首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Abstract: Thirty‐eight plants were taken from a University of California alfalfa selection nursery for developing resistance to silverleaf whitefly, Bemisia argentifolii Bellows & Perring. Seventeen of the plants had low whitefly infestation and were categorized as ‘potentially resistant’; 21 of the plants had high whitefly infestation and were categorized as ‘presumed susceptible’. Plants were propagated vegetatively so that replicated measurements of whitefly performance could be made on each genotype. Two colonies of silverleaf whiteflies were used: one reared on alfalfa (alfalfa‐experienced whiteflies), and the other on cotton (alfalfa‐naive whiteflies). The effect of variation among alfalfa genotypes on whitefly performance was similar for both whitefly sources, although on all genotypes, the alfalfa‐experienced whiteflies generally performed better than their alfalfa‐naive counterparts. In greenhouse tests, fecundity of newly eclosed adults (over a 5‐day period) on the 17 potentially resistant genotypes was relatively consistent in being lower than fecundity on the presumed susceptible genotypes. However, in nymphal survival tests, the response on the 17 potentially resistant genotypes was not consistent. Nymphal survival (egg to adult) on some of these was very low, as expected, while nymphal survival on others was as high as on the presumed susceptible genotypes. Fecundity and nymphal survival data were not correlated for alfalfa‐naive whiteflies, and were only weakly correlated (r2 = 0.13, d.f. = 32, P = 0.04) for alfalfa‐experienced whiteflies. Thirteen genotypes then were examined in the greenhouse in stage‐specific survival tests, where four genotypes demonstrated high resistance (<10% nymphal survival) and three demonstrated moderate resistance (11–34% survival) compared with the three presumed susceptible genotypes that were tested (51–73% survival). Most of the mortality on the resistant genotypes occurred in the first instar, while mortality was more evenly distributed across the life stages on the susceptible genotypes. Interestingly, if nymphs survived to second instar on the resistant genotypes, then their subsequent survival to adult eclosion was similar to survival of second instar to adult on susceptible genotypes. Six of the genotypes used in the greenhouse stage‐specific survival test also were evaluated in the field for nymphal survival, and these results were consistent with the greenhouse tests.  相似文献   

2.
Heterodera glycines is a cyst nematode that causes significant lost soybean yield in the U.S. Recent studies observed the aphid Aphis glycines and H. glycines interacting via their shared host, soybean, Glycine max. A greenhouse experiment was conducted to discern the effect of A. glycines feeding on H. glycines reproduction. An H. glycines-susceptible cultivar, Kenwood 94, and a resistant cultivar, Dekalb 27–52, were grown in H. glycines-infested soil for 30 and 60 d. Ten days after planting, plants were infested with either zero, five, or ten aphids. At 30 and 60 d, the number of H. glycines females and cysts (dead females) and the number of eggs within were counted. In general, H. glycines were less abundant on the resistant than the susceptible cultivar, and H. glycines abundance increased from 30 to 60 d. At 30 d, 33% more H. glycines females and eggs were produced on the resistant cultivar in the ten-aphid treatment compared to the zero-aphid treatment. However, at 30 d the susceptible cultivar had 50% fewer H. glycines females and eggs when infested with ten aphids. At 60 d, numbers of H. glycines females and cysts and numbers of eggs on the resistant cultivar were unaffected by A. glycines feeding, while numbers of both were decreased by A. glycines on the susceptible cultivar. These results indicate that A. glycines feeding improves the quality of soybean as a host for H. glycines, but at higher herbivore population densities, this effect is offset by a decrease in resource quantity.  相似文献   

3.
The fecundity, longevity, mortality, and maturation of the soybean aphid, Aphis glycines Matsumura (Homoptera: Aphididae), were characterized using three resistant soybean, Glycine max (L.) Merrill, genotypes ('Dowling', 'Jackson', and PI200538 'Sugao Zarai') and two susceptible genotypes ('Pana' and 'Loda'). Antibiosis in the resistant genotypes was demonstrated by a significant decrease in fecundity and longevity and increased mortality of A. glycines. Aphid fecundity, measured as number of offspring produced in the first 10 d by each viviparous aptera, was higher on Pana than on the resistant genotypes. Aphid longevity, the mean number of days a 1-d-old adult lived, was 7 d longer on Pana than on Dowling and Jackson. The mortality of both viviparous apterae and nymphs on resistant genotypes was significantly higher than on susceptible genotypes. A greater number of first instars survived to maturation stage (date of first reproduction) on susceptible plants than on resistant plants. None of the first instars placed on Dowling and PI200538 leaves survived to maturation. Observations of aphid behavior on leaves indicated that aphids departed from the leaves of resistant plants 8-24 h after being placed on them, whereas they remained indefinitely on leaves of susceptible cultivars and developed colonies. Reduced feeding due to ingestion of potentially toxic compounds in soybean may explain the possible mechanism of resistance to the soybean aphid.  相似文献   

4.
The effect of soybean mosaic virus (SMV) infection on symptom severity, yield, seed mottling and seed transmission in soybean in relation to the growth stage at infection and subsequent temperature was investigated using a susceptible (Harosoy), a moderately resistant (Evans) and a highly resistant (Merit) cultivar. Disease symptoms were more severe with early infection. A greater reduction in plant growth and seed yield, and higher percentages of mottled seeds and seed transmission of SMV also occurred with early infection. Virus titer was higher in younger plants than in older ones and also higher in plants infected at the ealier stage than at the later stage of growth. Merit (a highly resistant cultivar previously reported to be immune to seed mottling) inoculated at the early stage of plant growth resulted in infection and production of some mottled seeds. Temperature affected all parameters investigated. The effect of temperature was greater in the susceptible cultivar than in the resistant one. The optimal temperature for symptom severity, yield, seed mottling and seed transmission was 20 °C. Virus titer was highest at 30 °C in all three cultivars. Maturity of susceptible cultivar was delayed by infection.  相似文献   

5.
In glasshouse tests, sap from plants infected with 15 different isolates of tomato spotted wilt tospovirus (TSWV) from three Australian states was inoculated to nine genotypes of tomato carrying TSWV resistance gene Sw-5 or one of its alleles. A further two resistant tomato genotypes were inoculated with four isolates each. The normal response in resistant genotypes was development of necrotic local lesions in inoculated leaves without systemic invasion, but 22/752 plants also developed systemic reactions in addition to local hypersensitive ones. Using cultures from two of these systemically infected plants and following four cycles of subculture in TSWV resistant tomato plants, two isolates were obtained that gave susceptible type systemic reactions but no necrotic spots in inoculated leaves of resistant tomatoes. When these two isolates, DaWA-1d and ToTAS-1d, were maintained by repeated subculture for 10 successive cycles in Nicotiana glutinosa or a susceptible tomato genotype, they still induced susceptible type systemic reactions when inoculated to resistant tomato plants. They were therefore stable resistance breaking isolates as regards overcoming gene Sw-5. When resistance-breaking isolate DaWA-1ld multiplied together with original isolate DaWA-l in susceptible tomato, it was fully competitive with the original isolate. However, when DaWA-ld and ToTAS-ld were inoculated to TSWV resistant Lycopersicon peruvianum lines PI 128660R and PI 128660S and to TSWV resistant Capsicum chinense lines PI 152225, PI 159236 and AVRDC CO0943, they failed to overcome the resistance, producing only necrotic local lesions without systemic infection. Thus, although the ease of selection, stability and competitive ability of resistance breaking isolates of TSWV is cause for concern, L. peruvianum and C. chinense lines are available which are effective against them. The effectiveness of the resistance to TSWV in nine tomato genotypes was examined in a field experiment. Spread was substantial in the susceptible control genotype infecting 42% of plants. Resistance was ineffective in cv. Bronze Rebel, 26% of plants developing infection. In contrast, it held up well in the other eight resistant genotypes with only 1–3 or no plants of each becoming infected. Accumulated numbers of Thrips tabaci, Frankliniella occidentalis and F. schultzei were closely correlated with TSWV spread.  相似文献   

6.
抗烟粉虱大豆种质资源筛选和抗性机制初探   总被引:7,自引:0,他引:7  
烟粉虱(Bemisia tabaci Gennadius)近年来发生日益猖獗、危害日趋严重,防治比较困难,却未被列为主要经济害虫.筛选抗性种质和选育抗性品种是防治烟粉虱的有效措施.本研究对223份大豆种质资源进行了抗烟粉虱鉴定,筛选出滑皮豆等6份抗性较强的种质资源.调查了这223份种质资源的茸毛性状,测定了部分抗感烟粉虱品种的籽粒蛋白质和脂肪含量.结果表明,大豆品种对烟粉虱的抗性与叶片的茸毛性状有密切关系,无茸毛型抗性最强,茸毛紧贴型次之,茸毛直立型较差,茸毛斜立型抗性最差.大豆受烟粉虱危害程度与籽粒蛋白质和脂肪含量有密切关系,蛋白质含量越高受害越严重,脂肪含量越高受害越轻.根据鉴定结果,本研究提出了单叶平均感染烟粉虱0头为免疫,0.1~3.0头为高抗,3.1~10.0头为中抗,10.1~20.0头为中感,20头以上为高感的抗性鉴定标准.  相似文献   

7.
Soybean plants require high amounts of nitrogen, which are mainly obtained from biological nitrogen fixation. A field experiment was conducted by soybean (Glycine max) genotypes, growing two varieties (Shohag and BARI Soybean6) and two advanced lines (MTD10 and BGM02026) of soybean with or without Rhizobium sp. BARIRGm901 inoculation. Soybean plants of all genotypes inoculated with Rhizobium sp. BARIRGm901 produced greater nodule numbers, nodule weight, shoot and root biomass, and plant height than non-inoculated plants. Similarly, inoculated plants showed enhanced activity of nitrogenase (NA) enzyme, contributing to higher nitrogen fixation and assimilation, compared to non-inoculated soybean plants in both years. Plants inoculated with Rhizobium sp. BARIRGm901 also showed higher pod, stover, and seed yield than non-inoculated plants. Therefore, Rhizobium sp. BARIRGm901 established an effective symbiotic relationship with a range of soybean genotypes and thus increased the nodulation, growth, and yield of soybean grown in gray terrace soils in Bangladesh.  相似文献   

8.
Soybean cyst nematode (SCN), Heterodera glycines Ichinohe, is a major pest of soybean, Glycine max L. Merr. Soybean cultivars resistant to SCN are commonly grown in nematode-infested fields. The objective of this study was to examine the stability of SCN resistance in soybean genotypes at different soil temperatures and pH levels. Reactions of five SCN-resistant genotypes, Peking, Plant Introduction (PI) 88788, Custer, Bedford, and Forrest, to SCN races 3, 5, and 14 were studied at 20, 26, and 32 C, and at soil pH''s 5.5, 6.5, and 7.5. Soybean cultivar Essex was included as a susceptible check. Temperature, SCN race, soybean genotype, and their interactions significantly affected SCN reproduction. The effect of temperature on reproduction was quadratic with the three races producing significantly greater numbers of cysts at 26 C; however, reproduction on resistant genotypes remained at a low level. Higher numbers of females matured at the soil pH levels of 6.5 and 7.5 than at pH 5.5. Across the ranges of temperature and soil pH studied, resistance to SCN in the soybean genotypes remained stable.  相似文献   

9.
10.
Soybean aphids, Aphis glycines Matsumura, and soybean cyst nematodes, Heterodera glycines Ichinohe, are economic pests of soybean, Glycine max (L.) Merr., in the north‐central United States. Combined, these pests may account for 20–50% of yield reductions in a soybean crop. Only limited information is available concerning the interaction of these two pests on soybean production. During the summers of 2006 and 2007, we conducted a field‐experiment near Urbana, IL, to evaluate the effect of resistant and susceptible soybean lines on the development and reproduction of both pests in combination with each other. We also examined how each pest, as well as their interaction, affected the yield of susceptible and resistant soybean lines. Soybean plants grown within caged plots were infested with soybean aphids and soybean cyst nematodes; cumulative aphid days and soybean cyst nematode egg densities were determined at the end of each growing season. Soybean aphids were able to survive on all four soybean lines in both years of this study; however, aphid‐resistant lines generally had fewer cumulative aphid days than aphid‐susceptible lines. Likewise, nematode‐resistant lines typically had fewer eggs than nematode‐susceptible lines. During both years, we failed to observe a significant interaction between these two pests on the reproduction of one another. Yield data from 2006 was inconclusive; however, results from 2007 suggest that yield‐loss when soybean aphids and soybean cyst nematodes occur jointly is not significantly greater than when these two pests occur independently. The relationship between these two pests, and our inability to observe an interaction, are discussed.  相似文献   

11.
Fifty-four susceptible soybean, Glycine max, cultivars or plant introductions were evaluated for tolerance to H. glycines, the soybean cyst nematode (SCN). Seed yields of genotypes were compared in nematicide-treated (1,2-dibromo-3-chloropropane, 58 kg a.i./ha) and nontreated plots at two SCN-infested locations over 3 years. Distinct and consistent levels of tolerance to SCN were observed among soybean genotypes. PI 97100, an introduction from Korea, exhibited the highest level of tolerance with an average tolerance index ([yield in nontreated plot ÷ yield in nematicide-treated plot] × 100) of 96 over 2 years. Coker 156 and Wright had moderate levels of tolerance (range in index values 68 to 95) compared to the intolerant cuhivars Bragg and Coker 237 (range in index values 33 to 68). Most of the soybean genotypes evaluated were intolerant to SCN. The rankings of five genotypes for tolerance to SCN and Hoplolaimus columbus were similar. Tolerance for seed yield was more consistently correlated with tolerance for plant height (r = 0.55 to 0.64) than for seed weight (r = 0.23 to 0.65) among genotypes.  相似文献   

12.
Penetration, post-infectional development, reproduction, and fecundity of Meloidogyne arenaria races 1 and 2 were studied on susceptible (CNS), partially resistant (Jackson), and highly resistant (PI 200538 and PI 230977) soybean genotypes in the greenhouse. The ability to locate and invade roots was similar between races, but more juveniles penetrated roots of susceptible CNS than the resistant genotypes. At 10 days after inoculation, 56% and 99% to 100% of race 1 second-stage juveniles were vermiform or sexually undifferentiated in CNS and the resistant genotypes, respectively. In contrast, only 2%, 42%, 44%, and 62% of race 2 juveniles had not initiated development in CNS, Jackson, PI 200538, and PI 230977, respectively. By 20 days after inoculation, 88% to 100% of race 2 nematodes in roots of all genotypes were females, whereas only 25% and 1% of race 1 were females in CNS and the resistant genotypes, respectively. For all four genotypes, race 1 produce 85% to 96% fewer eggs per root system 45 days after inoculation than race 2. At 45 days after inoculation race 2 produced more eggs on CNS than the other genotypes.  相似文献   

13.
An 11-year field study was initiated in 1979 to monitor population development of Heterodera glycines. Fifty cysts of a race 5 population were introduced into plots in a field with no history of soybean production and that had been in sod for 20 years. Soybean cultivars either susceptible or resistant to H. glycines were grown either in monoculture or rotated with maize in a 2-year rotation. During the first 5 years, resistant cultivars with the Peking source of resistance were planted. After year 5, monocuhure of Peking resistance resulted in 18 cysts/250 cm³ of soil, whereas populations resulting from the continuous cropping of susceptible soybean resulted in 45 cysts/250 cm³. Some plots in all treatments, including control plots, were contaminated at the end of year 5. Crop rotation delayed population development of H. glycines. During years 6 through 11 cv. Fayette (PI88.788 source of resistance) was planted. In year 6 numbers of cysts declined to 1/250 cm³ of soil in the treatment consisting of monocultured Fayette. At the end of year 10, cysts were below the detection level in all treatments in which Fayette was planted. Yield of susceptible soybean in monoculture with or without H. glycines infestation was lower beginning in year 6 when compared to yield of soybean grown in rotation and remained lower throughout the duration of the experiment except for 1987 (year 9). Yields of susceptible and resistant soybean were different each year except for drought years in 1980 and 1988. From 1979 to 1982 differences in yield were due to lower yield potential of resistant cultivars. Except for the drought year, yield of cv. Fayette was greater than susceptible Williams 82 during years 6 through 11.  相似文献   

14.
To determine whether currently used sources of resistance (soybean Plant Introductions [PI] 548402, 88788, 90763, 437654, 209332, 89772, and 548316) influence sex ratios in H. glycines, four inbred lines of the nematode characterized by zero or high numbers of females on resistant soybean were used to observe the number of adult males produced. Nematodes were allowed to infect soybean roots for 5 days in pasteurized sand. Infected plants were washed and transferred to hydroponic culture tubes. Males were collected every 2 to 3 days up to 30 days after infestation (DAI), and females were collected at 30 DAI. Resistance that suppressed adult females also altered adult male numbers. On PI 548402, 90763, and 437654, male numbers were low and close to zero, whereas on PI 88788, male numbers were higher (α = 0.05). In a separate experiment, the same PIs were infected by an inbred line that tested as an HG Type 0 (i.e., the numbers of females that developed on each PI were less than 10% of the number that developed on the standard susceptible soybean cultivar Lee). In this experiment, male numbers were similar to female numbers on PI 548402, 90763, 437654, and 89772, whereas male numbers on PI 88788, 209332, and 548316 were higher than those of females (α = 0.05). In all experiments, the total number of adults that developed to maturity relative to the number of second-stage juveniles that initially penetrated the root was less on resistant than on susceptible soybean (P ≤ 0.05), indicating that resistance influenced H. glycines survival and not sexual development.  相似文献   

15.
Eighty soybeans (Glyane max Merr) cultivars, includingx a resistant line Oxley 615 were each inoculated with seven streams of soybean mosaic virus SMV. Susceptible cultivers produced smaller plants with delaved maturity, and reduced seed yield relative to the non inoculared plants Someptible cultivars had.a higher level of morrled seeds and seat transmission ot SMV from the morrled seeds than the resistance line Oxley 615. The SMV strain cultivar interaction was significant for all traits, suggsesting that soybean cultivars should be tested against specific SMV strains to determine their response to this virus.  相似文献   

16.
Nine resistant processing tomato (Lycopersicon esculentum) cultivars and advanced lines were compared with four susceptible cultivars in 1,3-dichloropropene-fumigated and nontreated plots on Meloidogyne incognita-infested sites over 3 years. Yield of all resistant genotypes grown in nontreated and nematicide-treated plots did not differ and was greater than yield of susceptible genotypes. M. incognita initial soil population densities caused 39.3-56.5% significant (P = 0.05) yield suppressions of susceptible genotypes. Nematode injury to susceptible plants usually caused both fruit soluble solids content and pH to increase significantly (P = 0.05). Only trace nematode reproduction occurred on resistant genotypes in nontreated plots, whereas large population density increases occurred on susceptible genotypes. Slightly greater nematode reproduction occurred on resistant genotypes at the southern desert location, where soil temperature exceeded 30 C, than at other locations. At two locations resistant MOX 3076 supported greater reproduction than other resistant genotypes.  相似文献   

17.
The effect of Phytophthora leaf blight disease, caused by Phytophthora colocasiae Raciborski, on the accumulation of phenolics and polyphenol oxidase (PPO) activity in ex vitro plants was studied in three resistant (DP‐25, Duradim and Jhankri) and one susceptible (N‐118) genotypes of taro [Colocasia esculenta (L). Schott]. The inoculation of taro leaves with P. colocasiae spores resulted in a quantitative change in both biochemical parameters and induction of PPO isoforms in resistant genotypes. The amount of phenolics was increased owing to blight by 68.02%, 58.87%, 52.67% and 11.50% in DP‐25, Duradim, Jhankri and N‐118, respectively. The per cent increase in PPO under stress over non‐stress condition was also highest in DP‐25 (49.14%) followed by Duradim (41.56%), Jhankri (40.55%) and N‐118 (17.08%). The resistant genotypes showed higher activity of PPO as compared with susceptible ones, which was reflected through its banding pattern in isoenzyme analysis, detecting four different isoforms. The intensity of the bands was higher in the resistant genotypes than in susceptible N‐118. The appearance of high intensity bands and/or reduction in the intensity of particular isoform(s) in the zymograms of all the three resistant taro genotypes studied, led to the apparent conclusion of linking PPO isoenzyme expression with blight resistance in taro. The blight incidence (per cent leaf infection and leaf area infection) was lower in the resistant genotypes than in susceptible, N‐118. The yield reduction owing to blight was below 20% in DP‐25, Jhankri and Duradim, while the same was more than 40% in N‐118. The phenolics and PPO activity was negatively correlated with disease incidence and yield reduction owing to blight. Based on the results of disease incidence, biochemical contents and yield, the pattern of stress tolerance was DP‐25 > Duradim > Jhankri > N‐118. The studied parameters, i.e. phenolics and PPO could be used as biochemical markers for leaf blight stress tolerance studies in taro.  相似文献   

18.
Several abiotic and biotic stresses can affect soybean in a growing season. Heterodera glycines, soybean cyst nematode, reduces yield of soybean more than any other pathogen in the United States. Field and greenhouse studies were conducted to determine whether preemergence and postemergence herbicides modified the reproduction of H. glycines, and to determine the effects of possible interactive stresses caused by herbicides and H. glycines on soybean growth and yield. Heterodera glycines reproduction factor (Rf) generally was less on resistant than susceptible cultivars, resulting in a yield advantage for resistant cultivars. The yield advantage of resistant cultivars was due to more pods per plant on resistant than susceptible cultivars. Pendimethalin reduced H. glycines Rf on the susceptible cultivars in 1998 at Champaign, Illinois, and in greenhouse studies reduced dry root weight of H. glycines-resistant and susceptible cultivars, therefore reducing Rf on the susceptible cultivars. The interactive stresses from acifluorfen or imazethapyr and H. glycines reduced the dry shoot weight of the resistant cultivar Jack in a greenhouse study. Herbicides did not affect resistant cultivars'' ability to suppress H. glycines Rf; therefore, growers planting resistant cultivars should make herbicide decisions based on weeds present and cultivar tolerance to the herbicide.  相似文献   

19.
In this study, changes in quantity and quality of phenolic compounds were compared in cucumber mosaic virus (CMV)-inoculated and -un-inoculated plants of nine resistant, tolerant, susceptible and highly susceptible genotypes at three different time intervals. Total phenolic contents and the number of phenolic compounds were generally increased in CMV-inoculated plants. Maximum per cent increase in total phenolic contents over un-inoculated controls was observed as 77.55% in resistant genotype TMS-1, 84.17% in tolerant genotype L06238 and 82.88% in resistant genotype L02223 after 10, 20 and 30 days of inoculation, respectively. Thin layer chromatography of inoculated and un-inoculated plants indicates that in most of the tested genotypes, the number of phenolic compounds varied from cultivar to cultivar and within the same cultivar, depending upon the status of plants and growth stages. However, the trend of increase in quantity and quality of phenolic compounds in the tested units was not constant to draw a meaningful conclusion.  相似文献   

20.
The influence of soil texture on Soybean yield in the presence of Heterodera glycines was investigated by comparing yields of susceptible cultivars with a resistant cultivar for 2 years. Soybean yield was negatively correlated with increasing sand content (P = 0.05). Yields of susceptible cultivars were suppressed with increasing sand content. Final nematode population densities were lowest in plots with greatest sand content. Soybean infection by SCN, as determined by the number of cysts 30 days after planting, was not consistently related to soil texture over 2 years. Initial nematode population density was positively related to soybean yield the first year and negatively related to soybean yield the second, probably a result of greater yield suppression by H. glycines in plots with greater sand content.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号