首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Lasat MM  Baker A  Kochian LV 《Plant physiology》1996,112(4):1715-1722
Radiotracer techniques were employed to characterize 65Zn2+ influx into the root symplasm and translocation to the shoot in Thlaspi caerulescens, a Zn hyperaccumulator, and Thlaspi arvense, a nonaccumulator. A protocol was developed that allowed us to quantify unidirectional 65Zn2+ influx across the root-cell plasma membrane (20 min of radioactive uptake followed by 15 min of desorption in a 100 [mu]M ZnCl2 + 5 mM CaCl2 solution). Concentration-dependent Zn2+ influx in both Thlaspi species yielded nonsaturating kinetic curves that could be resolved into linear and saturable components. The linear kinetic component was shown to be cell-wall-bound Zn2+ remaining in the root after desorption, and the saturable component was due to Zn2+ influx across the root-cell plasma membrane. This saturable component followed Michaelis-Menten kinetics, with similar apparent Michaelis constant values for T. caerulescens and T. arvense (8 and 6 [mu]M, respectively). However, the maximum initial velocity for Zn2+ influx in T. caerulescens root cells was 4.5-fold higher than for T. arvense, indicating that enhanced absorption into the root is one of the mechanisms involved in Zn hyperaccumulation. After 96 h 10-fold more 65Zn was translocated to the shoot of T. caerulescens compared with T. arvense. This indicates that transport sites other than entry into the root symplasm are also stimulated in T. caerulescens. We suggest that although increased root Zn2+ influx is a significant component, transport across the plasma membrane and tonoplast of leaf cells must also be critical sites for Zn hyperaccumulation in T. caerulescens.  相似文献   

3.
4.
5.
6.
Growth and zinc uptake of the hyperaccumulator species Thlaspi caerulescens J. & C. Presl and the non-hyperaccumulator species Thlaspi ochroleucum Boiss. & Heldr. were compared in solution culture experiments. T. caerulescens was able to tolerate 500 mmol m?3 (32.5 g m?3) Zn in solution without growth reduction, and up to 1000 mmol m?3 (65 g m?3) Zn without showing visible toxic symptoms but with a 25% decrease in dry matter (DM) yield. Up to 28 g kg?1 of Zn in shoot DM was obtained in healthy plants of T. caerulescens. In contrast, T. ochroleucum suffered severe phytotoxicity at 500 mmol m?3 Zn. Marked differences were shown in Zn uptake, distribution and redistribution between the two species. T. caerulescens had much higher concentrations of Zn in the shoots, whereas T. ochroleucum accumulated higher concentrations of Zn in the roots. When an external supply of 500 mmol m?3 Zn was withheld, 89% of the Zn accumulated previously in the roots of T. caerulescens was transported to the shoots over a 33 d period, whereas in T. ochroleucum only 32% was transported. T. caerulescens was shown to have a greater internal requirement for Zn than other plants. Increasing the supply of Zn from 1 to 10 mmol m?3 gave a 19% increase in the total DM of this species. liven the shoots from the 1 mmol m?3 Zn treatment which showed Zn deficiency contained 10 times greater Zn concentrations than the widely reported critical value for Zn deficiency to occur in many other plant species. The results obtained suggest that strongly expressed constitutive sequestration mechanisms exist in the hyperaccumulator T. caerulescens, which detoxify the large amount of Zn present in shoot tissues and decrease its physiological availability in the cytosol. Both T. caerulescens and T. ochroleucum had constitutively high concentrations of malate in shoots, which were little affected by different Zn treatments. Although malate may play a role in Zn chelation because of the high concentrations present, it cannot explain the species specificity of Zn tolerance and hyperaccumulation.  相似文献   

7.

Background

Metal-hyperaccumulating plant species are plants that are endemic to metalliferous soils and are able to tolerate and accumulate metals in their above-ground tissues to very high concentrations. One such hyperaccumulator, Thlaspi caerulescens, has been widely studied for its remarkable properties to tolerate toxic levels of zinc (Zn), cadmium (Cd) and sometimes nickel (Ni) in the soil, and accumulate these metals to very high levels in the shoot. The increased awareness regarding metal-hyperaccumulating plants by the plant biology community has helped spur interest in the possible use of plants to remove heavy metals from contaminated soils, a process known as phytoremediation. Hence, there has been a focus on understanding the mechanisms that metal-hyperaccumulator plant species such as Thlaspi caerulescens employ to absorb, detoxify and store metals in order to use this information to develop plants better suited for the phytoremediation of metal-contaminated soils.

Scope

In this review, an overview of the findings from recent research aimed at better understanding the physiological mechanisms of Thlaspi caerulescens heavy-metal hyperaccumulation as well as the underlying molecular and genetic determinants for this trait will be discussed. Progress has been made in understanding some of the fundamental Zn and Cd transport physiology in T. caerulescens. Furthermore, some interesting metal-related genes have been identified and characterized in this plant species, and regulation of the expression of some of these genes may be important for hyperaccumulation.

Conclusions

Thlaspi caerulescens is a fascinating and useful model system not only for studying metal hyperaccumulation, but also for better understanding micronutrient homeostasis and nutrition. Considerable future research is still needed to elucidate the molecular, genetic and physiological bases for the extreme metal tolerance and hyperaccumulation exhibited by plant species such as T. caerulescens.Key words: Zn, Cd, Ni, Thlaspi caerulescens, hyperacumulator, phytoremediation, heavy metal  相似文献   

8.
9.
The ability of Thlaspi caerulescens, a zinc (Zn)/cadmium (Cd) hyperaccumulator, to accumulate extremely high foliar concentrations of toxic heavy metals requires coordination of uptake, transport, and sequestration to avoid damage to the photosynthetic machinery. The study of these metal hyperaccumulation processes at the cellular level in T. caerulescens has been hampered by the lack of a cellular system that mimics the whole plant, is easily transformable, and competent for longer term studies. Therefore, to better understand the contribution of the cellular physiology and molecular biology to Zn/Cd hyperaccumulation in the intact plant, T. caerulescens suspension cell lines were developed. Differences in cellular metal tolerance and accumulation between the cell lines of T. caerulescens and the related nonhyperaccumulator, Arabidopsis (Arabidopsis thaliana), were examined. A number of Zn/Cd transport-related differences between T. caerulescens and Arabidopsis cell lines were identified that also are seen in the whole plant. T. caerulescens suspension cell lines exhibited: (1) higher growth requirements for Zn; (2) much greater Zn and Cd tolerance; (3) enhanced expression of specific metal transport-related genes; and (4) significant differences in metal fluxes compared with Arabidopsis. One interesting feature exhibited by the T. caerulescens cell lines was that they accumulated less Zn and Cd than the Arabidopsis cell lines, most likely due to a greater metal efflux. This finding suggests that the T. caerulescens suspension cells represent cells of the Zn/Cd transport pathway between the root epidermis and leaf. We also show it is possible to stably transform T. caerulescens suspension cells, which will allow us to alter the expression of candidate hyperaccumulation genes and thus dissect the molecular and physiological processes underlying metal hyperaccumulation in T. caerulescens.  相似文献   

10.
In a model hyperaccumulation study a Cd/Zn hyperaccumulator Thlaspi caerulescens accession Ganges and a recently reported Cd/Zn hyperaccumulator Thlaspi praecox grown in increasing Cd and Zn concentrations in the substrate and in field collected polluted soil were compared. Plant biomass, concentrations of Cd and Zn, total chlorophylls and anthocyanins, antioxidative stress parameters and activities of selected antioxidative enzymes were compared. Increasing Cd, but not Zn in the substrate resulted in the increase of biomass of roots and shoots of T. praecox and T. caerulescens. The two species hyperaccumulated Cd in the shoots to a similar extent, whereas T. caerulescens accumulated more Zn in the shoots than T. praecox. Cadmium amendment decreased total chlorophyll concentration and glutathione reductase activity, and increased non-protein thiols concentration only in T. praecox, suggesting that it is less tolerant to Cd than T. caerulescens. In the field-contaminated soil, T. caerulescens accumulated higher Cd concentrations; but as T. praecox produced higher biomass, both species have similar ability to extract Cd.  相似文献   

11.
Nickel and Zn hyperaccumulation by Alyssum murale and Thlaspi caerulescens bear substantial energetic costs and should confer benefits to the plant. This research determined whether metal hyperaccumulation can increase osmotic adjustment and resistance to water stress (drought). Alyssum murale and Thlaspi caerulescens treated with low or high concentrations of Ni or Zn were exposed to moderate (?0·4 MPa) and severe (?1·0 MPa) water stresses using aqueous polyethylene glycol. In the absence of metals both water deficits inhibited shoot growth. Nickel and Zn hyperaccumulation did not ameliorate growth inhibition by either level of water stress. The water stress did not induce major changes in shoot metal concentrations of these constitutive hyperaccumulators. Moreover, metal hyperaccumulation had minimal effects on the osmolality of leaf‐sap extracts, relative water content of the shoots, or rate of evapotranspiration. It is concluded that Ni or Zn hyperaccumulation does not augment whole‐plant capacity for drought resistance in A. murale and T. caerulescens.  相似文献   

12.
13.
Zinc is an essential trace element, necessary for plants, animals, and microorganisms. Zn is required for many enzymes as a catalytic cofactor, for photosynthetic CO2 fixation, and in maintaining the integrity of bio-membranes. However, Zn is potentially toxic when accumulated beyond cellular needs. Phytoextraction technique, which is a part of phytoremediation, has opened new avenues for remediation of Zn-contaminated places. Hyperaccumulators like Thlaspi caerulescens and Arabidopsis halleri have been identified, which can accumulate up to 40,000 mg kg?1 Zn in the aerial parts of the plant body. Carboxylic acids, primarily malate, citrate, and oxalate, and amino acids are found to play an important role in Zn hyperaccumulation. Transmembrane metal transporters are assumed to play a key role in Zn metal uptake, xylem loading, and vacuolar sequestration. Members of CDF (cation diffusion facilitator) and ZIP (zinc-regulated transporter, iron-regulated transporter like protein) family have been implicated in Zn-metal-tolerance mechanisms. A potential metal-binding motif, containing multiple histidine residues, is found in the variable regions of almost all of the ZIP family, including ZIP1, ZIP2, ZIP4, ZRT1, and ZRT2. Overexpression of some Zn metal transporter genes like TcZNT1 (Thlaspi caerulescens Zn transporter1), TcHMA4 (Thlaspi caerulescens heavy metal ATPase) in Thlaspi caerulescens, AhMTP1;3 (Arabidopsis halleri metal transporter1;3) in Arabidopsis halleri, and PtdMTP1(Poplar metal transporter1) from a hybrid poplar confer Zn hypertolerance in Thlaspi, Arabidopsis, and Poplar plant species.  相似文献   

14.
The main objective of this research was to study the response of Arabidopsis thaliana L. and Thlaspi caerulescens J. & C. Presl to different Zn supplies. The A. thaliana plants were exposed to Zn-deficiency (0 and 0.05 μM Zn) and compared to the plants grown on media containing standard Zn (2 μM). T. caerulescens plants were also exposed to Zn-deficiency (0.05 μM Zn), but as this is a Zn hyperaccumulator species, also to high Zn (1,000 μM Zn). Plants were compared to plants grown on standard Zn media (100 μM Zn). Both A. thaliana and T. caerulescens were found to be heavily affected by Zn deficiency, showing similar retarded growth and reduced reproduction phenotypes, and even less reduction in biomass production in T. caerulescens than in A. thaliana. T. caerulescens plants were similarly affected when grown on high Zn concentrations, with comparable effects on reproductive tissues as seen on low Zn supply.  相似文献   

15.
Thlaspi caerulescens J. & C. Presl is a distinctive metallophyte of central and western Europe that almost invariably hyperaccumulates Zn to> 1.0% of shoot dry biomass in its natural habitats, and can hyperaccumulate Ni to> 0.1% when growing on serpentine soils. Populations from the Ganges region of southern France also have a remarkable ability to accumulate Cd in their shoots to concentrations well in excess of 0.01% without apparent toxicity symptoms. Because hyperaccumulation of Cd appears to be highly variable in this species, the relationship between Cd tolerance and metal accumulation was investigated for seven contrasting populations of T. caerulescens grown under controlled conditions in solution culture. The populations varied considerably in average plant biomass (3.1‐fold), shoot : root ratio (2.2‐fold), Cd hyperaccumulation (3.5‐fold), shoot : root Cd‐concentration ratio (3.1‐fold), and shoot Cd : Zn ratio (2.6‐fold), but the degree of hyperaccumulation of Cd and Zn were strongly correlated. Two populations from the Ganges region were distinct in exhibiting high degrees of both Cd tolerance and hyperaccumulation (one requiring 3 µM Cd for optimal growth), whereas across the other five populations there was an inverse relationship between Cd tolerance and hyperaccumulation, as has been noted previously for Zn. Metal hyperaccumulation was negatively correlated with shoot : root ratio, which could account quantitatively for the differences between populations in shoot Zn (but not Cd) concentrations. On exposure to 30 µM Cd, the two Ganges populations showed marked reductions in shoot Zn and Fe concentrations, although Cd accumulation was not inhibited by elevated Zn; in the other five populations, 30 µM Cd had little or no effect on Zn or Fe accumulation but markedly reduced shoot Ca concentration. These results support a proposal that Cd is taken up predominantly via a high‐affinity uptake system for Fe in the Ganges populations, but via a lower‐affinity pathway for Ca in other populations. Total shoot Cd accumulated per plant was much more closely related to population Cd tolerance than Cd hyperaccumulation, indicating that metal tolerance may be the more important selection criterion in developing lines with greatest phytoremediation potential.  相似文献   

16.
Metal hyperaccumulators are plants that are capable of extracting metals from the soil and accumulating them to extraordinary concentrations in aboveground tissues (greater than 0.1% dry biomass Ni or Co or greater than 1% dry biomass Zn or Mn). Approximately 400 hyperaccumulator species have been identified, according to the analysis of field-collected specimens. Metal hyperaccumulators are interesting model organisms to study for the development of a phytoremediation technology, the use of plants to remove pollutant metals from soils. However, little is known about the molecular, biochemical, and physiological processes that result in the hyperaccumulator phenotype. We investigated the role of Ni tolerance and transport in Ni hyperaccumulation by Thlaspi goesingense, using plant biomass production, evapotranspiration, and protoplast viability assays, and by following short- and long-term uptake of Ni into roots and shoots. As long as both species (T. goesingense and Thlaspi arvense) were unaffected by Ni toxicity, the rates of Ni translocation from roots to shoots were the same in both the hyper- and nonaccumulator species. Our data suggest that Ni tolerance is sufficient to explain the Ni hyperaccumulator phenotype observed in hydroponically cultured T. goesingense when compared with the Ni-sensitive nonhyperaccumulator T. arvense.  相似文献   

17.
Three Cd and Zn hyperaccumulating plant species Noccaea caerulescens Noccaea praecox and Arabidopsis halleri (Brassicacceae) were cultivated in seven subsequent vegetation seasons in both pot and field conditions in soil highly contaminated with Cd, Pb, and Zn. The results confirmed the hyperaccumulation ability of both plant species, although A. halleri showed lower Cd uptake compared to N. caerulescens. Conversely, Pb phytoextraction was negligible for both species in this case. Because of the high variability in plant yield and element contents in the aboveground biomass of plants, great variation in Cd and Zn accumulation was observed during the experiment. The extraction ability in field conditions varied in the case of Cd from 0.2 to 2.9 kg ha?1 (N. caerulescens) and up to 0.15 kg ha?1 (A. halleri), and in the case of Zn from 0.2 to 6.4 kg ha?1 (N. caerulescens) and up to 13.8 kg.ha?1 (A. halleri). Taking into account the 20 cm root zone of the soil, the plants were able to extract up to 4.1% Cd and 0.2% Zn in one season. However, cropping measures should be optimized to improve and stabilize the long-term phytoextraction potential of these plants.  相似文献   

18.
The heavy metal hyperaccumulator Thlaspi caerulescens is widespread in France on many kinds of sites and substrates, including Zn/Pb/Cd mine and smelter wastes, Ni-rich serpentine outcrops and a variety of nonmetalliferous soils. Thlaspi caerulescens is remarkable among the metallophytes of France because it accumulates Zn to high concentrations (almost always >0.1%, and often >1% in the dry matter) regardless of the total Zn concentration of the substrate. The extraordinary uptake of Zn from soils of normal Zn concentration draws attention to the need for studies of the mechanisms by which such mobilization and uptake can occur. Different populations of Thlaspi caerulescens in France show considerable variation in their ability to accumulate Cd; individuals in some populations contain as much as 0.1 to 0.4% Cd, the highest levels recorded in vascular plants. The hyperaccumulation of Ni (sometimes exceeding 1%) from serpentine soils in France is also noteworthy. Despite the generally low biomass, some very large individuals occur, giving good potential for selective breeding to improve the value of Thlaspi caerulescens for phytoremediation, especially of Cd. The high Zn uptake from all kinds of soils is a property shared by the related T. brachypetalum, and T. alpinum shows dual Zn- and Ni uptake, depending on the substrate. The extent to which other species of Thlaspi occurring in France exhibit metal accumulation is also discussed.  相似文献   

19.
Nitrate has been shown to enhance Zn hyperaccumulation in the shoots of Noccaea caerulescens (formerly Thlaspi caerulescens) (Prayon); however, the mechanisms beyond the effect of nitrogen form are unknown. This study used synchrotron X-ray absorption near-edge spectroscopy (XANES) on alive and intact plants at room temperature to examine whether enhanced Zn hyperaccumulation in nitrate-fed plants was associated with differences in Zn speciation, and to correlate Zn species with mechanisms of Zn uptake, translocation and hyperaccumulation. The higher Zn concentration in plants supplied with nitrate compared to ammonium, or with high Zn exposure (300 ???), was not due to differences in Zn speciation. The importance of carboxylates for Zn hyperaccumulation in the shoots was supported by a predominance of Zn-malate or Zn-citrate. Zinc-phytate was detected for the first time in this species and may assist Zn-tolerance in the roots. The feasible presence of Zn-histidine in the roots but not in the xylem sap suggests a mechanism for Zn binding and non-toxic transport through the cytoplasm and release of aqueous Zn into the xylem vessels. Zinc was translocated in the xylem as Zn-malate and weakly complexed or aqueous Zn forms. Zinc speciation in roots, shoots and xylem did not differ between nitrate- and ammonium-fed plants.  相似文献   

20.
This study used co-cultivated plants as a bioassay to test the hypothesis that the roots of the zinc-hyperaccumulating plant Thlaspi caerulescensmobilize Zn from less-available pools in the soil. Thlaspi caerulescens was grown in uncompartmentalised pots, or pots that were divided by solid or mesh barriers to limit the extent of root intermingling (rhizosphere interaction) with co-cultivated Thlaspi arvense or Festuca rubra. Thlaspi caerulescens did not increase the concentration of Zn in either indicator species, suggesting that T. caerulescens does not strongly mobilize Zn in its rhizosphere. The increase in the shoot mass of T. arvense when its roots were permitted to intermingle with those of T. caerulescens was explained by greater intensity of competition of T. arvense compared to T. caerulescens.There was no effect of co-cultivation with T. caerulescens on the shoot biomass of F. rubra. Despite the absence of increased Zn-availability to the co-cultivated species, the mass of Zn accumulated by T. caerulescens was 3-times greater than the mass of Zn depleted from the pool of extractable-Zn in the soil, measured by extraction with 1 M ammonium nitrate. The results are consistent with the hypothesis that the rapid Zn-uptake systems in the roots of T. caerulescens deplete the soluble-Zn at a rate equal to, or faster than that at which Zn is replenished to the soil solution via plant/microbially mediated mobilization or the Zn-buffering capacity of the soil.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号