterised by several DNA rearrangements, including indels, inversions and duplications of small sequence segments. The retarded mobility of monomers observed after gel electrophoresis suggests DNA curvature. Thirty satDNA repeats were analysed in samples from five populations which cover D. seriema geographical distribution. Previous studies showed that these populations present low levels of chromosomal divergence in contrast to high levels of mtDNA divergence. The variability among the 30 repeats is pretty low, on average 2%. The results showed that the satDNA sequences are rather homogeneous on both intra and interpopulational levels, presenting no specific feature(s) that could discriminate a particular population or groups of geographically close populations. Possible factors responsible for such homogeneity are discussed.  相似文献   

7.
S Ruiz-Lara  E Prats  J Sainz  L Cornudella 《Gene》1992,117(2):237-242
Sperm DNA of the common mussel, Mytilus edulis, has been found to contain a highly repeated sequence identifiable upon restriction with the endonuclease ApaI. The repetitive nucleotide (nt) sequence amounts to 0.63% of the mollusc genome with an estimated copy number of 5.4 x 10(4) copies per haploid complement. The monomer unit with a 173-bp repeat length has been cloned. Progressive DNA digestions with ApaI yield ladder-like banding patterns on agarose gels, indicating that the repeated elements are tandemly arranged in the genome and therefore represent a sequence of satellite DNA. The degree of internal redundancy of the reiterated sequence is deemed negligible, since nt sequence analysis of a random set of cloned monomers has detected the presence of only a few direct repeats while inverted repeated motifs or any other internal substructures appear absent. The homologies found among cloned monomers are strikingly high, averaging 95%. The results suggest that the exceptional sequence homogeneity of this satellite DNA may be attributed either to some homogenizing mechanism or to evolutionary conserved trends.  相似文献   

8.
We have determined the complete nucleotide sequence of the monomer repeating unit of the 1.688 g/cm3 satellite DNA from Drosophila melanogaster. This satellite DNA, which makes up 4% of the Drosophila genome and is located primarily on the sex chromosomes, has a repeat unit 359 base-pairs in length. This complex sequence is unrelated to the other three major satellite DNAs present in this species, each of which contains a very short repeated sequence only 5 to 10 base-pairs long. The repeated sequence is more similar to the complex repeating units found in satellites of mammalian origin in that it contains runs of adenylate and thymidylate residues. We have determined the nature of the sequence variations in this DNA by restriction nuclease cleavage and by direct sequence determination of (1) individual monomer units cloned in hybrid plasmids, (2) mixtures of adjacent monomers from a cloned segment of this satellite DNA, (3) mixtures of monomer units isolated by restriction nuclease cleavage of total 1.688 g/cm3 satellite DNA. Both direct sequence determination and restriction nuclease cleavage indicate that certain positions in the repeat can be highly variable with up to 50% of certain restriction sites having altered recognition sequences. Despite the high degree of variation at certain sites, most positions in the sequence are highly conserved. Sequence analysis of a mixture of 15 adjacent monomer units detected only nine variable positions out of 359 base-pairs. Total satellite DNA showed only four additional positions. While some variability would have been missed due to the sequencing methods used, we conclude that the variation from one repeat to the next is not random and that most of the satellite repeat is conserved. This conservation may reflect functional aspects of the repeated DNA, since we have shown earlier that part of this sequence serves as a binding site for a sequence-specific DNA binding protein isolated from Drosophila embryos (Hsieh &; Brutlag, 1979).  相似文献   

9.
MOTIVATION: Tandemly organized repetitive sequences (satellite DNA) are widespread in complex eukaryotic genomes. In plants, satellite repeats often represent a substantial part of nuclear DNA but only a little is known about the molecular mechanisms of their amplification and their possible role(s) in genome evolution and function. Unfortunately, addressing these questions via characterization of general sequence properties of known satellite repeats has been hindered by a difficulty in obtaining a complete and unbiased set of sequence data for this analysis. This is mainly due to the presence of multiple entries of homologous sequences and of single entries that contain more than one repeated unit (monomer) in the public databases. RESULTS: We have established a computer database specialized for plant satellite repeats (PlantSat) that integrates sequence data available from various resources with supplementary information including repeat consensus sequences, abundances, and chromosomal localizations. The sequences are stored as individual repeat monomers grouped into families, which simplifies their computer analysis and makes it more accurate. Using this feature, we have performed a basic sequence analysis of the whole set of plant satellite repeats with respect to their monomer length and nucleotide composition. The analysis revealed several preferred length ranges of the monomers (approximately 165 bp and its multiples) and an over-representation of the AA/TT dinucleotide in the repeats. We have also detected an enrichment of satellite DNA sequences for the motif CAAAA that is supposed to be involved in breakage-reunion of repeated sequences.  相似文献   

10.
闫守庆  祝万菊  张雪梅  李冰  孙金海 《遗传》2007,29(12):1504-1508
利用限制性内切酶酶切蓝狐基因组, 经琼脂糖凝胶电泳, 对特异性亮带进行克隆、测序及序列分析。结果获得42个卫星DNA序列, 该卫星DNA单体大小为737 bp, G+C含量为51.9%, 单体之间同源性为91%~97%; 每个单体由3个约245 bp的亚重复串联构成, 亚重复之间的同源性为49%~55%; 在物种进化过程中, 该卫星DNA有G+C含量逐渐降低而A+T含量逐渐上升的趋势; 该卫星DNA为犬科动物种属所特有, 与犬着丝粒相关卫星DNA为同类卫星DNA, 同源性为74%, 命名为α-卫星DNA。  相似文献   

11.
Tenebrio molitor satellite DNA has been analysed in order to study sequential organization of tandemly repeated monomers, i.e. to see whether different monomer variants are distributed randomly over the whole satellite, or clustered locally. Analysed sequence variants are products of single base substitutions in a consensus satellite sequence, producing additional restriction sites. The ladder of satellite multimers obtained after digestion with restriction enzymes was compared with theoretical calculations and revealed the distribution pattern of particular monomer variants within the satellite. A defined higher order repeating structure, indicating the existence of satellite subfamilies, could not be observed. Our results show that some sequence variants are very abundant, being present in nearly 50% of the monomers, while others are very rare (0-1% of monomers). However, the distribution of either very frequent, or very rare sequence variants in T. molitor satellite DNA is always random. Monomer variants are randomly distributed in the total satellite DNA and thus spread across all chromosomes, indicating a relatively high rate of sequence homogenization among different chromosomes. Such a distribution of monomer variants represents a transient stage in the process of sequence homogenization, indicating the high rate of spreading in comparison with the rate of sequence variant amplification.  相似文献   

12.
Lorite P  Carrillo JA  Tinaut A  Palomeque T 《Gene》2002,297(1-2):113-122
The satellite DNA of ants Messor barbarus and Messor bouvieri is analysed. The results are compared with the satellite DNA data from Messor structor previously reported and with new data obtained from the genome of geographically distinct M. structor population, which have shown that this satellite DNA is highly conserved within the species. The satellite DNA is organized as tandemly repeated 79 bp monomers in all species. The sampled sequences of the three species show a high similarity and all belong to the same family of satellite DNA. Sequence comparisons suggested the occurrence of highly effective homogenization mechanism acting upon the ant genomes. In accordance with this hypothesis, putative gene conversion tracts are identified when the different monomers of the same species are compared. The highest sequence conservation in all species corresponds to a single region with inverted repeats. A CENP-B-like motif was found in this region. The possibility that it may be involved in the homogenization of satellite DNA is discussed.  相似文献   

13.
Amplification of monomer sequences into long contiguous arrays is the main feature distinguishing satellite DNA from other tandem repeats, yet it is also the main obstacle in its investigation because these arrays are in principle difficult to assemble. Here we explore an alternative, assembly‐free approach that utilizes ultra‐long Oxford Nanopore reads to infer the length distribution of satellite repeat arrays, their association with other repeats and the prevailing sequence periodicities. Using the satellite DNA‐rich legume plant Lathyrus sativus as a model, we demonstrated this approach by analyzing 11 major satellite repeats using a set of nanopore reads ranging from 30 to over 200 kb in length and representing 0.73× genome coverage. We found surprising differences between the analyzed repeats because only two of them were predominantly organized in long arrays typical for satellite DNA. The remaining nine satellites were found to be derived from short tandem arrays located within LTR‐retrotransposons that occasionally expanded in length. While the corresponding LTR‐retrotransposons were dispersed across the genome, this array expansion occurred mainly in the primary constrictions of the L. sativus chromosomes, which suggests that these genome regions are favourable for satellite DNA accumulation.  相似文献   

14.
A highly abundant satellite DNA comprising 20% of the Meloidogyne fallax (Nematoda, Tylenchida) genome was cloned and sequenced. The satellite monomer is 173 bp long and has a high A + T content of 72.3%, with frequent runs of A's and T's. The sequence variability of the monomers is 2.7%, mainly due to random distribution of single-point mutations. A search for evidence of internal repeated subunits in the monomer sequence revealed a 6-bp motif (AAATTT) for which five degenerated repeats, differing by just a single base pair, could be identified. Pairwise comparison of the M. fallax satellite with those from the sympatric species Meloidogyne chitwoodi and Meloidogyne hapla revealed a high sequence similarity (68.39%) with one satellite DNA subfamily in M. chitwoodi, which indicated an unexpected close relationship between them. Given the high copy number and the extreme sequence homogeneity among monomeric units, it may be assumed that the satellite DNA of M. fallax could have evolved through some recent and extensive amplification burst in the nematode genome. In this case, its relatively short life would not yet have allowed the accumulation of random mutations in independent amplified repeats. Considering the morphological resemblance between the two species and their ability to produce interspecific fertile hybrids under controlled conditions, these results indicate that M. fallax may share a common ancestor with M. chitwoodi, from which it could have diverged recently. All these data suggest that M. fallax could be the result of a recent speciation process and show that Meloidogyne satellite DNAs may be of interest to resolve phylogenetic relationships among closely related species from this genus.   相似文献   

15.
Two different satellite DNAs from tenebrionid speciesTribolium madens (Insecta, Coleoptera) have been detected, cloned, and sequenced. Satellite I comprises 30% of the genome; it has a monomer size of 225 by and a high A + T content of 74%. Satellite 11, with a monomer size of 711 by and A + T content of 70%, is less abundant, making 4% of the total DNA. Sequence variability of the monomers relative to consensus sequence is 4.1% and 1.2% for satellite I and II, respectively. Both satellites are localized in the heterochromatic regions of all chromosomes. A search for internal motifs showed that both satellites contain a related subsequences, about 100 by long. The creation of satellite I monomer is explained by duplication of the basic subunit, followed by subsequent divergence by single point mutations, deletions, and gene conversion. Inversion of the subsequence in addition to its duplication has occurred in satellite II. The result of this inversion is possible formation of a long, stable dyad structure. The 408-bp sequence, inserted within satellite II monomer, shares no similarity with a basic subunit. Frequent direct repeats found within the inserted sequence point to its evolution by duplication of shorter motifs. It is proposed that both satellites have been derived from a common ancestral sequence whose duplication played a major role in the formation of satellite I monomer, while insertion of a new sequence together with inversion of an ancestral one induced the occurrence of satellite II. Correspondence to: D. Ugarković  相似文献   

16.
Methylation of DNA is important for the epigenetic silencing of repetitive DNA in plant genomes. Knowledge about the cytosine methylation status of satellite DNAs, a major class of repetitive DNA, is scarce. One reason for this is that arrays of tandemly arranged sequences are usually collapsed in next‐generation sequencing assemblies. We applied strategies to overcome this limitation and quantified the level of cytosine methylation and its pattern in three satellite families of sugar beet (Beta vulgaris) which differ in their abundance, chromosomal localization and monomer size. We visualized methylation levels along pachytene chromosomes with respect to small satellite loci at maximum resolution using chromosome‐wide fluorescent in situ hybridization complemented with immunostaining and super‐resolution microscopy. Only reduced methylation of many satellite arrays was obtained. To investigate methylation at the nucleotide level we performed bisulfite sequencing of 1569 satellite sequences. We found that the level of methylation of cytosine strongly depends on the sequence context: cytosines in the CHH motif show lower methylation (44–52%), while CG and CHG motifs are more strongly methylated. This affects the overall methylation of satellite sequences because CHH occurs frequently while CG and CHG are rare or even absent in the satellite arrays investigated. Evidently, CHH is the major target for modulation of the cytosine methylation level of adjacent monomers within individual arrays and contributes to their epigenetic function. This strongly indicates that asymmetric cytosine methylation plays a role in the epigenetic modification of satellite repeats in plant genomes.  相似文献   

17.
Several HindIII monomer units of a tandemly repeated nuclear DNA sequence ofBrassica campestris andBrassica juncea (Cruciferae) have been cloned and sequenced. The monomer units, of 177 bp length, are AT-rich and share 88% homology between themselves and more than 65% homology with similar repeats of otherCruciferae likeBrassica oleracea, Sinapis alba andRaphanus sativus. Thus unlike the rapid divergence of tandemly repeated satellite DNA in other organisms, this DNA element is highly conserved thus indicating its importance.  相似文献   

18.
Summary Another satellite DNA repeat (type IV) in the genome of Cucumis sativus (cucumber) was found and investigated with respect to DNA sequence, methylation, and evolution. This satellite shows a repeat length of 360 bp and a GC-content of 47%. The repeats of type IV are highly conserved among each other. Evidence for CG and CNG methylation is presented. By comparison to the previously described satellites (type I/II and type III) from cucumber, it is evident that this repeat is created by an insertion of a 180 bp DNA sequence similar to type I–III into another DNA sequence (or vice versa), and subsequent amplification forming a new satellite repeat. The different satellites of the type I/II, type III, and the 180 bp insert of type IV show a sequence homology of 60%–70%, indicating that the complex satellite DNA of cucumber is originated from a common progenitor by mutation, additional insertion, and amplification events. Copies of a sequence similar to a part of type IV are present in the genome of the related species Cucumis melo (melon).  相似文献   

19.
Satellite DNA profiles have been characterized in the congeneric species Palorus ratzeburgii, Palorus subdepressus, Palorus genalis, and Palorus ficicola (Coleoptera, Insecta), each of which contains a single, A + T-rich satellite DNA comprising a considerable portion of the genome (20%-40%). These satellites exhibit insignificant mutual sequence similarity. Using PCR assay, it has been shown that all four sequences are present in each of the tested Palorus species: one of them is amplified into a high copy number or a major satellite, while the three others are in the form of low-copy-number repeats estimated to make up approximately 0.05% of the genome. Each of the four satellites is interspecifically high conserved concerning the sequence, monomer length, and tandem repeat organization. Major, as well as low- copy-number, satellites are colocalized in the regions of pericentromeric heterochromatin on all chromosomes of the complement. The low-copy-number satellites are dispersed between the large arrays of the major satellite over the whole heterochromatic block. Our results explain satellite DNA evolution, confirming the hypothesis that related species share a "library" of conserved satellite sequences, some of which could be amplified into a major satellite. Due to the evolutionary dynamics of satellite DNAs, the content of the "library" is variable; the elimination of some sequences parallels the creation of the new ones. Quantitative changes in satellite DNAs, induced by occasional amplification of satellite repeat from the "library", could possibly occur in the course of the speciation process, thus forming a species-specific profile of satellite DNAs.   相似文献   

20.
The human alpha satellite DNA family is organized into chromosome-specific subsets characterized by distinct higher-order repeats based on a approximately 171 basepair monomer unit. On human chromosome 17, the predominant form of alpha satellite is a 16-monomer (16-mer) higher-order repeat present in 500-1000 copies per chromosome 17. In addition, less abundant 15-monomer and 14-monomer repeats are also found constitutively on chromosome 17. Polymorphisms in the form of different higher-order repeat lengths have been described for this subset, the most prominent polymorphism being a 13-monomer (13-mer) higher-order repeat present on approximately 35% of all chromosomes 17. To investigate the nature of this polymorphism, we have cloned, sequenced and compared the relevant regions of the 13-mer to the previously characterized 16-mer repeat. The results show that the repeats are virtually identical, with the principal difference being the exclusion of three monomers from the 13-mer repeat. We propose that the 13-mer is the product of an isolated homologous recombination event between two monomers of the 16-mer repeat. Sequence comparisons reveal the approximate site of recombination and flanking regions of homology. This recombination site corresponds to a position within the alphoid monomer which has been previously implicated in an independent homologous recombination event, suggesting that there may exist a preferred register for recombination in alphoid DNA. We suggest that these events are representative of an ongoing process capable of reorganizing the satellite subset of a given chromosome, thereby contributing to the establishment of chromosome-specific alpha satellite subsets.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号